Research Report

β-Defensin Genomic Copy Number Does Not Influence the Age of Onset in Huntington’s Disease

Angelica Vittoria, Michael Orth, Raymund A. C. Roos, Tiago F. Outeiro, Flaviano Giorgini, Edward J. Hollox, and REGISTRY investigators of the European Huntington’s Disease Network

Department of Genetics, University of Leicester, Leicester, UK
Cell and Molecular Neuroscience Unit, Instituto de Medicina Molecular, Lisboa, Portugal
Department of Neurology, University of Ulm, Ulm, Germany
Leiden University Medical Center, Department of Neurology, The Netherlands
Faculdade de Medicina da Universidade de Lisboa, Instituto de Fisiologia, Lisboa, Portugal
University Medical Center Göttingen, Department of NeuroDegeneration and Restorative Research, Göttingen, Germany

Abstract

Background: Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by the abnormal expansion of a CAG triplet repeat tract in the huntingtin gene. While the length of this CAG expansion is the major determinant of the age of onset (AO), other genetic factors have also been shown to play a modulatory role. Recent evidence suggests that neuroinflammation is a pivotal factor in the pathogenesis of HD, and that targeting this process may have important therapeutic ramifications. The human β-defensin 2 (hBD2) – encoded by DEFB4 – is an antimicrobial peptide that exhibits inducible expression in astrocytes during inflammation and is an important regulator of innate and adaptive immune response. Therefore, DEFB4 may contribute to the neuroinflammatory processes observed in HD.

Objective: In this study we tested the hypothesis that copy number variation (CNV) of the β-defensin region, including DEFB4, modifies the AO in HD.

Methods and results: We genotyped β-defensin CNV in 490 HD individuals using the paralogue ratio test and found no association between β-defensin CNV and onset of HD.

Conclusions: We conclude that it is unlikely that DEFB4 plays a role in HD pathogenesis.

Keywords: Genetic modifier, copy number variation, inflammation

INTRODUCTION

Huntington’s disease (HD) is a fatal neurodegenerative disorder characterized by motor dysfunction, severe psychiatric disturbances and cognitive decline, with a mean age of onset (AO) of ~40 years [1]. The autosomal dominant mutation underlying the disease is a polymorphic CAG trinucleotide repeat expansion
in the huntingtin (HTT) gene [2], which causes disease above the threshold of 36 repeats. Furthermore, the length of this repeat expansion accounts for up to 70% of the variability of AO with which it is inversely correlated [3–7]. Other genetic factors are very likely to explain a large proportion of the remaining variability of AO [8] and thus have the potential to modify AO in HD [9–22]. The identification of new genetic modifiers loci further our understanding of the disease mechanisms and may ultimately facilitate the development of novel therapeutic interventions for HD.

In common with most age-associated neurodegenerative disorders [23–26], HD patients exhibit hallmarks of neuroinflammation, driven by microglia, reactive astrocytes and the innate immune system [27, 28], which are detectable in pre-manifest HD carriers up to 15 years before of the predicted onset [29]. Indeed, kynurenine 3-monooxygenase – an enzyme with microglia-specific expression in the central nervous system – is a leading candidate therapeutic target for HD [30–33]. The human β-defensin 2 (hBD2) protein – encoded by the gene DEFβ4 – is a member of a large family of antimicrobial cationic peptides, implicated in granulocyte activity, inflammatory body fluids and epithelial secretions [34]. hBD2 has chemotactic activity and is an important mediator of both innate and adaptive immunity [35, 36], recruiting monocytes, T cells and dendritic cells [34]. Interestingly, the expression of hBD2 is stimulated in primary astrocytes in response to inflammatory stimuli such as LPS, IL-1β and TNF-α [37]. The inducible expression of hBD2 by cytokines, which are highly expressed in HD patients [38, 39], possibly following direct LPS/CD14/TLR interaction [36, 40, 41], suggests that DEFβ4 could be involved in the neuroinflammation succeeding reactive astrocytosis and therefore be implicated in HD pathology.

DEFβ4 is located in the β-defensin cluster on chromosome 8p23, a region that, together with several other β-defensin genes, shows extensive copy number variation (CNV) as a block [42]. CNV is an alteration in the number of copies of a particular genetic region between different individuals, and can be a simple deletion or duplication, or a more complex multiallelic CNV. The β-defensin CNV is a multiallelic CNV where diploid copy number ranges from 2 to 8 copies in the population, but rare individuals with up to 12 copies have been identified by cytogenetic analysis [42, 43]. β-defensin copy number is correlated with both mRNA expression levels and levels of circulating hBD2 protein in serum [42, 44] and is associated with altered susceptibility to autoimmune and inflammatory diseases [45–47] and with HIV viral load [48]. In this study we are testing the hypothesis that β-defensin copy number, including the DEFβ4 gene, is associated with a variance in the AO in HD, where an increased copy number might lessen the age of onset of the disease.

MATERIALS AND METHODS

HD samples

The study cohort comprised 495 individuals of European ancestry with HD collected by the EHDN “REGISTRY” project. “REGISTRY” is a multi-centre, multi-national observational study which purposes to catalogue natural history data on a wide range of the European HD population (http://www.euro-hd.net/html/registry) [49]. Clinical data on age of onset, sex (263 men and 232 women), main symptom at onset and mutant CAG repeat size were provided.

The HTT gene CAG repeat length was analyzed by BioRep (BioRep, Milan, Italy) [50, 51]. When these data were not available from BioRep (90 samples), the CAG extent length estimated by the laboratory that collected the sample was considered. One sample carrying a 35 CAG repeat hit HTT allele, which by definition is not a disease allele, was included in the analysis due to ambiguity with the data provided by the collecting laboratory, where a 40 CAG repeat length mutation was identified. In our HD cohort the expanded trinucleotide repeats ranged from 36 to 67 with a mean (±SD) of 44 ± 4 CAGs, and AO ranged from 10 to 79 years, with a mean onset of 43 ± 11 (SD) years.

AO was defined as the age at which, according to the rater, the first sign(s) of HD appeared. Two-hundred and fifty eight patients were diagnosed by motor disturbances (mean ± SD motor AO = 44 ± 11 years), 114 with psychiatric disturbances (mean ± SD psychiatric AO = 39 ± 10 years), 44 with cognitive decline (mean ± SD cognitive AO = 41 ± 12 years), 5 with symptoms such as weight loss or insomnia, 1 with oculomotor deficits and the remaining 73 with mixed symptoms (mean ± SD cognitive AO = 44 ± 10 years).

DEFβ4 genotyping

Genotyping of β-defensin CNV was conducted using a triplex paralogue ratio test (PRT), as previously published [52]. In this assay three parallel PCRs – two PRTs and one indel (insertion-deletion) PCR – are performed in duplicate in order to give six estimates of β-defensin copy number. The PCR products are analysed in a single fluorescent capillary electrophoresis
run and the resulting data are normalized against six controls samples of known copy number to level the variation between experimental PCRs. The same six controls samples were used in this study as in previous studies [52–54].

The β-defensin copy number is inferred from these six values using a maximum-likelihood approach [55], which also calculates a p-value that reflects the confidence in the inferred copy number compared to all the other copy number calls, with 99% of the samples having copy number call with $p<0.05$ and among these 99% having copy number call with $p<0.01$. Of the 495 samples tested, copy numbers with $p<0.05$ were successfully obtained for 490.

Statistical analysis

Firstly, we analysed the β-defensin copy number distribution in the HD cohort dividing the cohort into three groups according to the age of onset: juvenile, AO ≤ 20 years; typical, AO between 20 and 50 years; late, AO ≥ 51 years [8]. We performed a one-way ANOVA to test whether there was any variation in β-defensin CNV distribution among each group, and all the groups and the European population without HD, analysed in a previous study [53].

Secondly, we constructed a generalized linear model using SPSS 20.0 (IBM Inc.), calculated using Type III statistics with Wald confidence intervals, with an identity link, assuming a normal distribution of the dependent variable. Log2 transformed AO of HD was the scalar dependent variable, CAG length as a scalar predictive variable and β-defensin copy number as an ordinal predictor variable. We also used a generalized linear model to investigate the effect of β-defensin copy number and CAG repeat length on the major estimated symptoms at the onset of HD (categorical dependent variable).

RESULTS

We determined the β-defensin copy number for 490 individuals from our HD cohort (Table 1). The distribution of β-defensin CNV in this cohort is not significantly different from the European population without HD (one-way ANOVA, $p=0.91$). Furthermore, no AO class has a β-defensin CNV distribution that is significantly different from any other class or the European non-HD population (Fig. 1) [53].

We next constructed a generalized linear model to explore the effect of CAG repeat length and β-defensin copy number on AO. As expected, incorporating CAG length into the model improved the prediction of AO ($p<5 \times 10^{-6}$, Table 2), but subsequent incorporation of β-defensin copy number into the model found no significant improvement in prediction of AO ($p=0.41$, Table 2). Therefore we conclude that β-defensin copy number does not affect the AO of HD.

We found no significant correlation with any of the symptoms at the onset diagnosis and CAG length ($p=0.76$) nor of copy number of β-defensin ($p=0.85$).

DISCUSSION

HD is a monogenic disorder caused by an autosomal dominant mutation in the HD gene. Notwithstanding its relentless course, the wide temporal range of AO (ranging from 1 year to 85 years) of the motor symptoms and the several phenotypes associated to HD are not only explainable by the expanded CAG repeat in the HD gene. As previously shown in a study on Venezuelan families, the residual age of onset is highly heritable, suggesting the presence of other genetic factors involved in the mechanisms behind the disease [8].

To our knowledge, this is the first study that tests the potential role of an inflammatory mediator and

Table 1

<p>| β-defensin CNV genotypes in each AO class, in the HD cohort, and the European population |
|----------------------------------|----------------|----------------|----------------|----------------|----------------|</p>
<table>
<thead>
<tr>
<th>β-defensin copy number</th>
<th>Juvenile AO</th>
<th>Typical AO</th>
<th>Late AO</th>
<th>HD cohort</th>
<th>European population</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>8</td>
<td>3</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>62</td>
<td>24</td>
<td>89</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>129</td>
<td>51</td>
<td>182</td>
<td>205</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>99</td>
<td>34</td>
<td>138</td>
<td>131</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>44</td>
<td>11</td>
<td>56</td>
<td>44</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>8</td>
<td>3</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>n</td>
<td>11</td>
<td>352</td>
<td>127</td>
<td>490</td>
<td>472</td>
</tr>
</tbody>
</table>
its CNV as a modifier of the age of onset in HD. CNV encompasses over 12% of the human genome [56] and is a significant contributor to genomic variation. CNVs have been investigated with regards to their functional impact on the full range of biology, from gene-expression studies to GWAS interrogating all the classes of human genetic diseases: Mendelian, complex, sporadic and infectious [57].

It is clear that β-defensin genomic copy number is not associated with modulation of HD pathogenesis and does not affect the age of onset of any sign. Notwithstanding, we cannot formally exclude the potential implication of single nucleotide polymorphisms within this region, considering that not only copy number change but also sequence variants can affect the expression of hBD2 [58].

Furthermore, the inducible expression of hBD2 in astrocytes driven by TNF-α and IL-β [37], which are both expressed in the striatum of HD brains [59], may not be copy number dependent. It is also possible that transcriptional and trafficking alterations in astrocytes due to mutant huntingtin [60, 61] might interfere with hBD2 expression or function, masking any possible modulation in the expression driven by its copy number. Thus, further studies are necessary to clarify the effects of β-defensin copy number on hBD2 expression in CNS tissues in both normal physiological and neurodegenerative milieus.

ACKNOWLEDGMENTS

The authors thank contributors to the EHDN Registry study, listed in Appendix 1. AV is supported by Fundação para Ciência e a Tecnologia (SFRH/BD/4764/2008). TFO was supported by an EMBO Installation Grant and a Marie Curie International Reintegration Grant (Neurofold). FG was supported by a New Investigator Research Grant from the Medical Research Council (G0700090). EJH was supported by a New Investigator Research Grant from the Medical Research Council (G0801123).

CONFLICT OF INTEREST

The authors declare that they have no competing interests.
Appendix

Registry Steering committee:

A-C Bachoud-Lévi, Registry Steering committee member.
AR Bentivoglio, Registry Steering committee member.
I Biunno, Registry Steering committee member.
RM Bonelli, Registry Steering committee member.
J-M Burgunder, Registry Steering committee member.
SB Dunnett, Registry Steering committee member.
JJ Ferreira, Registry Steering committee member.
A Heiberg, Registry Steering committee member.
T Illmann, Registry Steering committee member.
GB Landwehrmeyer, Registry Steering committee member.
J Levey, Registry Steering committee member.
MD Martinez-Jaurrieta, Registry Steering committee member.
JE Nielsen, Registry Steering committee member.
S Pro Kovisto, Registry Steering committee member.
M Paivarinta, Registry Steering committee member.
RAC Roos, Registry Steering committee member.
A Rojo Sebastián, Registry Steering committee member.
SJ Tabezi, Registry Steering committee member.
W Vandenberghe, Registry Steering committee member.
C Verellen-Dumoulin, Registry Steering committee member.
J Zaremba, Registry Steering committee member.
T Uhrova, Registry Steering committee member.
J Wahlström, Registry Steering committee member.

Language coordinators:

K Koppers, Language coordinator.
M Laurà, Language coordinator.
A Martinez Descals, Language coordinator.
T Mestre, Language coordinator.
D Monza, Language coordinator.
J Townhill, Language coordinator.
H Padien, Language coordinator.
Paterski, Language coordinator.
N Peppa, Language coordinator.
A Rialland, Language coordinator.
N Røren, Language coordinator.
P Sasinkovà, Language coordinator.
P Trigo Cubillo, Language coordinator.
M van Walsem, Language coordinator.
E Witejes-Ané, Language coordinator.
E Yudina, Language coordinator.
D Zielonka, Language coordinator.
E Zielonka, Language coordinator.
P Zinzi, Language coordinator.

Raphael M. Bonelli, LKH Graz, Abteilung für Psychiatrie, Austria.
Brigitte Herranhof, LKH Graz, Abteilung für Psychiatrie, Austria.
Anna Hödl, LKH Graz, Abteilung für Psychiatrie, Austria.
Hans-Peter Kapfhammer, LKH Graz, Abteilung für Psychiatrie, Austria.
Michael Koppitz, LKH Graz, Abteilung für Psychiatrie, Austria.
Markus Magnet, LKH Graz, Abteilung für Psychiatrie, Austria.
Daniela Otti, LKH Graz, Abteilung für Psychiatrie, Austria.
Annamaria Painold, LKH Graz, Abteilung für Psychiatrie, Austria.
Monika Scheibl, LKH Graz, Abteilung für Psychiatrie, Austria.
Karen Hecht, LKH Graz, Abteilung für Psychiatrie, Austria.
Sabine Lilek, LKH Graz, Abteilung für Psychiatrie, Austria.
Nicole Müller, LKH Graz, Abteilung für Psychiatrie, Austria.
Helmut Scheggl, LKH Graz, Abteilung für Psychiatrie, Austria.
Jasmin Ullah, LKH Graz, Abteilung für Psychiatrie, Austria.
Pascale Ribai, Institut de Pathologie et de Génétique, Charleroi, Belgium.
Christine Verellen-Dumoulin, Institut de Pathologie et de Génétique, Charleroi, Belgium.
Jirí Klempl, Centrum extrapyramidových onemocnění, Prague, Czech Republic.
Veronika Majerová, Centrum extrapyramidových onemocnění, Prague, Czech Republic.
Jan Roth, Centrum extrapyramidových onemocnění, Prague, Czech Republic.
Lena E. Hjermind, Hukommelsesklinikken, Rigshospitalet, Copenhagen, Denmark.
Oda Jakobsen, Hukommelsesklinikken, Rigshospitalet, Copenhagen, Denmark.
Jette Stokholm, Hukommelsesklinikken, Rigshospitalet, Copenhagen, Denmark.
Heli Hiivola, Rehabilitation Centre Suvituuli, Turku-Suvituuli, Finland.
Katri Tuhua, Rehabilitation Centre Suvituuli, Turku-Suvituuli, Finland.
Maire Santala, Terveystalo Healthcare Service Centre, Tampere, Finland.
Eva Milkeriet, Universitätssklinikum Aachen, Neurologische Klinik, Germany.
Christoph Michael Kosinski, Universitätssklinikum Aachen, Neurologische Klinik, Germany.
Daniela Probst, Universitätssklinikum Aachen, Neurologische Klinik, Germany.
Kathrin Reetz, Universitätssklinikum Aachen, Neurologische Klinik, Germany.
Christian Saat, Universitätssklinikum Aachen, Neurologische Klinik, Germany.
Johannes Schefer, Universitätssklinikum Aachen, Neurologische Klinik, Germany.
Christiane Schlagen, Universitätssklinikum Aachen, Neurologische Klinik, Germany.
Cornelius J. Werner, Universitätssklinikum Aachen, Neurologische Klinik, Germany.
Jurgen Andrich, Huntington-Zentrum NRW, St. Josef-Hospital, Bochum, Germany.
Gisa Ellrichmann, Huntington-Zentrum NRW, St. Josef-Hospital, Bochum, Germany.
Carsten Saft, Huntington-Zentrum NRW, Bochum im St. Josef-Hospital, Bochum, Germany.
Carsten Saft, Huntington-Zentrum NRW, Bochum im St. Josef-Hospital, Bochum, Germany.
Christiane Stamm, Huntington-Zentrum NRW, Bochum im St. Josef-Hospital, Bochum, Germany.
Herwig Lange, Reha Zentrum in Dinslaken im Gesundheitszentrums Lang, Dinslaken, Germany.
Mathias Lohle, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Klinik und Poliklinik für Neurologie, Dresden, Germany.
Simone Schmidt, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Klinik und Poliklinik für Neurologie, Dresden, Germany.
Alexander Storch, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Klinik und Poliklinik für Neurologie, Dresden, Germany.
Anett Wolz, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Klinik und Poliklinik für Neurologie, Dresden, Germany.
Martin Wolz, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Klinik und Poliklinik für Neurologie, Dresden, Germany.
Philipp Capetian, Universitätssklinikum Freiburg, Neurologie, Freiburg, Germany.
Johann Lambeck, Universitätssklinikum Freiburg, Neurologie, Freiburg, Germany.
Birgit Zucker, Universitätssklinikum Freiburg, Neurologie, Freiburg, Germany.
Kai Boelmans, Universitätssklinikum Hamburg-Eppendorf, Klinik und Poliklinik für Neurologie, Hamburg, Germany.
Christos Ganos, Universitätssklinikum Hamburg-Eppendorf, Klinik und Poliklinik für Neurologie, Hamburg, Germany.
Ute Hidding, Universitätssklinikum Hamburg-Eppendorf, Klinik und Poliklinik für Neurologie, Hamburg, Germany.
Jan Lewerenz, Universitätssklinikum Hamburg-Eppendorf, Klinik und Poliklinik für Neurologie, Hamburg, Germany.
Alexander Münchau, Universitätssklinikum Hamburg-Eppendorf, Klinik und Poliklinik für Neurologie, Hamburg, Germany.
Michael Orth, Universitätssklinikum Hamburg-Eppendorf, Klinik und Poliklinik für Neurologie, Hamburg, Germany.
Jenny Schmalfeld, Universitätsklinikum Hamburg-Eppendorf, Klinik und Poliklinik für Neurologie, Hamburg, Germany.
Lars Stubbe, Universitätsklinikum Hamburg-Eppendorf, Klinik und Poliklinik für Neurologie, Hamburg, Germany.
Simone Zittel, Universitätsklinikum Hamburg-Eppendorf, Klinik und Poliklinik für Neurologie, Hamburg, Germany.
Walburgis Heinicke, Psychiatrum Heiligenhafen, Germany.
Michael Ribbat, Schwerpunktpraxis Huntington, Neurologie und Psychiatrie, Itzehoe, Germany.
Bernhard Longinus, Klinik für Psychiatrie und Psychotherapie Marburg-Süd, Germany.
Mark Mühlu, Huntington-Ambulanz im Neuro-Kopfzentrum - Klinikum rechts der Isar der Neurologischen Klinik und Poliklinik der Technischen Universität München, Germany.
Alexander Peinemann, Huntington-Ambulanz im Neuro-Kopfzentrum - Klinikum rechts der Isar der Neurologischen Klinik und Poliklinik der Technischen Universität München, Germany.
Michael Stättler, Huntington-Ambulanz im Neuro-Kopfzentrum - Klinikum rechts der Isar der Neurologischen Klinik und Poliklinik der Technischen Universität München, Germany.
Juliane Winkelmann, Huntington-Ambulanz im Neuro-Kopfzentrum - Klinikum rechts der Isar der Neurologischen Klinik und Poliklinik der Technischen Universität München, Germany.
Cornelia Ziegler, Huntington-Ambulanz im Neuro-Kopfzentrum - Klinikum rechts der Isar der Neurologischen Klinik und Poliklinik der Technischen Universität München, Germany.
Natalie Bechtel, Universitätsklinikum Münster, Klinik und Poliklinik für Neurologie, Münster, Germany.
Heike Beckmann, Universitätsklinikum Münster, Klinik und Poliklinik für Neurologie, Münster, Germany.
Eva Höltner, Universitätsklinikum Münster, Klinik und Poliklinik für Neurologie, Münster, Germany.
Herwig Lange, Universitätsklinikum Münster, Klinik und Poliklinik für Neurologie, Münster, Germany.
Ralf Reilmann, Universitätsklinikum Münster, Klinik und Poliklinik für Neurologie, Münster, Germany.
Stefanie Rohm, Universitätsklinikum Münster, Klinik und Poliklinik für Neurologie, Münster, Germany.
Sille Rumpf, Universitätsklinikum Münster, Klinik und Poliklinik für Neurologie, Münster, Germany.
Sigrun Schepers, Universitätsklinikum Münster, Klinik und Poliklinik für Neurologie, Münster, Germany.
Matthias Dose, Isar-Amper-Klinikum - Klinik Tautkirchen (Vils), Germany.
Gabriele Leythaeuser, Isar-Amper-Klinikum - Klinik Tautkirchen (Vils), Germany.
Ralf Marquard, Isar-Amper-Klinikum - Klinik Tautkirchen (Vils), Germany.
Caroline Schrenk, Isar-Amper-Klinikum - Klinik Tautkirchen (Vils), Germany.
Michele Schuierer, Isar-Amper-Klinikum - Klinik Tautkirchen (Vils), Germany.
Katrin Barth, Universitätsklinikum Ulm, Neurologie, Ulm, Germany.
Andrea Buck, Universitätsklinikum Ulm, Neurologie, Ulm, Germany.
Daniela Schwenk, Universitätsklinikum Ulm, Neurologie, Ulm, Germany.
Sigurd Suismith, Universitätsklinikum Ulm, Neurologie, Ulm, Germany.
Sonja Trautmann, Universitätsklinikum Ulm, Neu-
rologie, Ulm, Germany.
Patrick Weydt, Universitätsklinikum Ulm, Neu-
rologie, Ulm, Germany.
Claudia Cormio, Dipartimento di Scienze Neuro-
logiche e Psichiatriche Università di Bari,
Italy.
Marina de Tommaso, Dipartimento di Scienze Neuro-
logiche e Psichiatriche Università di Bari,
Italy.
Vittorio Sciruicchio, Dipartimento di Scienze Neu-
rologiche e Psichiatriche Università di Bari,
Italy.
Claudia Serpino, Dipartimento di Scienze Neuro-
logiche e Psichiatriche Università di Bari, Italy.
Elena Ghelli, Neurologia I- Unità di Neuroge-
etica Dipartimento di Neurologia e Psichiatria,
Università di Firenze, Italy.
Andrea Ginestrini, Neurologia I- Unità di Neuro-
geticà Dipartimento di Neurologia e Psichiatria,
Università di Firenze, Italy.
Elisabetta Bertini, Neurologia I- Unità di Neuro-
genicà Dipartimento di Neurologia e Psichiatria,
Università di Firenze, Italy.
Francesca Massaro, Neurologia I- Unità di Neuro-
genicà Dipartimento di Neurologia e Psichiatria,
Università di Firenze, Italy.
Claudia Mechi, Neurologia I- Unità di Neuroge-
etica Dipartimento di Neurologia e Psichiatria,
Università di Firenze, Italy.
Sivia Fracentini, Neurologia I- Unità di Neuroge-
etica Dipartimento di Neurologia e Psichiatria,
Università di Firenze, Italy.
Silvia Pradellla, Neurologia I- Unità di Neuroge-
etica Dipartimento di Neurologia e Psichiatria,
Università di Firenze, Italy.
Anna Maria Romoli, Neurologia I- Unità di Neuro-
genica Dipartimento di Neurologia e Psichiatria,
Università di Firenze, Italy.
Sandro Sorbi, Neurologia I- Unità di Neuroge-
etica Dipartimento di Neurologia e Psichiatria,
Università di Firenze, Italy.
Giovanni Abbamonte, Dipartimento di Neu-
roscienze, Oftalmologia e Genetica (DiNOG),
Università di Genova, Italy.
Emilio Di Maria, Dipartimento di Neuroscienze,
Oftalmologia e Genetica (DiNOG), Università di
Genova, Italy.
Giovanna Ferrandes, Dipartimento di Neuro-
scienze, Oftalmologia e Genetica (DiNOG),
Università di Genova, Italy.
Paola Mandich, Dipartimento di Neuroscienze,
Oftalmologia e Genetica (DiNOG), Università di
Genova, Italy.
Roberta Marchese, Dipartimento di Neuroscienze,
Oftalmologia e Genetica (DiNOG), Università di
Genova, Italy.
Stefano Di Donato, Fondazione IRCCS Istituto
Neurologico C. Besta, Milan, Italy.
Cinzia Gelleria, Fondazione IRCCS Istituto Neuro-
logico C. Besta, Milan, Italy.
Silvia Genitrini, Fondazione IRCCS Istituto Neu-
rologico C. Besta, Milan, Italy.
CaterinaMariotti, Fondazione IRCCS Istituto Neu-
rologico C. Besta, Milan, Italy.
Lorenzo Nanetti, Fondazione IRCCS Istituto Neu-
rologico C. Besta, Milan, Italy.
Paola Soliveri, Fondazione IRCCS Istituto Neuro-
logico C. Besta, Milan, Italy.
Chiara Tomasello, Fondazione IRCCS Istituto
Neurologico C. Besta, Milan, Italy.
Giuseppe De Michele, Azienda Ospedaliera Uni-
ersità Federico II - Dipartimento di Scienze Neuro-
logiche, Naples, Italy.
Luigi Di Maio, Azienda Ospedaliera Università
Federico II - Dipartimento di Scienze Neuro-
logiche, Naples, Italy.
Marco Massarelli, Azienda Ospedaliera Univer-
sità Federico II - Dipartimento di Scienze Neuro-
logiche, Naples, Italy.
Carlo Rinaldi, Azienda Ospedaliera Università
Federico II - Dipartimento di Scienze Neuro-
logiche, Naples, Italy.
Alessandro Roca, Azienda Ospedaliera Univer-
sità Federico II - Dipartimento di Scienze Neuro-
logiche, Naples, Italy.
Fabiana Rossi, Azienda Ospedaliera Università
Federico II - Dipartimento di Scienze Neuro-
logiche, Naples, Italy.
Cinzia Valeria Russo, Azienda Ospedaliera Uni-
ersità Federico II - Dipartimento di Scienze Neuro-
logiche, Naples, Italy.
Giovanni Abbamonte, Dipartimento di Neuro-
roscienze, Oftalmologia e Genetica (DiNOG),
Università di Genova, Italy.
Monica Bandettini de Poggio Giovanni Ferran-
des, Dipartimento di Neuroscienze, Oftalmologia
e Genetica (DiNOG), Università di Genova,
Italy.
A. Vittori et al. / β-Defensin Genomic Copy Number

Pierpaolo Sorrentino, Azienda Ospedaliera Universitaria Federico II - Dipartimento di Scienze Neurologiche, Naples, Italy.
Tecla Tucci, Azienda Ospedaliera Universitaria Federico II - Dipartimento di Scienze Neurologiche, Naples, Italy.
Annunziata De Nicola, Neurogenetics Unit – IRCCS Neuromed, Pozzilli, Italy.
Francesca Elifani, Neurogenetics Unit – IRCCS Neuromed, Pozzilli, Italy.
Martina Petrollini, Neurogenetics Unit – IRCCS Neuromed, Pozzilli, Italy.
Tiziana Martinino, Neurogenetics Unit – IRCCS Neuromed, Pozzilli, Italy.
Francesca Lovo, Neurogenetics Unit – IRCCS Neuromed, Pozzilli, Italy.
Ferdinando Squitieri, Neurogenetics Unit – IRCCS Neuromed, Pozzilli, Italy.

Anna Rita Bentivoglio, Istituto di Neurobiologia e Medicina Molecolare CNR/ Istituto di Neurologia, Dipartimento di Scienze e Tecnologie della Cognizione, Rome, Italy.
Claudio Catalli, Istituto di Neurobiologia e Medicina Molecolare CNR/ Istituto di Neurologia, Dipartimento di Scienze e Tecnologie della Cognizione, Rome, Italy.
Raffaella Di Giacopo, Istituto di Neurobiologia e Medicina Molecolare CNR/ Istituto di Neurologia, Dipartimento di Scienze e Tecnologie della Cognizione, Rome, Italy.
Alfonso Fasano, Istituto di Neurobiologia e Medicina Molecolare CNR/ Istituto di Neurologia, Dipartimento di Scienze e Tecnologie della Cognizione, Rome, Italy.
Marina Frontali, Istituto di Neurobiologia e Medicina Molecolare CNR/ Istituto di Neurologia, Dipartimento di Scienze e Tecnologie della Cognizione, Rome, Italy.
Arianna Guidubaldi, Istituto di Neurobiologia e Medicina Molecolare CNR/ Istituto di Neurologia, Dipartimento di Scienze e Tecnologie della Cognizione, Rome, Italy.
Tamara Ialongo, Istituto di Neurobiologia e Medicina Molecolare CNR/ Istituto di Neurologia, Dipartimento di Scienze e Tecnologie della Cognizione, Rome, Italy.
Giovanni Loria, Istituto di Neurobiologia e Medicina Molecolare CNR/ Istituto di Neurologia, Dipartimento di Scienze e Tecnologie della Cognizione, Rome, Italy.
Paola Zinzi, Istituto di Neurobiologia e Medicina Molecolare CNR/ Istituto di Neurologia, Dipartimento di Scienze e Tecnologie della Cognizione, Rome, Italy.
Maria Spadaro, Istituto di Neurobiologia e Medicina Molecolare CNR/ Istituto di Neurologia, Dipartimento di Scienze e Tecnologie della Cognizione, Rome, Italy.
Paola Zenzi, Istituto di Neurobiologia e Medicina Molecolare CNR/ Istituto di Neurologia, Dipartimento di Scienze e Tecnologie della Cognizione, Rome, Italy.
Monique S.E. van Hout, Medisch Spectrum Twente, Ensched, The Netherlands.
Jeroen P.P. van Vugt, Medisch Spectrum Twente, Ensched, The Netherlands.
A. Marit de Weert, Medisch Spectrum Twente, Ensched, The Netherlands.
M. Dekker, Polikliniek Neurologie, Groningen, The Netherlands.
Anna Bryl, Medical University of Poznań, Poland.
Anna Ciesielska, Medical University of Poznań, Poland.
Aneta Klimberg, Medical University of Poznań, Poland.
Jerzy Marcinkowski, Medical University of Poznań, Poland.
Husam Samara, Medical University of Poznań, Poland.
Justyna Sempolowicz, Medical University of Poznań, Poland.
Daniel Zielonka, Medical University of Poznań, Poland.
Piotr Janik, Medical University of Warsaw, Neurology, Warsaw-MU, Poland.
Anna Kalbarczyk, Medical University of Warsaw, Neurology, Warsaw-MU, Poland.
Hubert Kwiecinski, Medical University of Warsaw, Neurology, Warsaw-MU, Poland.
Zygmunt Janrozik, Medical University of Warsaw, Neurology, Warsaw-MU, Poland.
Jadwiga Kryska, Institute of Psychiatry and Neurology Dep. of Genetics, Dep. of Neurology, Warsaw-IPiN, Poland.
Grzegorz Witkowski, Institute of Psychiatry and Neurology Dep. of Genetics, Dep. of Neurology, Warsaw-IPiN, Poland.
Elżbieta Zdzienna, Institute of Psychiatry and Neurology Dep. of Genetics, Dep. of Neurology, Warsaw-IPiN, Poland.
Jacek Zaremba, Institute of Psychiatry and Neurology Dep. of Genetics, Dep. of Neurology, Warsaw-IPiN, Poland.
Karolina Zieora-Jakutowicz, Institute of Psychiatry and Neurology Dep. of Genetics, Dep. of Neurology, Warsaw-IPiN, Poland.
Miguel Coelho, Neurological Clinical Research Unit, Institute of Molecular Medicine, Lisbon-Santa Maria, Portugal.
Joaquim J Ferreira, Neurological Clinical Research Unit, Institute of Molecular Medicine, Lisbon-Santa Maria, Portugal.
Tiago Mestre, Neurological Clinical Research Unit, Institute of Molecular Medicine, Lisbon-Santa Maria, Portugal.
Tiago Mendes, Neurological Clinical Research Unit, Institute of Molecular Medicine, Lisbon-Santa Maria, Portugal.
Ana Ibarra, Neurological Clinical Research Unit, Institute of Molecular Medicine, Lisbon-Santa Maria, Portugal.
Maria Rosalia Guerra, Hospital São João E.P.E., Porto-São João, Portugal.
Maria Durán Herrera, Hospital Infantia Cristina, Badajoz, Spain.
Esther Cubo, Servicio de Neurología Hospital General Yagüe, Burgos, Spain.
Natividad Mariscal, Servicio de Neurología Hospital General Yagüe, Burgos, Spain.
Jesús Sánchez, Servicio de Neurología Hospital General Yagüe, Burgos, Spain.
Carrie Ho, (Scottish Huntington’s Association),
Molecular Medicine Centre, Western General Hos-
pital, Department of Clinical Genetics, Edinburgh, UK.
Marie McGill, Molecular Medicine Centre,
Western General Hospital, Department of Clinical
Genetics, Edinburgh, UK.
Pauline Pearson, Molecular Medicine Centre,
Western General Hospital, Department of Clinical
Genetics, Edinburgh, UK.
Mary Porteous, Molecular Medicine Centre,
Western General Hospital, Department of Clinical
Genetics, Edinburgh, UK.
Peter Brockie, Scottish Huntington’s Association
Whyteman’s Brae Hospital, Fife, UK.
Sue McKenzie, Scottish Huntington’s Association
Whyteman’s Brae Hospital, Fife, UK.
Jean Rothery, Scottish Huntington’s Association
Whyteman’s Brae Hospital, Fife, UK.
Sue Wild, Department of Clinical Genetics,
Chapel Allerton Hospital, Leeds, UK.
Pam Yardumian, Department of Clinical Genetics,
Chapel Allerton Hospital, Leeds, UK.
Emma Hobson, Department of Clinical Genetics,
Chapel Allerton Hospital, Leeds, UK.
Stuart Jamieson, Department of Clinical Genetics,
Chapel Allerton Hospital, Leeds, UK.
Hannah Musgrave, Department of Clinical Genetics,
Chapel Allerton Hospital, Leeds, UK.
Liz Rowett, Department of Clinical Genetics,
Chapel Allerton Hospital, Leeds, UK.
Pauline Pearson, Molecular Medicine Centre,
Western General Hospital, Department of Clinical
Genetics, Edinburgh, UK.
Peter Brockie, Scottish Huntington’s Association
Whyteman’s Brae Hospital, Fife, UK.
Sue McKenzie, Scottish Huntington’s Association
Whyteman’s Brae Hospital, Fife, UK.
Jean Rothery, Scottish Huntington’s Association
Whyteman’s Brae Hospital, Fife, UK.
Sue Wild, Department of Clinical Genetics,
Chapel Allerton Hospital, Leeds, UK.
Pam Yardumian, Department of Clinical Genetics,
Chapel Allerton Hospital, Leeds, UK.
Carole Clayton, Leicester Partnership Trust,
Mill Lodge, Leicester, UK.
Heather Dipple, Leicester Partnership Trust,
Mill Lodge, Leicester, UK.
Julia Middleton, Leicester Partnership Trust,
Mill Lodge, Leicester, UK.
Dawn Patino, Leicester Partnership Trust,
Mill Lodge, Leicester, UK.
Thomas Andrews, Guy’s Hospital, London, UK.
Andrew Dougherty, Guy’s Hospital, London, UK.
Fred Kavalier, Guy’s Hospital, London, UK.
Charlotte Golding, Guy’s Hospital, London, UK.
Hana Laing, Guy’s Hospital, London, UK.
Alison Lashwood, Guy’s Hospital, London, UK.
Dee Kavanagh, Guy’s Hospital, London, UK.
Dene Robertson, Guy’s Hospital, London, UK.
Deborah Ruddy, Guy’s Hospital, London, UK.
Anna Whaite, Guy’s Hospital, London, UK.
Alastair Santhouse, The National Hospital for
Neurology and Neurosurgery, London, UK.
Stefania Bruno, The National Hospital for
Neurology and Neurosurgery, London, UK.
Karen Doherthy, The National Hospital for
Neurology and Neurosurgery, London, UK.
Nayana Lahiri, The National Hospital for
Neurology and Neurosurgery, London, UK.
Marianne Novak, The National Hospital for
Neurology and Neurosurgery, London, UK.
Aakta Patel, The National Hospital for
Neurology and Neurosurgery, London, UK.
Elisabeth Rosser, The National Hospital for
Neurology and Neurosurgery, London, UK.
REFERENCES

A. Vittori et al. / β-Defensin Genomic Copy Number

