Author Index Volume 24 (2013)

The issue number is given in front of the pagination

Abbas, M., and B. Ali, Coupled fixed point results for multivalued mappings in Hausdorff fuzzy metric space (4) 871–877
Abassi, S.A., see Loan, S.A. (1) 5–19
Abeynayake, C., see Lim, C.P. (2) 199–200
Alamoud, A.R.M., see Loan, S.A. (1) 5–19
Ali, B., see Abbas, M. (4) 871–877
Alimi, A.M., see Baccour, L. (1) 37–49
Aruna, M., see Srinivasan, V. (3) 555–561
Avros, R., see Toledano-Kitai, D. (3) 417–427

Babaei, A.R., M. Mortazavi and M.H. Moradi, Fuzzy sliding mode autopilot design for nonminimum phase and nonlinear UAV (3) 499–509
Badie, K., see Mahmoudi, M.T. (2) 333–346
Bagherpour, M., see Mortaji, S.T.H. (2) 323–332
Bai, Y., see Wang, D. (4) 677–683
Balas, V.E., see Lim, C.P. (3) 415–416
Bandyopadhyay, P.P., see Datta, S. (2) 355–362
Beheshti, M., see Mahmoudi, M.T. (2) 333–346
Belhadj, B., New fuzzy indices for multidimensional poverty (3) 587–591
Bid, S.D., and N.J. Mistry, Infection potential ranking of hospitals based on generation of biomedical waste: A fuzzy approach (3) 657–663
Çağman, N., and S. Karataş, Intuitionistic fuzzy soft set theory and its decision making (4) 829–836
Cao, Q., M.H. Lim, X. Shi and J.H. Li, A multi-context processor for real-time concurrent tasks fuzzy reasoning (1) 79–91
Castillo, J.C., see Sokolova, M.V. (2) 215–228
Cateni, S., V. Colla and G. Nastasi, A multivariate fuzzy system applied for outliers detection (4) 889–903
Chang, Y.-Z., Z.-R. Tsai, J.-D. Hwang and J. Lee, Optimal fuzzy tracking control of uncertain nonlinear systems based on genetic algorithms and fuzzy Lyapunov function (1) 121–132
Cheah, Y.-N., see Tan, C.J. (3) 483–495
Colla, V., see Cateni, S. (4) 889–903

Datta, S., D.K. Pratihar and P.P. Bandyopadhyay, Hierarchical adaptive neuro-fuzzy inference systems trained by evolutionary algorithms to model plasma spray coating process (2) 355–362
Davvaz, B., see Jun, Y.B. (3) 619–630
Debnath, S., see Tripathy, B.C. (3) 631–635
Dehghani, M., see Sandizadeh, M.A. (4) 859–869
Deperlioglu, O., Power electronics converter control based on rule based algorithm (4) 703–711
Derhami, V., Similarity of learned helplessness in human being and fuzzy reinforcement learning algorithms (2) 347–354
Didaci, L., see Marcialis, G.L. (1) 51–60
Do, Q., see Lim, C.P. (3) 415–416
Dutta, A.J., see Tripathy, B.C. (1) 185–189

Ebrahimejad, A., S.H. Nasseri and S.M. Mansourzadeh, Modified bounded dual network simplex algorithm for solving minimum cost flow problem with fuzzy costs based on ranking functions (1) 191–198
Effati, S., H.S. Yazdi and A.J. Sharahi, Fuzzy clustering algorithm for fuzzy data based on α-cuts (3) 511–519
Ehsan, M., see Meyabadi, A.F. (3) 563–574
El-Dardery, M., A.A. Ramadan and Y.C. Kim, L-fuzzy topogenous orders and L-fuzzy topologies (4) 685–691
El-Dardery, M., see On L-fuzzy topogenous orders (3) 601–609
Esi, A., and B. Hazarika, λ-ideal convergence in intuitionistic fuzzy 2-normed linear space (4) 725–732
Fernández-Caballero, A., see Sokolova, M.V. (2) 215–228
Ghanbari, M., see Matinfar, M. (3) 575–586
Hadi, M., K. Morteza and S.Y. Hadi, Vector fuzzy C-means (2) 363–381
Hadi, S.Y., see Morteza, K. (2) 363–381
Halder, A., R. Mandal and A. Konar, A hierarchical algorithm for fuzzy template matching in emotional facial images (2) 201–214
Han, J.S., H.S. Kim and J. Neggers, On linear fuzzifications of groupoids with special emphasis on BCK-algebras (1) 105–110
Hanmandlu, M., see Singh, M. (1) 145–161
Hasuike, T., and T. Ichimura, Web intelligence for tourism using railway data by a simplified fuzzy reasoning method (2) 251–259
Hazarika, B., see Esi, A. (4) 725–732
Hsu, Y.-C., and S.-F. Lin, Self-organization hybrid evolution learning algorithm for recurrent wavelet-based neuro-fuzzy identifier design (3) 521–533
Huang, R., and S. Sun, Kernel regression with sparse metric learning (4) 775–787
Hwang, J.-D., see Chang, Y.-Z. (1) 121–132
Ichimura, T., see Hasuike, T. (2) 251–259
Jafarian, E., and M.A. Rezvani, A valuation-based method for ranking the intuitionistic fuzzy numbers (1) 133–144
Jain, L.C. see Kilingaru, K. (3) 457–466
Jain, L.C., see Lim, C.P. (2) 199–200
Jain, L.C., see Louthchina I. (2) 281–296
Jee, T.L., K.M. Tay and C.K. Ng, A new fuzzy criterion-referenced assessment with a fuzzy rule selection technique and a monotonicity-preserving similarity reasoning scheme (2) 261–279
Ji, R., Y. Yang and W. Zhang, TS-fuzzy modeling based on ϵ-insensitive smooth support vector regression (4) 805–817
John, R.I., see Baccour, L. (1) 37–49
Jolai, F., see Mousavi, S.M. (4) 819–827
Jun, Y.B., B. Davvaaz and A. Khan, Filters of ordered semigroups based on the fuzzy points (3) 619–630
Jun, Y.B., see Zhan, J. (3) 611–618
Kalyanaraman, R., N. Thillaigovindan and G. Kannadasan, A fuzzy bulk queue with modified Bernoulli vacation and restricted admissible customers (4) 837–845
Kamali, H.R., P. Shahnazari-Shahrezaei and H. Kazemipoor, Two new time-variant methods for fuzzy time series forecasting (4) 733–741
Kannadasan, G., see Kalyanaraman, R. (4) 837–845
Karasfi, B. see Nakhaeinia, D. (2) 299–311
Karataş, S., see Çağman, N. (4) 829–836
Kartsiotis, G., see Kehagias, Ath. (1) 111–120
Kazemipoor, H., see Kamali, H.R. (4) 733–741
Kehagias, Ath., and G. Kartsiotis, On the use of fuzzy logic and learning automata optimization to resolve the Liar and related paradoxes (1) 111–120
Khan, A., see Jun, Y.B. (3) 619–630
Khayat, O., J. Razjouyan, F.N. Rahatabad and H.C. Nejad, A fast learnt fuzzy neural network for huge scale discrete data function approximation and prediction (4) 693–701
Khooban, M.H., and M.R. Soltanpour, Swarm optimization tuned fuzzy sliding mode control design for a class of nonlinear systems in presence of uncertainties (2) 383–394
Kidéry, J., see Bělíček, T. (2) 313–321
Killingaru, K., J.W. Tweedale, S. Thatcher and L.C. Jain, Monitoring pilot “Situation Awareness” (3) 457–466
Kim, H.S., see Han, J.S. (1) 105–110
Kim, Y.C., see El-Dardery, M. (4) 685–691
Konar, A., see Halder, A. (2) 201–214
Kukal, J., see Bělíček, T. (2) 313–321
Kumar, A., see Verma, M. (4) 765–773
Kung, J.-Y., see Wu, W.-Y. 175–183
Kuzhali, J.V., see Srinivasan, V. (3) 555–561
Lee, J., see Chang, Y.-Z. (1) 121–132
Lee, W.-C., and J.-W. Wu, Reply to “open problem of fuzzy confidence interval for fuzzy process capability index” (1) 1–3
Leoreanu, L., see Leoreanu-Fotea, V. (3) 647–655
Leoreanu-Fotea, V., J. Zhan and L. Leoreanu, Fuzzy Γ-hyperrings and fuzzy Γ-hypermodules (3) 647–655
Li, D.-F., see Wan, S.-P. (4) 743–754
Li, D.-F., see Wan, S.-P. (4) 847–858
Li, D.-F., see Wang, L.-L. (4) 755–763
Li, J.H., see Cao, Q. (1) 79–91
Li, X., see Li, X. (3) 665–675
Li, X., W. Yu and X. Li, On-line modeling via fuzzy support vector machines and neural networks (3) 665–675
Liang, J., see Song, Q. (1) 79–91
Lim, C.P., C. Abeynayake, M. Sato-Ilic and L.C. Jain, Special issue: Computational intelligence models for image processing and information reasoning (2) 199–200
Lim, C.P., see Ooi, W.S. (2) 239–249
Lim, C.P., see Tan, C.J. (3) 483–495
Lim, C.P., V.E. Balas and Q. Do, Special issue recent advances in soft computing: Theories and applications (3) 415–416
Lim, M.H., see Cao, Q. (1) 79–91
Lin, C.-M., see Mon, Y.-J. (4) 905–913
Lin, C.-T., see Wu, W.-Y. 175–183
Lin, R., X. Zhao and G. Wei, Fuzzy number intuitionistic fuzzy prioritized operators and their application to multiple attribute decision making (4) 879–888
Lin, S.-F., see Hsu, Y.-C. (3) 521–533
Liu, P., The multi-attribute group decision making method based on the interval grey linguistic variables weighted aggregation operator (2) 405–414
Lucas, C., see Mahmoudi, M.T. (2) 333–346
Ma, X., and J. Zhan, Characterizations of three kinds of hemirings by fuzzy soft h-ideals (3) 535–548
Madasu, V.K., see Singh, M. (1) 145–161
Mahmoudi, M.T., M. Beheshti, F. Taghiyareh, K. Badie and C. Lucas, Content-based image retrieval using OWA fuzzy linking histogram (2) 333–346
Majumdar, P., and S.K. Samanta, Decision making based on similarity measure of vague soft sets (3) 637–646
Mandal, R., see Halder, A. (2) 201–214
Mansourzadeh, S.M., see Ebrahimnejad, A. (1) 191–198
Marcialis, G.L., F. Roli and L. Didaci, Multimodal fingerprint verification by score-level fusion: An experimental investigation (1) 51–60
Matěj, R., see Bělíček, T. (2) 313–321
Mathew, S., and M.S. Sunitha, Cycle connectivity in fuzzy graphs (3) 549–554
Meyabadi, A.F. and M. Ehsan, A heuristic fuzzy decision-based solving of redispatching problem for congestion management in restructured power systems (3) 563–574
Miao, D.-Q., see Wang, R.-Z. (2) 395–404
Min, H., see Perćin, S. (1) 163–174
Mistry, N.J., see Bid, S.D. (3) 657–663
Mon, Y.-J., C.-M. Lin and R.-G. Yeh, Intelligent control for long-term ecological systems (4) 905–913
Moradi, M.H., see Babaei, A.R. (3) 499–509
Mortajti, S.T.H., M. Bagherpour and S. Noori, Fuzzy earned value management using L-R fuzzy numbers (2) 323–332
Mortazavi, M., see Babaei, A.R. (3) 499–509
Morteza, K., see Hadi, M. (2) 363–381
Mousavi, S.M., F. Jolai, R. Tavakkoli-Moghaddam and B. Vahdani, A fuzzy grey model based on the compromise ranking for multi-criteria group decision making problems in manufacturing systems (4) 819–827
Murshid, A.M., see Loan, S.A. (1) 5–19
Nakhæinia, D. and B. Karasfi, A behavior-based approach for collision avoidance of mobile robots in unknown and dynamic environments (2) 299–311
Nasseri, S.H., see Ebrahimnejad, A. (1) 191–198
Nastasi, G., see Cateni, S. (4) 889–903
Neggers, J., see Han, J.S. (1) 105–110
Nejad, H.C., see Khayat, O. (4) 693–701
Nesterov, S., see Loutchkina I. (2) 281–296
Ng, C.K., see Jee, T.L. (2) 261–279
Nguyen, T., see Loutchkina I. (2) 281–296
Noori, S., see Mortajti, S.T.H. (2) 323–332
Nuraei, R., see Matinfar, M. (3) 575–586
Nurwaha, D., and X. Wang, Optimization of electrospinning process using intelligent control systems (3) 593–600
Ooi, W.S., and C.P. Lim, Multi-objective image segmentation with an interactive evolutionary computation approach (2) 239–249
Pei, D., see Zhan, J. (3) 611–618
Pei, Z., see Zou, L. (3) 447–456

Perçin, S., and H. Min, Optimal machine tools selection using quality function deployment and fuzzy multiple objective decision making approach (1) 163–174

Pérez-Jiménez, M.J., see Peng, H. (2) 229–237

Pratihar, D.K., see Dutta, S. (2) 355–362

Pratihar, D.K., see Roy, S.S. (3) 467–482

Rahatabad, F.N., see Khayat, O. (4) 693–701

Rajenderan, G., see Srinivasan, V. (3) 555–561

Ramadan, A.A., see El-Dardery, M. (4) 685–691

Razjouyan, J., see Khayat, O. (4) 693–701

Rezvani, M.A., see Jafarian, E. (1) 133–144

Roli, F., see Marcialis, G.L. (1) 51–60

Roy, S.S. and D.K. Pratihar, Adaptive neuro-fuzzy expert systems for predicting specific energy consumption and energy stability margin in crab walking of six-legged robots (3) 467–482

Rui, Z.-F., see Wan, S.-P. (4) 847–858

Rusina, R., see Bělíček, T. (2) 313–321

Samanta, S.K., see Majumdar, P. (3) 637–646

Sandizadeh, M.A., and M. Dehghani, Intelligent condition monitoring of railway signaling in train detection subsystems (4) 859–869

Sarto-Ilic, M., see Lim, C.P. (2) 199–200

Serrano-Cuerda, J., see Sokolova, M.V. (2) 215–228

Shahnazari-Shahrezaei, P., see Kamali, H.R. (4) 733–741

Sharahi, A.J., see Effati, S. (3) 511–519

Shi, P., see Peng, H. (2) 229–237

Shi, P., see Zou, L. (3) 447–456

Shi, X., see Cao, Q. (1) 79–91

Singh, M., V.K. Madasu, S. Srivastava and M. Hanmandlu, Choquet fuzzy integral based verification of handwritten signatures (1) 145–161

Singh, P., see see Verma, M. (4) 765–773

Singh, Y., see see Verma, M. (4) 765–773

Soltanpour, M.R., see Khooban, M.H. (2) 383–394

Song, Q., Z. Wang and J. Liang, Analysis on passivity and passification of T-S fuzzy systems with time-varying delays (1) 21–30

Srinivasan, V., G. Rajenderan, J.V. Kuzhali and M. Aruna, Fuzzy fast classification algorithm with hybrid of ID3 and SVM (3) 555–561

Srivastava, S., see Singh, M. (1) 145–161

Staniczyk, U., Decision rule length as a basis for evaluation of attribute relevance (3) 429–445

Sun, S., see Huang, R. (4) 775–787

Sunitha, M.S., see Mathew, S. (3) 549–554

Taghiyareh, F., see Mahmoudi, M.T. (2) 333–346

Tan, C.J., C.P. Lim and Y.-N. Cheah, A Modified micro Genetic Algorithm for undertaking Multi-Objective Optimization Problems (3) 483–495

Tavakkoli-Moghaddam, R., see Mousavi, S.M. (4) 819–827

Tay, K.M., see Jee, T.L. (2) 261–279

Thatcher, S., see Kilingaru, K. (3) 457–466

Thillaiagovindan, N., see Kalyanaraman, R. (4) 837–845

Tripathy, B.C., and S. Debnath, γ-Open sets and γ-continuous mappings in fuzzy bitopological spaces (3) 631–635

Tripathy, B.C., and A.J. Dutta, Lacunary bounded variation sequence of fuzzy real numbers (1) 185–189

Tsai, Z.-R., see Chang, Y.-Z. (1) 121–132

Tweedale, J.W., see Kilingaru, K. (3) 457–466

Vahdani, B., see see Mousavi, S.M. (4) 819–827

Verma, M., A. Kumar, P. Singh and Y. Singh, Risk analysis of combustion system using vague ranking method (4) 765–773

Vlahos, A., Ant Colony System algorithm solving a Thermal Generator Maintenance Scheduling Problem (4) 713–723

Volkovich, Z., see Toledano-Kitai, D. (3) 417–427

Wan, S.-P., and D.-F. Li, Possibility mean and variance based method for multi-attribute decision making with triangular intuitionistic fuzzy numbers (4) 743–754

Wan, S.-P., D.-F. Li and Z.-F. Rui, Possibility mean, variance and covariance of triangular intuitionistic fuzzy numbers (4) 847–858

Wang, D., and Y. Bai, Fuzzy logic control implementation considerations and complexity analyses (4) 677–683

Wang, J., see Peng, H. (2) 229–237

Wang, R.-Z., D.-Q. Miao, F.-F. Xu and H.-Y. Zhang, Information interpretation of knowledge granularity (2) 395–404
Wang, X., see Nurwaha, D. (3) 593–600
Wang, Z., see Song, Q. (1) 21–30
Warsing Jr, D.P., see Wu, X. (1) 93–104
Weber, G.-W., see Toledano-Kitai, D. (3) 417–427
Wei, G., and X. Zhao, Induced hesitant interval-valued fuzzy Einstein aggregation operators and their application to multiple attribute decision making (4) 789–803
Wei, G., see Lin, R. (4) 879–888
Wu, J.-W., see Lee, W.-C. (1) 1–3
Wu, W.-Y., C.-T. Lin and J.-Y. Kung, Supplier selection in supply chain management by using fuzzy multiple-attribute decision-making method (1) 175–183
Wu, X., and D.P. Warsing Jr., Comparing traditional and fuzzy-set solutions to (Q, r) inventory systems with discrete lead-time distributions (1) 93–104
Xu, F.-F., see Wang, R.-Z. (2) 395–404
Xu, Y., see Zou, L. (3) 447–456

Yahalom, O., see Toledano-Kitai, D. (3) 417–427
Yang, Y., see Ji, R. (4) 805–817
Yazdi, H.S., see Effati, S. (3) 511–519
Yeh, R.-G., see Mon, Y.-J. (4) 905–913
Yu, W., see Li, X. (3) 665–675
Yuen, K.K.F., A Fuzzy Qualitative Evaluation System: A multi-granular aggregation approach using fuzzy compound linguistic variable (1) 61–78
Zhan, J., D. Pei and Y.B. Jun, Falling fuzzy (implicative) filters of R_0-algebras and its applications (3) 611–618
Zhan, J., see Leoreanu-Fotea, V. (3) 647–655
Zhan, J., see Ma, X. (3) 535–548
Zhang, H.-Y., see Wang, R.-Z. (2) 395–404
Zhang, S.-S., see Wang, L.-L. (4) 755–763
Zhang, W., see Ji, R. (4) 805–817
Zhao, X., see Lin, R. (4) 879–888
Zhao, X., see Wei, G. (4) 789–803
Zhu, Y., An intelligent algorithm: MACO for continuous optimization models (1) 31–36
Zou, L., P. Shi, Z. Pei and Y. Xu, On an algebra of linguistic truth-valued intuitionistic lattice-valued logic (3) 447–456