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Abstract. Fuzzy rule-based classification systems have been used extensively in data mining. This paper proposes a fuzzy rule-
based classification algorithm based on a quantum ant optimization algorithm. A method of generating the hierarchical rules with
different granularity hybridization is used to generate the initial rule set. This method can obtain an original rule set with a smaller
number of rules. The modified quantum ant optimization algorithm is used to generate the optimal individual. Compared to other
similar algorithms, the algorithm proposed in this paper demonstrates higher classification accuracy and a higher convergence
rate. The algorithm is proved to be convergent on theory. Some experiments have been conducted on the algorithm, and the results
proved that the algorithm is feasible.
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1. Introduction

During the past several decades, there has been much
reported research on fuzzy control systems to con-
trol widely diverse systems, such as car automation
systems, classification systems of data mining, cart cen-
tering problems, truck backing problems, etc. Previous
research particularly focuses on the application of fuzzy
systems to these various control problems; fuzzy if-then
rules are typically employed, and are usually derived
from human experts. Recent research has addressed
the automatic generation of fuzzy if-then rules from
measured data in real-world situations, without human
experts. These self-learning methods have been pro-
posed for adjusting membership functions of fuzzy sets
in fuzzy rules, using methods such as gradient descent,
neural networks, and genetic algorithms.

∗Corresponding author. Lei Yang, School of Computer Science
and Technology, Southwest University of Science and Technology,
Mianyang, China. Tel./Fax: +86 13808113631; E-mail: fieldyang@
163.com.

The fuzzy rule-based classification system (FRBCS)
is considered to be a very useful tool in computational
intelligence, since it provides a very interpretable model
for end users. The FRBCSs consist of two main compo-
nents: the Inference System and the Knowledge Base
(KB). The KB is composed of the Rule Base (RB) con-
stituted by the collection of fuzzy rules, and the Data
Base (DB), which contains the membership functions of
the fuzzy partitions associated with the linguistic vari-
ables. The composition of the KB depends directly on
the problem to be solved. If there is no expert informa-
tion regarding the problem to be solved, an automatic
learning process must be employed to derive the KB
from examples.

Genetic algorithms have been widely proposed to
generate fuzzy if-then rules and tune the membership
function of fuzzy sets in fuzzy rules [1–10]. J.R. Kim
and D.U. Jeong proposed a genetic algorithm-based
approach to a fuzzy rule-based system for fuzzy classi-
fication with a minimum of fuzzy rules [3]. Z.Y. Xing,
Y.L. Hou, et al. proposed a novel method based on a
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multi-objective genetic algorithm to construct a fuzzy
classification system [10].

This paper proposes a fuzzy rule-based classification
algorithm based on quantum ant optimization algorithm
is proposed (FRBCA-QANO). The method of gener-
ating the hierarchical rules with various granularity
hybridizations is used to generate the initial rule set. The
modified quantum ant optimization is used to solve the
problem of rule selection. The algorithm is proved to be
convergent on theory, and experimental result confirms
that the algorithm is convergent and feasible.

2. Algorithm model

2.1. Fussy classification

Considering an object which can be described as a
point in a characteristic space (x ∈ SN ), the classifica-
tion assigns the point a class out of M possible classes
{C1, C2, . . . , CM}. The key problem of the classifica-
tion is to find an optimal map D : SN → C.

The fuzzy rules are used to describe the knowl-
edge in the fuzzy classification system, and fuzzy
inference methods are used to construct a knowledge
base. The fuzzy rule set is included in the rule base.
The antecedents of the fuzzy rules define local fuzzy
regions, while the consequents describe the classifica-
tion labels within those regions. Supposed that there is
a data set with k samples, T = {(x1, c1), . . . , (xk, ck)},
where xk = {xk

1, . . . , x
k
N} represents a sample of an

attribute space {X1 . . . , XN}, Ci ∈ {C1, . . . , CM} rep-
resents the class of the sample, and xk

N represents the
Nth attribute of the training samples. The consequent of
the rule is the class and the accuracy of the classification.
Therefore, rule i can be described as follows.

Ri : IF X1 is Ali AND . . . XN is ANi then Y is Ci
with ri, where ri represents the accuracy of an example
which belongs to to class ci; and Aji is the membership
function defined on the domain of the attribute, which
can be triangular, Gaussian-shaped, a trapezoidal func-
tion, etc. The support and confidence of the association
rules are used to choose the rules. The fuzzy rule is con-
sidered to be the associate rule, which is described as
follows.

Aq ⇒ Cq (1)

where Aq is the antecedent of the rule, and Cq is the con-
sequent of the rule. These two conceptions are extended
to the fuzzy association rule. The extended forms pro-
posed by Isibuchi and Yamamoto are used in this paper.

The confidence of Aq ⇒ Cq can be defined as
follows.

c(Aq ⇒ Cq) =
∣∣D(Aq) ∩ D(Cq)

∣∣∣∣D(Aq)
∣∣ (2)

where D is a training set with m samples; xp =
(xp

1 , x
p
2 , . . . , x

p
N ), p = 1, . . . ,m;

∣∣D(Aq)
∣∣ represents the

number of the training samples which match Aq; and∣∣D(Aq) ∩ D(Cq)
∣∣ represents the number of the train-

ing samples which match both Aq and Cq. In the
standard associate rule, the antecedent and the con-
sequence of the rule are not fuzzy, and

∣∣D(Aq)
∣∣ and∣∣D(Aq) ∩ D(Cq)

∣∣ only calculate the number of the
matched samples. The training model of the antecedent
Aq has a different compatibility degree µAq (xp), so
the rule Aq ⇒ Cq is a fuzzy associate rule. The rule
confidence can be redefined as follows.

c(Aq ⇒Cq) =
∣∣D(Aq) ∩ D(Cq)

∣∣∣∣D(Aq)
∣∣ =

∑
p ∈ classCq

µAq (xp)

m∑
p=1

µAq (xp)

(3)
where µAq (xp) can be a product or minimum; the
product is used in this paper.

µAq (xp) = µA1q
(xp

1 ) × µA12 (xp
2 ) × . . . × µANq (xp

N )
(4)

where µAiq (xp
i ) is the membership degree of the

antecedent of rule Aiq.
The support degree of the rule Aq ⇒ Cq can be

described as follows.

s(Aq ⇒ Cq) =
∣∣D(Aq) ∩ D(Cq)

∣∣
|D| (5)

where |D| represents the number of samples in the
training set. In the same way, the support degree can
be redefined as follows.

s(Aq ⇒Cq) =
∣∣D(Aq) ∩ D(Cq)

∣∣
|D| =

∑
p ∈ classCq

µAq (xp)

m
(6)

The antecedent is the fuzzy rule of Aq, therefore the
consequence Cq can be calculated as follows.

c(Aq ⇒ Cq)

= max{c(A ⇒ Class1), . . . , c(A ⇒ ClassM)}
(7)

The consequence of the rule is the class which has the
maximum confidence degree out of M classes. When
the support degree is used instead of the confidence
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degree, the result identical, because they demonstrate
the following relationship.

s(Aq ⇒ Classh) = c(Aq ⇒ Classh) ×
∣∣D(Aq)

∣∣
|D| (8)

|D(Aq)|
|D| is independent from the class of the conse-

quence. The class Cq of every Aq can be determined
in a common situation, but when more than one classe
has the same confidence degree, the consequence of the
rule (class Cq) cannot be determined, and thus rule Rq

can be generated.

2.2. Encoding method

A quantum bit as an information storage unit repre-
sents a two-state quantum system. It is a unit vector
defined in a two-dimensional complex vector space.
The space is composed of standard orthogonal basis
{|0〉 , |1〉}. Therefore, it can be in the quantum superpo-
sition simultaneously. The state can be represented as
follows [13, 14].

|ϕ〉 = α |0〉 + β |1〉 (9)

where � and � are complex numbers that specify the
probability amplitudes of the corresponding states. |α|2
is the probability that the Q-bit will be found in the “0”
state and |β|2 is the probability that the Q-bit will be
found in the “1” state. Normalization of the state to
unity guarantees Equation (10).

|α|2 + |β|2 = 1 (10)

If there is a system of m Q-bits, the system can simul-
taneously represent 2m states. However, in the act of
observing a quantum state, it collapses into a single
state.

In this paper, there are two parts in the chromosome
(C = C1+C2). There are m bits in the C1, and if the bit
is 1, the corresponding rule is selected; otherwise is the
rule is not used. There are m real numbers in the C2
portion; the real number represents the weight of the
related rule. The real number in the interval [0, 1] can
be directly encoded with the quantum bit of probability
amplitude. The encoding can be described as follows.

qi =
[∣∣∣∣∣

αi1

βi1

∣∣∣∣∣
αi2

βi2

∣∣∣∣∣
. . .

. . .

∣∣∣∣∣
αim

βim

∣∣∣∣∣
αun+1

βim+1
. . .

∣∣∣∣∣
αi2m

βi2m

]
(11)

The position of an ant represents a solution of the
problem in the continuous ant colony optimization

algorithm. Suppose that there are n ants, which are dis-
tributed randomly in the 2 m-dimensional space [–1,
1]T. Each ant has 2 m quantum bits, and the probability
amplitude represents the current position of the ant.

Fuzzy modeling requires the consideration of mul-
tiple objectives in the design process, including
classification performance and interpretability. In this
paper, classification performance is defined as the num-
ber of training patterns, which are classified correctly
and denoted as f1. Interpretability is the number of fuzzy
rules, denoted as f2. The object function is described as
follows.

Ffitness = f1ω1 − f2ω2 (12)

where ω1 and ω2 are the weighs of f1 and f2, respec-
tively.

2.3. Select ants moving to target location

Set τ(xr) as the pheromone intensity of the k ant,
which is at the position of xk. It is initialized as a con-
stant. Set η(xr) as the visibility of the position of xk.
The probability of the ant k moving from xr to xs is
described as follows.

pxs = [τ(xs)]α [η(xs)]β∑
xs,xu∈X

[τ(xu)]α[η(xu)]β
(13)

2.4. Quantum rotation gate

The rotation operation updates the quantum bit (Q-
bit) by using rotational gate. This operation makes the
ant population develop into the best individual. The Q-
gate is defined by Equation (14).

U(�θ) =
[

cos(�θ) − sin(�θ)

sin(�θ) cos(�θ)

]
(14)

The Q-bit is updated as follows.[
cos(�θ) − sin(�θ)

sin(�θ) cos(�θ)

] [
cos(t)

sin(t)

]
=

[
cos(t + �θ)

sin(t + �θ)

]
(15)

Equation (15) indicates that this updated operation
only changes the phase of the Q-bit, but does not alter
the length of the Q-bit.
where �θ is the rotation angle of each Q-bit. The magni-
tude of �θ has an effect on the speed of convergence; if
it is too large, the solution may diverge or converge pre-
maturely to a local optimum. The sign of �θ determines
the direction of convergence, and �θ can be determined
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according to the following method. α0β0 is the proba-
bility amplitude of the global optimal solution in the
current search, and α1β1 is the probability amplitude of
the Q-bit in the current solution. Define A as follows.

A =
∣∣∣∣∣
α0 α1

β0 β1

∣∣∣∣∣ (16)

The direction of �θ can be determined as follows. If
A /= 0, the direction is −sgn(A); if A = 0, the direction
can be selected randomly.

In order to avoid premature convergence, the size
of �θ can be determined according to Equation (10),
as described. This method is a dynamic adjustment
strategy and is unrelated to the problem; pi is the cir-
cumferential ratio, and maxGen represents the maximal
number of iterations.

�θ = 0.5 ∗ pi ∗ exp(−gen/ max Gen) (17)

2.5. Update rules of pheromone intensity and
visibility

The function of the optimal problem is responsible
for evaluating the ant position, and the primary goal of
pheromone intensity updating is to integrate function
value with the pheromone. Better function values result
in higher pheromone intensities. The gradient informa-
tion of the function is also integrated with the visibility,
indicating that a position with greater gradient also has
greater visibility. The point determined according to
this method not only has higher fitness, but also a higher
rate of change.

Each ant computes the function value after one step
research, and updates the local pheromone intensity and
the visibility according to the rules given as follows.
Suppose that the previous position of the ant is xq, the
current position is xr, and the next position is xs. The
updating rule is described as follows.

τ(xs) = τ(xr) + sgn(f ) ∗ |f |α (18)

f = f (xs) − f (xr) (19)

η(xs) = η(xr) + sgn(∂f ) ∗ |∂f |β (20)

∂f = max
1≤i≤n

(
∂f

∂xsi

)
− max

1≤i≤n

(
∂f

∂xri

)
(21)

If the function f is a non-differentiable function, the
first difference can be used. It is described as follow.

∂f = max
1≤i≤n

(
f (xs) − f (xr)

xsi − xri

)

− max
1≤i≤n

(
f (xr) − f (xq)

xri − xqi

) (22)

where 0 < α < 1, 0 < β < 1. After all ants have com-
pleted a cycle, the global pheromone intensity is
updated according to Equation (23). The (1 − ρ) is the
volatility coefficient of the pheromone where 0 < ρ <

1, and x̃ is the current optimal solution.

τ(xu) =
{

(1 − ρ)τ(xu) + ρfit(xu) x = x̃

(1 − ρ)τ(xu) x /= x̃
(23)

3. Convergence analysis

Theorem 1: The FRBCA-QANO algorithm ant popu-
lation sequence {Q(t), t > 0} is the finite homogeneous
Markov chain.

Proof: The Q-bits are used in the algorithm. In the ant
colony evolution algorithm, the value of the ants is dis-
crete. Assume that the length of the ant is 2 m and the
ant population size is n, therefore the state space size
is 2mn. Due to the continuity of the variable value, the
size of the state space size is infinite in theory, but the
accuracy is finite during calculation. Assuming that the
dimension is V , then the state size of the population is
V 2mn, and so the population is finite. In the algorithm,
the rotational operation is entirely independent of the
generation number, the pheromone intensity is updated
according to Equation (18), and the visibility is updated
according to Equation (20). All of these are indepen-
dent of the generation number. Therefore the population
sequence is a finite homogeneous Markov chain.

Definition 2. fk = max{f (xi), i = 1, 2, . . . , N} is a
random variant sequence. The variable represents the
best solution in the k generation. If the condition satis-
fies Equation (24), then the algorithm is convergent to
the global optimal solution with a probability of 1.

lim
k→∞

P{fk = f ∗} = 1(f ∗ = max{f (b)|b ∈ �}) (24)

Theorem 2. The FRBCA-QANO algorithm is conver-
gent to the global optimal solution with a probability
of 1.



J. Wu et al. / Rule-based fuzzy classifier based on quantum ant optimization algorithm 2369

Proof. According to Theorem 1, the ant is a finite
homogeneous Markov chain. Suppose that the ant pop-
ulation is 2 m, and the ants are points in the research
space �. Xi ∈ � indicates that Xi is a point in �.
Xi = {x1, x2, . . . , xn}, Xi

k indicates that in the k iter-
ation, the ant X is at point Xi. The ant moves to point j
from point i in the search space after a step of iteration
in the randomizing procedure. The transfer possibility

is P
{

X
j
k+1

∣∣Xi
k

}
.

During the transfer procedure, there are two special
situations.

– The first situation is that X
j
k+1 /∈ f ∗, Xi

k ∈ f ∗.
The optimal solution is preserved in the algo-
rithm. This operation ensures that each iteration
will not degenerate, thus the transfer possibility

P
{

X
j
k+1

∣∣Xi
k

}
= 0.

– The second special situation is when X
j
k+1 ∈

f ∗, Xi
k /∈ f ∗. According to the algorithm opera-

tion, a conclusion can be reached that the transfer
possibility P

{
X

j
k+1

∣∣Xi
k

}
> 0.

The proof of convergence is described below, noting
that it does not apply to the two above-mentioned spe-
cial situations. Suppose that Xk is at position si, and the
possibility is pi

k.

pk =
∑

Xi /∈f ∗
pi

k (25)

pk+1 =
∑

Xi ∈ f ∗,Xj /∈f ∗
P

{
X

j
k+1

∣∣Xi
k

}

+
∑

Xi /∈f ∗,Xj /∈f ∗
P

{
X

j
k+1

∣∣Xi
k

} (26)

∑
Xi /∈f ∗,Xj ∈ f ∗

p
{

X
j
k+1

∣∣Xi
k

}

+
∑

Xi /∈f ∗,Xj /∈f ∗
p

{
X

j
k+1

∣∣Xi
k

}

=
∑

Xi /∈f ∗
p

{
Xi

k

} = pk

(27)

According to Equations (27, 28) is obtained.

∑
Xi /∈f ∗,Xj /∈f ∗

p
{

X
j
k+1

∣∣Xi
k

}

= pk −
∑

Xi /∈f ∗,Xj ∈ f ∗
p

{
X

j
k+1

∣∣Xi
k

} (28)

Equation (28) is substituted into Equations (21), and
(29) is obtained.

0 ≤ pk+1 < pk −
∑

Xi /∈f ∗,Xj ∈ f ∗
p

{
X

j
k+1

∣∣Xi
k

}

+
∑

Xi ∈ f ∗,Xj ∈ f ∗
P

{
X

j
k+1

∣∣Xi
k

}

< pk + +
∑

Xi ∈ f ∗,Xj ∈ f ∗
P

{
X

j
k+1

∣∣Xi
k

}
= pk

(29)
According to the two special situation described

above, lim
k→∞

pk = 0 can be obtained, and lim
k→∞

p(fk =
f ∗) = 1 − lim

k→∞
pk = 1. This indicates that the algo-

rithm represents global convergence.

4. Simulation experiment

The Iris system is a common benchmark problem
in classification and pattern recognition studies. It con-
tains 150 measurements of four features (sepal length,
sepal width, petal length, petal width) from each of three
species (Setosa, Versicolor, Virginica). Therefore, there
are four independent variables that form the antecedent
of the rule, and three dependent variables that form the
consequence of the rule. From each species, there are 50
observations regarding sepal length, sepal width, petal
length and petal width (in cm).

In the simulation experiment, the variables are set
as follows. The ant populate size m is 50, the size of
quantum n = 8, volatility coefficient (1 − ρ) = 0.3, the
pheromone update exponent � = 0.5, the visibility expo-
nent � = 0.5, the corner step θ0 = 0.05*pi, and ω1 = 1,
ω2 = 0.1. In order to avoid influence of change in the
experiment, all programs were run 20 times. The final
fuzzy classification system is described as follows.

R1: if x3 is A31, x4 is A41, then x belongs to Class
1, CF = 0.21.

R2: if x3 is A32, x4 is A42, then x belongs to Class
2, CF = 0.42.
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Table 1
Comparison of three algorithms

Rule-based FCMF- FRBCA-
classifier LSGA QANO

Number of rules 3 3 3
Correct classification 144 144 146
Number of Variable 2 1 1
Accuracy 96% 96% 96.7%
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Fig. 1. The accuracy rate of the optimal rule set.

Fig. 2. Rule number of the optimal individual with different
iterations.

R3: if x3 is A33, x4 is A43, then x belongs to Class
3, CF = 0.38.

To prove the validity of QACO, it is compared to the
conventional classification algorithm; results are shown
in Table 1. As shown in Table 1, the three algorithms can
obtain the same rule number, but the FRBCA-QANO
demonstrates higher accuracy and less variability.

In order to prove the efficiency of the algorithm, it is
compared to a fuzzy classifier based on the Mamdani
fuzzy logic system and the genetic algorithm (FCM-
FLSGA) [9]. The standard genetic algorithm is used
in the algorithm FCMFLSGA. In the FCMFLSGA
experiment, the population size is 100, and cross-
probability Pc is 0.9. The mutation probability Pm is
0.1. Experimental results are described in Figs. 1 and 2.
Figure 1 indicates that the FRBCA-QANO demon-
strates a higher convergence rate and accuracy than
FCMFLSGA. According to Fig. 2, a conclusion can
be drawn that the algorithm FRBCA-QANO also
demonstrates a higher convergence rate than algorithm
FCMFLSGA.

5. Conclusion

A fuzzy rule-based classification algorithm based on
the quantum ant optimization algorithm is proposed.
The method of generating the hierarchical rules with
various granularity hybridizations is used to generate
the initial rule set. This method can obtain an original
rule set with fewer rules, and enhance the convergence
rate of the algorithm. The modified quantum ant colony
optimization (MQACO) is used to solve the problem of
rule selection from the original rule set. The MQACO
ensure that the algorithm has a higher classification
accuracy and higher convergence rate than similar algo-
rithms. The algorithm is proved to be convergent on
theory, and experimental results also confirm that the
algorithm is convergent and feasible.
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