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Abstract. We review recent investigations regarding the relationship between selective neurodegeneration in the human brain
and the variability in symptom profiles in Huntington’s disease. Huntington’s disease is a genetic neurodegenerative disorder
caused by an expanded CAG repeat in exon 1 of the Huntingtin gene on chromosome 4, encoding a protein called huntingtin.
The huntingtin protein is expressed ubiquitously in somatic tissue, however, the major pathology affects the brain with profound
degeneration in the striatum and the cerebral cortex. Despite the disease being caused by a single gene, there is a major variability
in the neuropathology, as well as major heterogeneity in the symptom profiles observed in Huntington’s disease patients. The
symptoms may vary throughout the disease course and present as varying degrees of movement disorder, cognitive decline, and
mood and behavioral changes. To determine whether there is an anatomical basis underlying symptom variation, recent studies
on the post-mortem human brain have shown a relationship between the variable degeneration in the forebrain and the variable
symptom profile. In this review, we will summarize the progress relating cell loss in the striatum and cerebral cortex to symptom
profile in Huntington’s disease.
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INTRODUCTION

Huntington’s disease (HD) is an autosomal dom-
inant neurodegenerative disorder associated with an
unstable expansion of a CAG trinucleotide repeat in
the first exon of the Huntingtin gene [1]. In humans,
exon 1 of the Huntingtin gene normally varies between
6–35 CAG repeats, but individuals with more than 36
CAG repeats are at risk for HD. There is a correlation
between the number of CAG repeats and the age of
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onset and disease severity, such that cases with CAG
repeat lengths of 36 to 60 typically manifest symptoms
in mid-life, whereas CAG repeat lengths of >60 results
in more severe juvenile form of the disease [2–8].

The mutant huntingtin is expressed ubiquitously
in somatic tissue; however the pathology of HD is
most extensively localized in the forebrain. In the
brain the neuropathological changes are characterized
by extensive degeneration of the striatum (caudate
nucleus and putamen) and the cerebral cortex together
with involvement in other regions such as the globus
pallidus, thalamus, hypothalamus, and white mat-
ter [9, 10]. The disease is characterized clinically
by involuntary choreiform movements accompanied
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by progressive cognitive impairment and emotional
disturbances [11]. One of the most important fea-
tures of the disease, which has been highlighted by
recent studies, is the highly variable nature of the
neuropathology and symptomatology in affected indi-
viduals despite the single gene etiology of HD [12–15].
Although the age of onset and severity of disease gen-
erally correlate with the CAG repeat length, the distinct
symptom phenotypes expressed in HD affected indi-
viduals show no significant correlation with respect to
the size of the CAG expansion. Consequently, there
is much interest in whether there are any underly-
ing pathological differences in HD brains which may
account for symptom heterogeneity. This review will
specifically focus on the possible relationship between
symptom profiles of adult onset HD and the variable
pattern of degeneration in the striatum and the cerebral
cortex [12–15].

CLINICAL FEATURES AND VARIATION IN
SYMPTOMS

Huntington’s disease is characterized by symp-
toms affecting motor control, cognition, and behavior.
However, the pattern of symptoms exhibited by each
individual during the course of the disease as well as at
the time of onset can vary considerably. The symptoms
typically emerge in mid-life; however the disease can
manifest from early childhood to late in life [11, 16].
The disease duration is typically 10–20 years.

The onset of motor symptoms is used to define
the clinical onset of HD. Development of involuntary,
choreiform movements are one of the most distinc-
tive and well recognized symptoms of HD, which was
clearly documented in George Huntington’s original
work in 1872 [17]. Although useful for diagnosis,
chorea is a poor marker of disease severity. Most
patients initially display hyperkinetic movements that
are progressively replaced by a more hypokinetic
(akineto-rigid) syndrome in which bradykinesia, rigid-
ity and dystonia predominate. In addition, the patient’s
ability to speak and swallow is also often affected thus
leaving the patient susceptible to aspiration pneumonia
[18–20].

The cognitive disorder begins insidiously with the
loss of mental flexibility and progressive decline
of intellectual processes that can lead to profound
dementia. Early cognitive defects include impaired
concentration, dysfunction of short-term memory and
impairment of executive functions [21, 22]. As the
disease progresses these deficits develop into a more
widespread dementia, with the deterioration of verbal

skills such as speech and difficulty in visuospatial
functioning [23–25].

Behavioral and psychiatric symptoms are common,
but unlike cognition do not show a stepwise progres-
sion with disease severity [26]. There is a wide range of
associated mood and neuropsychiatric complications.
HD patients are afflicted with depression, dysphoria,
agitation, irritability, labile mood, apathy, and anxiety
[27, 28]. Also, a disproportionately high prevalence of
obsessive-compulsive symptoms, sleep disturbances,
personality changes, psychotic symptoms, and suicidal
tendencies have been previously reported [29–32].

The onset of clinical symptoms pertaining to the
motor, cognitive, and behavioral domains and disease
course of HD, once manifest, can vary substantially
between individual HD patients. For example, some
patients show major motor dysfunction at clinical onset
with minimal changes in mood or cognitive func-
tions, while at the other extreme, others show major
mood and cognitive related changes early in the dis-
ease course with minimal motor dysfunction until late
stages of the disease. Moreover, remarkable symptom
differences have been observed in monozygotic twins
that have the same genetic mutation and environmental
factors [33–36]. The intricate interaction of this par-
ticular genetic defect with innumerable environmental
factors and modifier genes may produce a wide range
of different possible phenotypes among HD cases [37].

NEUROPATHOLOGY OF THE HUMAN
BRAIN

The specific symptoms of HD have been related to
the neuropathology, which is characterized by neu-
ronal loss in different functional regions of the brain.
An early account of neuropathological abnormalities
was described by Meynert in 1877 who proposed that
chorea may be explained by lesions in the corpus
striatum [38]. The brain weight in end-stage HD is
about 300–400 g less than the average brain weight of
1300–1500 g. This gross atrophy of the brain princi-
pally results from profound shrinkage of the striatum
(caudate-putamen) and thinning in the cerebral cor-
tex [9, 14, 15]. The hippocampus, hypothalamus and
thalamus are also affected [9, 10, 39] and the cor-
pus callosum is often atrophic. Most interestingly as
detailed below, recent analyses of post-mortem human
HD tissue suggest that the variation in clinical symp-
toms in HD is strongly associated with the variable
pattern of neurodegeneration in the striatum and cere-
bral cortex [12, 13].



H.J. Waldvogel et al. / New Perspectives on the Neuropathology of HD 145

Neuropathology in the basal ganglia

Gross examinations of post-mortem human HD tis-
sue and in vivo neuroimaging techniques reveal that
the disease produces a striking bilateral atrophy of the
striatum [9, 40, 41] which generally has an ordered
and topographical distribution. The tail and body of
the caudate nucleus generally show more degeneration
than the head. The pattern of degeneration in the cau-
date nucleus and the putamen usually progresses in the
caudo-rostral and simultaneously in the dorso-ventral
and medio-lateral directions [9]. The extent of striatal
degeneration established by Vonsattel [42] has been the
hallmark grading system to indicate the severity of HD
disease pathology. The Vonsattel grading system con-
sists of five grades (0–4) of severity based on both the
macroscopic and microscopic histological findings in
the striatum. The most affected neuronal populations
in the striatum are the GABAergic medium-sized spiny
projection neurons (MSNs) that constitute 90–95% of
the striatal neuronal population. The MSNs that project
to the external segment of the globus pallidus (indirect
pathway) are the most vulnerable to the disease pro-
cess [43, 44]. This population of neurons expresses
enkephalin and dopamine D2 receptors and degen-
erates in advance of the MSNs that project to the
internal segment of the globus pallidus and substantia
nigra pars reticulata (direct pathway) that express sub-
stance P, dynorphin and dopamine D1 receptors [45].
The degree of striatal atrophy is, in part, associated
with the degeneration of other nonstriatal basal gan-
glia regions, e.g., the globus pallidus, substantia nigra,
subthalamic nucleus [9, 40]. What is especially inter-
esting is that, as detailed in the next section, recent
findings suggest that the pattern of striatal cell death
shows regional differences between cases in the func-
tionally and neurochemically distinct striosomal and
matrix compartments of the striatum.

Striosome-matrix compartmental degeneration in
the striatum and its relation to symptom profile

The mammalian striatum is divided into two major
interdigitating compartments first identified using
acetylcholinesterase (AChE) by Graybiel and col-
leagues [46]. The smaller AChE-weak striosome
compartment is identified by high concentrations of
distinctive neurochemical markers (neurotensin [47],
LAMP [48], dopamine D2 receptors [49], GABAA
receptors and kainate receptors [50–53], and substance
P and enkephalin [54]) while the larger matrix com-
partment is characterized by high concentrations of

other neurochemicals (AChE, tyrosine hydroxylase,
somatostatin, the calcium-binding proteins calbindin,
calretinin, parvalbumin, and the glutamatergic NMDA
and AMPA receptors [51, 54–61]).

In HD, changes in the neurochemicals found in
the striosome and the extrastriosomal matrix compart-
ments have been reported. Some studies suggest that
neuronal loss and gliosis shown by GFAP staining
first appear in the striosomes, indicating that the neu-
rons in striosomes may be more vulnerable at an early
stage of HD or lower grades of the disease than those
in the matrix [62–64]. However other studies show a
preferential loss of neurons and neurochemical mark-
ers in the matrix compartment with clear sparing of
the striosomes [50, 65, 66]. These findings detailing
the heterogeneous pattern of compartmental striatal
degeneration in HD are interesting as studies in the
rodent and primate brains show that the striosome
and matrix compartments have different patterns of
connectivity and suggest that the two compartments
are functionally different. Evidence from tracing stud-
ies suggests that the striosome compartment contains
MSNs that receive inputs from the limbic system and
these in turn project to the dopamine-containing neu-
rons in the substantia nigra pars compacta [67–69].
Therefore the striosome compartment is thought to
play a major “limbic” processing role in modulating
mood and other related functions of the basal ganglia.
Conversely, the matrix compartment receives inputs
from especially the sensori-motor and associative cor-
tices and hence, it is postulated to play a major role in
the control of movement [56, 70].

Extending these observations, Tippett and col-
leagues [13] have shown a differential pattern of
degeneration in the two striatal compartments in dif-
ferent HD symptom cases. Some cases showed a
selective striosomal loss of striatal neurons, enkephalin
and GABAA receptors (Fig. 1B), others showed
selective cellular and GABAA receptor loss in the
matrix compartment (Fig. 1C). Other cases showed
a mixed striosomal/matrix pattern of degeneration.
Most importantly, this differential compartmental pat-
tern of striatal degeneration between cases correlated
generally with the variable symptom profiles between
cases; most notably there was a significant association
between profound degeneration in the striosomes and
pronounced mood symptoms in the patients (Fig. 1B).
By contrast, cases with marked degeneration primar-
ily in the matrix compartment often had major motor
symptoms (Fig. 1C), although the matrix findings were
not statistically significant. These findings particularly
the relation between striosome degeneration and mood
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Fig. 1. Comparison of the patterns of GABAA receptor immunostaining in the striatum of a normal case (A) and two HD cases (B, C),
characterized respectively by “mainly mood” symptoms (B) or “motor symptoms” (C). In the normal case GABAA receptor immunostaining is
distributed throughout the striatum (caudate nucleus and putamen) with higher densities in the striosome (arrow) and moderate densities in the
matrix (arrowhead) compartments. In the HD case which had predominant mood symptoms there is a major loss of GABAA receptors in the
striosomes (B); whilst the case which has predominant motor symptoms shows extensive receptor loss in the matrix compartment with relative
preservation of striosome receptors (C). (In the photomicrographs the matrix is indicated with an arrowhead and the striosomes with an arrow).
CN = caudate nucleus; IC = internal capsule; P = putamen. Scale bar = 5 mm.

disturbance suggest that the different compartmental
patterns of cell death and degeneration in the HD stria-
tum could contribute significantly to the variability in
HD symptomatology.

Neuropathology in the cerebral cortex and its
relation to symptom profile

The cerebral cortex shows heterogeneous degen-
eration throughout different regions of the cerebral
cortex in HD. In the cerebral cortex there is overall
loss in cortical volume, cortical thinning, neuronal cell
loss, neuronal morphological changes, glial cellular
changes [12, 14, 15, 41, 71–77]. Recent advances in
neuroimaging and detailed pathological analysis of the
cerebral cortex in HD cases have also provided further
new perspectives on the clinical heterogeneity in HD.
Several imaging studies showing striatal and cortical
atrophy have been correlated with cognitive deficits
such as attention, working memory and executive func-
tions [23]. DTI and tractography studies have shown
that the motor circuit between the sensory-motor cortex
and the striatum are most affected in HD [78], and these
morphological changes correlated with cases showing
mainly motor symptoms. Also landmark MRI stud-
ies by several authors have demonstrated progressive
regional thinning of the cortical grey and white mat-
ter in both symptomatic and premanifest HD patients
which correlate with varying cognitive, visuomotor

and motor deficits [14, 15, 79, 80]. These findings
indicate that cortical changes may contribute to the het-
erogeneity of symptoms previously ascribed solely to
basal ganglia alterations [15, 79, 81–83]. Importantly,
the pioneering correlative MRI studies by Rosas and
colleagues [14, 15] showed that cases with a prominent
choreiform movement disorder presented a major thin-
ning in the sensory-motor cortical region. Furthermore,
the cases with more prominent dystonia, bradykine-
sia and rigidity demonstrated an overlap of thinning
in the sensory-motor cortex region but additional thin-
ning was shown in more anterior portions of the frontal
cortex including pre-motor and supplementary motor
areas.

Our recent detailed quantitative study using stere-
ological cell counting in the post-mortem human
HD cortex has complemented and expanded the neu-
roimaging studies by providing a cortical cellular basis
of symptom heterogeneity in HD [12]. In particular,
HD cases who were dominated by motor dysfunction
showed a major total cell loss (28% loss) in the primary
motor cortex but no cell loss in the limbic cingulate
cortex, whereas cases where mood symptoms predom-
inated showed a total of 54% neuronal loss in the limbic
cingulate cortex but no cell loss in the motor cortex.
This suggests that neuronal loss and alterations in the
circuitry of primary motor cortex and anterior cingu-
late cortex may contribute respectively to impairments
of motor and mood functions in HD (Fig. 2).
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Aggregates in HD

The cell death in HD is accompanied by the pres-
ence of intranuclear and cytoplasmic aggregated forms
of mutant huntingtin (mHtt) in neurons throughout
the brain. The role of inclusions in cell death is con-
troversial as there is evidence for both deleterious
and protective effects [84–87]. These protein aggre-
gates are thought to be formed by associations of
polyglutamine (polyQ) regions which act as a ‘polar
zipper’ [88, 89]. The immunohistochemical analyses
of post-mortem human HD brain has demonstrated the
presence of aggregates that can form neuronal intranu-
clear inclusions (NIIs) or cytoplasmic and neuropil

extranuclear inclusions (NEIs). NIIs tend to be round,
oval or rod shaped, larger than the nucleolus and more
frequent in juvenile than adult onset cases. In contrast,
the neuropil aggregates occur more frequently than
NIIs in adult cases and tend to be round or oval and
may be arranged in thin extensions along a process
[90–93]. The inclusions are present prior to symp-
tomatic development of the disease in the human brain
and found throughout the cortex, but less frequently in
the striatum [92–96]. Within the cortex, the cells tend
to display combinations of nuclear and cytoplasmic as
well as neuropil aggregations [95] with the highest lev-
els of intranuclear inclusions found in juvenile cases
which tend to have relatively very high CAG repeat

Fig. 2. Photomicrographs illustrating the pyramidal neurons in layer III in the primary motor cortex (A–C) and anterior cingulate cortex (D–F)
of normal (A, D) and Huntington’s disease cases (B, C; E, F). The images illustrate cases with “mainly motor” (B, E), and “mainly mood” (C, F)
symptom profiles. In the motor cortex, the case showing predominant motor symptoms (B) shows major cell loss compared to the normal case.
In the cingulate cortex the case with predominant mood symptoms (F) shows major cell loss compared to the normal case. Scale bar = 30 �m,
modified from Thu et al. [12].
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numbers [92]. Elucidating the exact molecular mech-
anisms for mHtt cytotoxicity has been a challenge.
The mHtt aggregates are mostly ubiquitinated and
are enriched in truncated polyglutamine containing-
fragments generated by several proteases, however the
precise mechanisms responsible for the toxicity of
these proteolytic products remain elusive. It is gener-
ally thought that mHtt confers a toxic gain-of-function
to elicit a cytotoxic cascade. Indeed, overexpression in
various types of cells is cytotoxic [97, 98]. However,
the soluble, non-aggregated forms of mHtt in tissues
have been implicated more recently to be the neuro-
toxic culprit [84, 99–101]. There is also evidence to
suggest that the aggregated forms of mHtt may have
no effect or even be protective to cells [84, 101, 102].
The substances that are toxic to cells generally elicit a
myriad of effects and therefore it is difficult to isolate
which are primary, secondary or tertiary [103–105]. In
addition, the expression of huntingtin does not reflect
the distribution of selective vulnerability [106]. Some
have even presented the view that cortical neurons may
actively destroy MSNs, rather than these cells being
vulnerable to mHtt itself [107]. Nevertheless, inclu-
sions play a role in HD and are commonly used as
biological markers for the testing and development of
new therapeutic strategies aimed at reducing inclusion
formation [108–111].

POSSIBLE MECHANISMS OF NEURONAL
DEGENERATION IN HD

The prevailing questions in the field of HD pathol-
ogy are: how and when pathological neuronal loss
occurs; whether the progressive loss of neurons in
the striatum is the primary process or is consequen-
tial to cortical cell dysfunction; and also how these
changes relate to symptom profiles. Striatal neurons
are thought to degenerate through excitotoxic pro-
cesses or metabolic stress, but whether this is caused
by intrinsic mechanisms in those neurons or through
excitotoxic mechanisms originating from dysfunction
of the cortical pyramidal neurons which project on
to the striatum is still unclear. What is clear is that
the diverse symptomatology of HD patients appears
to have a morphological correlate where the regional
distribution of neuronal dysfunction and loss corre-
lates to the pattern of symptomatology in individual
cases [12–15]. As the basal ganglia and cortex play an
important role in modulating motor and mood func-
tions, the consequent disruption of circuits between the
cortex and basal ganglia and neuronal death in both

regions must play a major role in symptom pheno-
type. It has been suggested that cortical changes [83,
112, 113] are fundamental to the onset and progres-
sion of the HD phenotype. For example, the anterior
cingulate cortex is the first cortical area to develop
nuclear inclusions in the R6/2 HD mice [86] and is
the site of ubiquitin-reactive dystrophic neurites in HD
patients [114]. Also, in post-mortem HD brains [90,
91, 115] the accumulation of mutant huntingtin is con-
sistently found more frequently in the cortex than in
the striatum, and abundant neuropil aggregates have
been detected in the cortex of presymptomatic HD
cases [92, 116]. The widespread changes in the cor-
tex are further supported by a microarray study in the
human primary motor cortex where 3% of the genes
(1482 genes) were differentially expressed in the HD
cases [117]. These studies showed greater abnormali-
ties in mRNA expression in the motor cortex than in
the prefrontal association cortex, suggesting a distinct
regional pattern of transcriptional alteration in the cor-
tex of HD. In the cerebral cortex, the large projection
neurons in layers V and VI are the most affected [71,
72, 74, 118] and are the principal neuronal type which
projects to the striatum. Therefore, as others have sug-
gested, dysfunction and loss of neocortical neurons
may contribute to the pathogenesis of cell death in the
striatum via the corticostriatal pathway.

Indeed, one of the prevailing mechanisms from
mouse models of cell death in HD proposes that early
changes in the corticostriatal pathway maybe a major
contributing factor to the initiation of the pathogenesis
in HD [119–121]. The corticostriatal neurons pro-
vide a major excitatory glutamatergic input onto the
MSNs in the striatum and dysfunction of the corticos-
triatal neurons in HD mouse models [122, 123] leads
to excess glutamate release in the striatum resulting
in NMDA receptor-mediated excitotoxic MSN dam-
age [124]. Furthermore, dysregulation of glutamate
release is compounded by loss of dopamine D2, CB1,
mGluR2/3 and other presynaptic receptors regulating
glutamate release at corticostriatal terminals. Another
adverse effect of corticostriatal dysfunction is reduced
release of brain-derived neurotrophic factor (BDNF) –
a growth factor necessary for striatal neuron survival
[125]. The mHtt has been shown to reduce the pro-
duction and transport of BDNF in the cortex via the
corticostriate pathway [126–131]. Also, an early dys-
regulation of the BDNF gene due to mutant huntingtin
has been suggested to disrupt microcircuitry in the
cerebral cortex in a cellular in vitro model of HD lead-
ing to dysfunctional signalling in the cerebral cortex
[132]. Other mechanisms contributing to cell death
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in HD include environmental and epigenetic factors
transcriptional dysregulation, oxidative stress, changes
in neurotransmitters, and breakdown of cellular and
vesicular transport mechanisms in neurons of the stria-
tum and cerebral cortex [129, 133–135].

CONCLUSION

Overall, these studies show that the different patterns
of degeneration in the basal ganglia and the cerebral
cortex is highly variable and correlates to the variable
symptom profiles in HD. Convergent evidence sup-
ports both cell-autonomous and non-cell autonomous
processes in neuronal dysfunction and degeneration
in both the cerebral cortex and striatum. While there
is currently no cure, this contemporary evidence sug-
gests that possible genetic therapies aimed at HD gene
silencing should be directed towards intervention at
both the cerebral cortex and the striatum in the human
brain.
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