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Crop region extraction of remote sensing
images based on fuzzy ARTMAP
and adaptive boost
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Abstract. Crop area statistics and yield prediction will affect adjustment of agricultural policy, to a certain extent. With the devel-
opment of computer automatic classification techniques, the performance of classifiers are influenced by feature preprocessing and
sample selection. Remote sensing classification according to spectral information is affected by false negatives and miscalculation
in the complex spectrum area. Corn planting areas and other land-cover objects contain different surface structures and smooth-
ness; other vegetation and villages have coarse textures. This paper introduces texture information based on a Gabor filter group to
enrich land-cover information and establish a spectrum-texture feature set. With more samples, the algorithm efficiency is greatly
affected. This paper proposes an improved fuzzy ARTMAP (FAM) with an adaptive boost strategy, namely Adaboost FAM. Weak
classifiers are trained to construct strong classifiers so as to improve operation efficiency. Meanwhile, classification accuracy will
not be greatly improved. Experimental results indicate that the proposed method improves extraction accuracy when compared
to classical algorithms, and improves efficiency when compared to algorithms which contain a great number of samples.
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1. Introduction

Agricultural remote sensing information extraction
is one of the key technologies in remote sensing appli-
cations; many researchers have improved and explored
various methods. Automatic classification accuracy and
efficiency have been subjects of constant improvement.
Anne Puissant proposes that texture information can
greatly improve spatial resolution image classification
[1]. However, single feature representation methods
are unable to describe all relevant information, thus a
multiple feature fusion method was developed. M. Fau-
vel used morphological properties to describe spatial
information in order to combine spectrum characteris-
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tics [14]. This study overcomes the disadvantages of
single feature classification and greatly improves the
classification precision of the pixel scale. M. Fauvel
and Y. Tarabalka combine morphological properties
and multiple classifier methods to improve classifica-
tion results, also demonstrating that texture and spectral
information are important to image classification [15].
The texture of a corn field is different from that of
villages and other vegetables, this feature has good con-
sistency and regularity, therefore, this paper introduces
texture information of corn areas to construct a multi-
ple feature set and improve the accuracy of information
extraction.

In general, remote sensing image classification
methods can be divided into supervised classification
and unsupervised classification methods. Unsupervised
classification algorithms are those which do not account
for prior knowledge, such as k-means and ISODATA.
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The disadvantage of these methods is that classification
accuracy is low, resulting in rough classification results.
Thus, these methods are not suitable for high resolution
remote sensing images. Supervised classifiers include
maximum likelihood [2], artificial neural networks,
decision trees, support vector machines [13, 16, 17] and
random forests. The key point is the selection of the test
sample, because its quality is directly related to classifi-
cation accuracy. Combination classification techniques
include semi-supervised methods, and fusions of super-
vised and unsupervised methods.

Many new algorithms, such as the artificial neu-
ral network (ANN) [4, 6, 20], support vector machine
(SVM) [18, 22, 24] and random forest [5, 7], meet the
requirements of complex multispectral data. One of the
most widely used methods for supervised classification
in remote sensing analysis is the use of artificial neu-
ral networks (ANN), which are formed by algorithms
inspired by biological neural systems. In an initial train-
ing stage, these networks fix coefficients between the
input data and output categories. The process is com-
pleted by subsequent verification and test stages so that
classification is determined to be correct or incorrect
according to measures that were not involved in the test
circumstances.

A supervised adaptive resonance theory (ART)-
based neural network, namely fuzzy ARTMAP [10],
is proposed as the base classifier. An incremental
learning model is able to overcome the stability-
plasticity dilemma of the data [8, 9]. The FAM network
is plastic enough to absorb new information from
new samples, and stable enough to retain previously
learned information which may be corrupted by newly
learned information. An interesting feature of FAM
is that it integrates fuzzy set theory [12] and the
stability-plasticity characteristic of ART into a common
framework. Taherian and Arash proposed an efficient
iris recognition system that employs a circular Hough
transform technique to localize the iris region in the
eye image and introduce a cumulative sum-based gray
change analysis method to extract features from the
normalized iris template. Then, fuzzy ARTMAP neu-
ral network was used to classify the iris codes [3]. Tan
Shing Chiang introduced two models of evolutionary
fuzzy ARTM-AP (FAM) neural networks to deal with
imbalanced datasets in a semiconductor manufactur-
ing operation [23]. However, these methods selected
solitary samples, and thus did not account for diver-
sity within samples, thus affecting the classification
performance. This paper adopts ensemble learning, an
adaptive boosting strategy, to develop fuzzy ARTMAP.

2. Related research

2.1. Fuzzy ARTMAP neural network

The Fuzzy ARTMAP network is composed of two
types of fuzzy ART networks: ARTa and ARTb.
One used training data and the other utilized ver-
ification data. The relationship between both fuzzy
ART networks was determined by a memory map
called map-field. The input data were normalized to
1 and duplicated by adding their complements. Thus,
a data vector was obtained, which allowed the network
weights and the maximum and minimum input values
to be determined [11].

2.2. Adaptive boost strategy

Adaptive boost strategy is an active learning method.
Theoretical research proves that strong classifier error
rates will be zero as long as each weak classifier clas-
sification error rate is below 50% and the number of
weak classifier approaches ∞. In corn planting infor-
mation extraction, in order to simplify the optimization
of process parameters, it is necessary to construct weak
classifiers based on few samples and brief characteris-
tics. This mentality is feasible in theory. The algorithm
is described as follows:

Step 1: Randomly select training data from the sam-
ple space group; initialize data distribution weights
Dk(i) = 1/m; initialize the parameters of the particle
swarm optimization algorithm.

Step 2: When training the kth weak classifier, train
SVM weak classifiers and predict output data based
on training data and optimization parameters; then
obtain prediction error of g(k) and e(k) =∑i Dk(i)
i = 1, 2, . . . , m(g(k) /= y) where g(k) is the prediction
result and y is the expectation result.

Step 3: Compute forecast sequence weight according
to e(k):

α(k) = 0.5 ln

(
1 − e(k)

e(k)

)
(1)

Step 4: Adjust test data weight of the next iteration
according to α(k):

Dk+1(i) = Dk(i)

Bk

exp[−α(k)yigk(i)] i = 1, 2, . . . , m

(2)
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Step 5: Train K weak classifiers f (gk, αk) and con-
struct a strong classifier:

h(x) = sign

(
K∑

k=1

αkf (gk, αk)

)
(3)

3. Experiment process and result

3.1. Experiment datasets

Experiment data is derived from the fusion results
based on a multi-spectrum image (B - G - R - NIR)
and panchromatic image (pan); resolution is equal to
2 meters. To maintain consistent experimental condi-
tions, this text selects three images from the same scene
data in primary corn planting territory. Image sizes are
600 × 600, 1024 × 1024 and 400 × 400 pixels, respec-
tively. Remote sensing images include corn, non-corn
plants, and urban construction. Here, the corn crop
planting area information extraction is studied; the corn
area is identified as the area of interest, other areas are
considered to be background. All experiments are con-
ducted with a Windows 7 operation system with an Intel
Core i5-2.30 GHz processor and 4.0 GB RAM.

3.2. Feature extraction and selection

3.2.1. Spectrum features
According to experience, NIR, R and G are selected

as features. In addition, the common useful vegetation
index (VI) contains the normalized differential veg-
etation index (NDVI), soil-adjusted vegetation index
(SAVI) and enhanced vegetation index (EVI). The
test selects three characteristics to obtain feature
sets.

– NDVI is derived from red and NIR bands,
and can effectively distinguish plants from other
objects.

NDVI = NIR − R

NIR + R
(4)

- SAVI can partially reduce the effect of a soil
background. The modified soil-adjusted vegeta-
tion index (MSAVI) takes into account changes in
soil factors without the soil index, and is suitable
for areas of sparse vegetation coverage.

MSAVI = 2NIR +1 −
√

(2NIR + 1)2 − 8(NIR − R)

2

(5)

SAVI = NIR − R

NIR + R + L
(1 + L) (6)

where L is the soil-adjusted index; values range from
0.5 to 1, and is equal to 0.5 in this paper.

– The effect of soil and atmosphere on NDVI are not
independent; therefore, EVI simultaneously intro-
duces feedback from two amendment regulations,
using the soil adjustment index and atmospheric
correction parameters.

EVI = NIR − R

NIR + C1R − C2B + L
(1 + L) (7)

where L is soil-adjusted index; values range from 0.5
to 1, and is equal to 0.5 in this paper. C1 and C2 are
atmospheric correction parameters.

3.2.2. Gabor filter texture features
These features are extracted by multi-scale and multi-

orientation Gabor filters to simulate human vision in
order to extract terse and concise contour information
[25]. The feature extraction procedure is as follows:

Step 1: Extend Gabor filter g(x, y) to obtain a multi-
scale and multi-orientation Gabor filter group by scale
and rotation transformation.

g(x, y) = cos(2πf0x + ϕ)

2πσxσy

e
−( x2

σ2
x

+ y2

σ2
y

)
(8)

where x, y are pixel positions; σx, σy are standard devia-
tions of the Gaussian factors;f0 is the central frequency;
and ϕ is the phase difference.

Step 2: Obtain a group of sub-images using the Gabor
filter group.

fmn(x, y) = f (x, y) ∗ gmn(x, y) (9)

gmn(x, y) = a−mg(x′, y′), a > 1 (10)

x′ = a−m(x cos θ + y cos θ) (11)

y′ = a−m(−x cos θ + y cos θ) (12)

θ = nπ/(n + 1) (13)

where a−m is scale factor of the mother Gabor wavelet;
m is a scale number; n is of the orientation; and θ rep-
resents the filter orientation. This paper utilizes three
scales and four orientations.
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Step 3: Perform nonlinear transformation for each
sub-image according to Equation (14).

�(fmn(x, y)) = 1 − exp[−2λfmn(x, y)]

1 + exp[−2λfmn(x, y)]
(14)

Step 4: Execute window operation for images of
step 3.

Gt(x, y) = 1

Msxy

∑
(i,j)∈sxy

|�(fmn(i, j))| (15)

Step 5: Compute average value of four orientations
for each scale; then, obtain Gabor texture features.

3.2.3. Features importance
Many studies show that the dimension of the feature

vector greatly affects the algorithm efficiency. Although
the vector dimension is not very large in this context,
reducing the dimension of the feature set can improve
the efficiency of the algorithm, which has practical

significance. This paper uses cross-validation to deter-
mine feature importance [19, 21], as shown in Fig. 1.
According to experimental results, R, NIR, NDVI,
homogeneity and contrast degree are selected to build a
feature set. Although the degree of dimension reduction
is small, it still affects the operational process. When
the characteristic dimension is very large, this step has
significant practical significance.

As shown in Fig. 1, the numbers of feature axle
represent features B, G, R, NIR, NDVI, SAVI, EVI,
and the Gabor texture of three scales, respectively. The
spectral features are more important than textural fea-
tures; this paper select G, R, NDVI, SAVI, EVI and the
Gabor texture features of three scale degrees to execute
subsequent supervised classification.
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Fig. 1. Importance of each feature.

3.2.4. Experiment results
This section implements experiments for three

images, and compare results with those obtained by
traditional classification methods. For the first exper-
imental dataset, the number of samples and weak
classifiers will affect the final classification perfor-
mance, which is evaluated by the overall accuracy
(OA) and Kappa coefficient. OA verifies the number
of pixels that are classified correctly. Kappa can be
used to assess the agreement of the two classifications
for each class. This paper selects different numbers
of samples. The results shown in Fig. 2 indicate that
the classification performance can be improved with
an increasing number of samples. Then, this paper
selects different numbers of weak classifiers to con-
struct Adaboost FAM.

Figure 2 presents the Kappa sample curve, and the
overall accuracy sample curve. Figure 3 presents the
Kappa iteration curves, and the overall accuracy itera-
tion curves.

Kappa = (TP + TN)M − (TP + FP)(TP + FN) + (TN + FN)(TN + FP)

M2 − (TP + FP)(TP + FN) + (TN + FN)(TN + FP)
(16)

OA = TP + TN

M
(17)

M = TP + TN + FN + FP (18)

where True Positive (TP) is defined as an entity labeled
as “corn” that also corresponds to “corn” in the ref-
erence data. True Negative (TN) is an entity that
belongs to “non-corn” in both the detection results
and the reference data. False Positive (FP) is defined
as an entity labeled as “corn” that corresponds to
“non-corn” in the reference. False Negative (FN) is
defined as an entity labeled as “nor-corn” that cor-
responds to “corn” in the reference. In view of the
computational cost and precision, 1000 samples were
randomly chosen to perform subsequent experiments.
With the gradual increase of iterations, kappa and OA
increase slightly but after 10 iterations, increase very
slowly. Therefore in the subsequent process, classifi-
cation indices based on above-mentioned parameters
(1000 samples and 10 iterations) are compared to the
indices obtained by classical classification methods.
The classical methods contain Mahalanobis distance
classification (Mahal Dist), Parallelepiped classifi-
cation (Parallel), Maximum likelihood classification
(Max Likeli) and Minimum distance classification
(Mini Dist), and SVM. The comparison results are
shown in Fig. 4 and Table 1.
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Fig. 2. Classification performance indices with different number of samples. (a) kappa index; (b) overall accuracy.
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Fig. 3. Classification performance indices with different numbers of iterations. (a) kappa index; (b) overall accuracy.

Table 1 depicts the confusion matrix of classifica-
tion and other indicators. Except for the kappa index
and OA, the Producer Accuracy (PA) and User Accu-
racy (UA) metrics were computed using the following
equations.

PA = TP

TP + FN
(19)

UA = TP

TP + FP
(20)

This paper utilizes fuzzy theory, neural networks
and adaptive boost to construct a compound classifi-
cation frame. The results of the proposed algorithm
are markedly superior to results obtained by others.
For the first remote sensing image with Adaboost FAM
(spectrum + texture), KAPPA, UA and OA are 0.5972,
0.7117 and 0.8532, respectively. SVM classification
performance is similar to the proposed method, but
the computational cost is too large due to parameter
optimization.
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Fig. 4. Classification results of the second dataset with different methods. (a) Ground truth; (b) Mahal Dist; (c) Parallel; (d) Max Likeli; (e) Mini
Diste; (f) SVM; (g) Adaboost FAM (spectrum); (h) Adaboost FAM (texture); and (i) Adaboost FAM (spectrum + texture).

Table 1
Classification precision of the first dataset with different methods

Methods TP TN FP FN KAPPA UA PA OA

Mahal Dist 75738 212311 59228 12723 0.542 0.5612 0.8562 0.8001
Parallel 82314 168018 103521 6147 0.4006 0.4429 0.9305 0.6954
Max Likeli 62911 239212 32327 25550 0.5772 0.6606 0.7112 0.8392
Mini Dist 78288 195082 76457 10173 0.4817 0.5059 0.885 0.7594
SVM 50530 246296 25243 37931 0.5025 0.6668 0.5712 0.8245
Adaboost FAM (spectrum) 55707 245306 26233 32754 0.5467 0.6799 0.6297 0.8361
Adaboost FAM (texture) 17021 246015 25524 71440 0.1193 0.4001 0.1924 0.7307
Adaboost FAM (spectrum + texture) 59850 247295 24244 28611 0.5972 0.7117 0.6766 0.8532

Table 2
Classification precision of the second dataset with different methods

Methods TP TN FP FN KAPPA UA PA OA

Mahal Dist 392946 161933 311417 182280 0.0258 0.5579 0.6831 0.5292
Parallel 379195 167809 305541 196031 0.014 0.5538 0.6592 0.5217
Max Likeli 347529 201586 271764 227697 0.0303 0.5612 0.6042 0.5237
Mini Dist 402027 143395 329955 173199 0.0019 0.5492 0.6989 0.5202
SVM 526830 328167 145183 48396 0.6203 0.7839 0.9158 0.8153
Adaboost FAM (spectrum) 511159 359007 114343 64067 0.6532 0.8172 0.8886 0.8299
Adaboost FAM (texture) 410595 303755 169595 164631 0.3558 0.7077 0.7138 0.6813
Adaboost FAM (spectrum + texture) 512491 380162 93188 62735 0.698 0.8461 0.8909 0.8513

To test the algorithm for image data which has a
smaller or larger corn proportion, this paper selects
two images as the analysis objects. For the second
dataset, the performance indices are listed in Table 2.
The KAPPA index, UA and OA are 0.698, 0.8461 and
0.8513, respectively; these values are superior to other
traditional classifiers. The experiment demonstrates the
effectiveness of the proposed method. The results of
every method are shown in Fig. 5.

Classification precision parameters of the third
dataset are listed in Table 3. In view of the ter-
rain features of this experimental area in which the
corn planting area is relatively small, after many
experiments, the contribution of texture feature to the
classification results is small. In some cases, it cannot
even reach normal results. For the proposed method,
KAPPA, UA and OA are 0.2489, 0.424 and 0.954,
respectively. Due to the objective condition of the third
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Fig. 5. Classification results of the second dataset with different methods (a) Ground truth; (b) Mahal Dist; (c) Parallel; (d) Max Likeli; (e) Mini
Diste; (f) SVM; (g) Adaboost FAM (spectrum); (h) Adaboost FAM (texture); and (i) Adaboost FAM(spectrum + texture).

Table 3
Classification precision of the third dataset with different methods

Methods TP TN FP FN KAPPA UA PA OA

Mahal Dist 4859 136519 32303 2719 0.1571 0.1308 0.6412 0.8015
Parallel 4240 164352 4470 3338 0.4975 0.4868 0.5595 0.9557
Max Likeli 3883 162568 6254 3695 0.4093 0.3831 0.5124 0.9436
Mini Dist 4929 155960 12862 2649 0.3494 0.2771 0.6504 0.9121
SVM 2844 151112 17710 4734 0.1488 0.1384 0.3753 0.8728
Adaoost FAM(spectrum + texture) 1496 166790 2032 6082 0.2489 0.424 0.1974 0.954

dataset, the results are not superior to others. The non-
corn area accounts for a large proportion of area; this
masks the shortcoming of insufficient information to a
certain extent.

4. Conclusion

In the field of remote sensing classification, because
of diversity and uncertainty of images data, same
objects contain very different spectrum attributes,
on the contrary, different objects may contain same
spectrum attributes. According to the corn regional dis-
tribution characteristics, this paper introduces Gabor
filter features to obtain a joint feature set. By applying
fuzzy theory, neural network strategies, and adaptive
boost strategy, a compound classification framework is
implemented to extract the crop area. According to the
experimental data, feature subsets and training samples
were obtained. The work of this paper uses the adaptive
boost strategy to optimize FAM classifiers, constructs
weak classifier group which is based on less samples
and simple feature set, gets Adaboost FAM classi-

fier, realizes information extraction process in shaanxi
province. According to experimental results and analy-
sis, the proposed method performs relatively well for
the three studied datasets. Experiments indicate that
classification precision is better than that obtained by
typical supervised classification methods, as the param-
eter optimization and the training process takes less
time than the traditional classification methods.
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