
Journal of Computer Security 22 (2014) 913–959 913
DOI 10.3233/JCS-140509
IOS Press

CA trust management for the Web PKI

Johannes Braun a,∗, Florian Volk b, Jiska Classen c, Johannes Buchmann a

and Max Mühlhäuser b

a Theoretical Computer Science, Cryptography and Computer Algebra, Technische Universität
Darmstadt, Darmstadt, Germany
E-mails: {jbraun, buchmann}@cdc.informatik.tu-darmstadt.de
b Telecooperation Lab, Technische Universität Darmstadt and CASED, Darmstadt, Germany
E-mails: florian.volk@cased.de, max@informatik.tu-darmstadt.de
c Secure Mobile Networking Lab, Technische Universität Darmstadt and CASED, Darmstadt, Germany
E-mail: jiska.classen@seemoo.tu-darmstadt.de

The steadily growing number of certification authorities (CAs) assigned to the Web Public Key Infras-
tructure (Web PKI) and trusted by current browsers imposes severe security issues. Apart from being im-
possible for relying entities to assess whom they actually trust, the current binary trust model implemented
with the Web PKI makes each CA a single point of failure and creates an enormous attack surface. In this
article, we present CA-TMS, a user-centric CA trust management system based on trust views. CA-TMS
can be used by relying entities to individually reduce the attack surface. CA-TMS works by restricting
the trust placed in CAs of the Web PKI to trusting in exactly those CAs actually required by a relying
entity. This restriction is based on locally collected information and does not require the alteration of the
existing Web PKI. CA-TMS is complemented by an optional reputation system that allows to utilize the
knowledge of other entities while maintaining the minimal set of trusted CAs. Our evaluation of CA-TMS
with real world data shows that an attack surface reduction by more than 95% is achievable.

Keywords: Trust view, CA trust management system, Web PKI, levels of trust, attack surface reduction

1. Introduction

The Web Public Key Infrastructure (Web PKI) is one of the largest and most im-
portant cryptographic systems. The core of the Web PKI is the ecosystem of certifi-
cation authorities (CAs) that are responsible for the issuance and the maintenance of
digital certificates. These certificates are issued to web service providers and are used
in the transport layer security (TLS) protocol [12] for authentication. Thus, the Web
PKI enables authentication of web servers and subsequently, the establishment of se-
cure connections between web browsers and services like e-banking or e-commerce,
in which privacy, confidentiality, and integrity are often indispensable. For further
details on the Web PKI and its security model, please refer to Section 2.1.

*Corresponding author: Johannes Braun, Theoretical Computer Science, Cryptography and Computer
Algebra, Technische Universität Darmstadt, Hochschulstraße 10, 64289 Darmstadt, Germany. Tel.: +49
6151 165541; Fax: +49 6151 166036; E-mail: jbraun@cdc.informatik.tu-darmstadt.de.

This article is published online with Open Access and distributed under the terms of the Creative Commons
Attribution Non-Commercial License.

0926-227X/14/$27.50 © 2014 – IOS Press and the authors.

914 J. Braun et al. / CA trust management for the Web PKI

However, the Web PKI fails in many points to provide the desired security [15,
19,20,53]. One serious problem is that the security of the Web PKI does not scale
with the enormous size of the Internet. For the sake of interoperability as much
legitimate web service certificates as possible should be verifiable. Therefore, the
number of CAs that are fully trusted by default in current browsers and operating
systems has continuously been growing over the past. Currently, there are approxi-
mately 1590 trusted CAs controlled by 683 organizations and located in 57 different
countries [13]. As each of these trusted CAs can sign certificates for any web service
or domain, trusting a single malicious CA that is, in fact not trustworthy, can break
the whole Web PKI’s security. An attacker who is in possession of a forged certifi-
cate that was signed with the key of one of the trusted CAs can potentially intercept
the complete communication between any Internet user and the certified web server
without the user even noticing the attack. Thus, with each additional CA, the risk of
trusting a malicious or defective CA increases because the attack surface of the Web
PKI grows. The history of security incidents clearly demonstrates that this is more
than just a hypothetical threat [8,9,14,17,19,21,22,39,47].

Blacklisting CAs or revoking malicious certificates are the reactions to security
incidents. However, as these mechanisms are reactive, they have an inherent delay
exposing the entities at risk until the detection of the threat. As explained, the attack
surface grows proportional to the number of CAs an entity trusts. However, recent
experiments with browser histories of different human users have shown that on av-
erage, a user only requires a small subset of CAs to be able to validate the certificates
of all web services he uses. The size of this subset lies in the range of 10% of the
CAs available and trusted by default in the Web PKI [3].

In this paper, we describe a new approach to reduce the attack surface by reducing
the number of trusted CAs to those that are really required by the entities. Addition-
ally, among the trusted CAs, we introduce variable trust levels to enable more fine
grained trust decisions. According to the value-at-stake, a trust level is evaluated as
sufficient or insufficient to consider a connection to a web service as secure.

To achieve this, we present a CA trust management system (CA-TMS). The core
of CA-TMS are trust views (first presented in [4]) that serve as a local and user de-
pendent knowledge base for trust decisions. This is complemented by an (optional)
reputation system for the trustworthiness of CAs. We illustrate the mechanisms for
the establishment and the management of the trust view. Moreover, we implement
learning processes and define decision rules by employing computational trust mod-
els. The real trustworthiness of CAs is approximated by subjective probabilistic trust
values. CA-TMS allows an adaptation of the number of trusted CAs to the require-
ments of the relying entity and automated trust decisions based on defined decision
rules. In our solution, we focus on applicability, thus we only use data which is
already available or will be collected over time. However, the system is open for
extensions with additional information sources. We build on the techniques of pre-
vious works like public key pinning and certificate notaries and combine different
mechanisms as building blocks to solve separate sub problems. Different from those
existing mechanisms, CAs in the entity’s trust view have different trust levels and

J. Braun et al. / CA trust management for the Web PKI 915

might even be fully trusted depending on the context. Furthermore, trust evaluation
is based on local experiences of the entity, not requiring recommended trust values
embedded in certificates or the evaluation of certificate policies and expert opinions.
Thus, our solution can work autonomously and does not require an additional check
of every (new) certificate. CA-TMS provides a trade-off between overhead due to
reconfirmations and solely relying on CAs. Furthermore, the management of local
experiences guarantees that CAs are only trusted after they have previously been
encountered and checked. A CA is only trusted when the entity needs this CA to
contact a web service – independently from the CA’s global reputation. This protects
the entity from malfunctions of CAs that in general follow good security practices
but are actually irrelevant for the entity itself.

As said, trust views require the collection of experiences. I order to speed up and
improve the initial collection process, we extend CA-TMS by a reputation system.
This is designed under the prerequisite to provide recommendations tailored to the
specific entity’s requirements in order not to weaken the principle to trust in a indi-
vidually minimized set of CAs.

The paper is organized as follows. Section 2 describes the Web PKI and our secu-
rity model. Background on the computational trust model CertainTrust and further
related work is given in Section 3. Afterward, in Section 4, we describe trust views
and their mechanisms in detail. The subsequent Section 5 introduces a reputation
system that completes CA-TMS. In Section 6, we evaluate CA-TMS in respect to
performance and security and discuss limitations. We end with conclusions and fu-
ture work in Section 7.

2. Web PKI and security model

2.1. The Web PKI

Secure Internet connections between web browsers and web servers in general rely
on public key cryptography to authenticate web servers and establish session keys.
Public key cryptography requires key pairs: a private key that is only known to the
owner of the key pair (in our case a web server) as well as a public key, which must
be known and authenticated to everyone who wants to establish a secure connection
to the owner of the associated private key. A public key is bound to an identity via
a digital certificate according to the X.509 standard [10]. Whenever a relying entity
contacts a web server and successfully establishes a TLS connection using the public
key in the web server’s certificate, the relying entity can be sure that the web server
knows the private key matching the public one. As the certificate binds the public
key to an identity, the relying entity can be sure about the authenticity of the web
server.

As it is impossible to exchange certificates directly between all web servers and
all browser users (the relying entities), the Web PKI uses a hierarchical but tightly
interwoven structure of CAs that digitally sign certificates. If a certificate is signed

916 J. Braun et al. / CA trust management for the Web PKI

by a trusted CA, the authenticity of a web server that employs the certificate is tran-
sitively trusted. The Web PKI has a set of Root CAs. Their public keys are usually
distributed within trusted lists called root stores, along with operating systems and
browsers. The Root CAs act as basis for the whole PKI. Root CAs sign certificates
for subordinate CAs (Sub CAs) which themselves sign certificates for other Sub CAs
and end entities such as web servers, which we also refer to as hosts. This way, a hi-
erarchical structure is created. The chain of certificates starting with a Root CA’s
certificate (usually self-signed) and ending with a web server’s certificate is called
certification path. The process of checking the certification path for correctness and
validity is called path validation [10]. Self-signed certificates are certificates that are
issued by an entity to itself and are signed with the private key associated to the
public key in the certificate. Self-signed certificates may evolve as roots of certi-
fication paths (authenticated via root stores) or as intermediary certificates within
a path (mainly for compatibility reasons). A relying entity obtains the certification
path from a web server during the establishment of a TLS connection.

For a relying entity, in order to be convinced of the key legitimacy of a public
key k, namely to be convinced whether a public key k in a certificate belongs to the
identity contained in the subject field of the certificate, two things are required [33,
44,63]. First, the relying entity must be convinced of the key legitimacy of the CA’s
key that was used to sign the certificate that contains k. Second, the relying entity
must trust the CA to issue trustworthy certificates. The latter is called issuer trust in
the CA.

In the Web PKI, issuer trust and key legitimacy are binary. Any certificate signa-
ture that can be verified using the root store is absolutely trusted. This is because in
the current trust model, by signing a Sub CA’s certificate, the superordinate CA dele-
gates all its privileges to the Sub CA, which leads to the above mentioned 1590 CAs
fully trusted to sign certificates for any web server. Although CAs achieve different
qualities of service, this is currently not reflected within trust decisions. Different
CAs implement different schemes to verify identities of the key owners they sign
certificates for and employ different security mechanism. But, for example, a cer-
tificate containing a superficially verified identity appears to be as trustworthy as a
certificate where the contained identity was checked thoroughly.

2.2. Security model

In the model exist two entities e1 and e2. e1 establishes a TLS connection to e2.
The problem is to decide if the connection is trustworthy for e1.

A connection is trustworthy for e1 if the public key k of e2 that was used in the
TLS connection establishment is trusted by e1 to be a valid public key of e2. This
requires:

(1) e1 has a valid certificate C that binds k to e2.
(2) e1 trusts in the issuer of C.

J. Braun et al. / CA trust management for the Web PKI 917

The first requirement is a standard PKI issue. To fulfill requirement (1), e1 needs
to have a certification path p = (C1, . . . ,Cn) such that:

(a) Cn = C.
(b) p passes path validation.

Requirement (2) is fulfilled if p additionally passes trust validation. Explicit trust
validation is not incorporated in the current deployment of the Web PKI. We show
how this can be realized with trust views and the proposed CA trust management
system and explain how this allows to reduce the number of actually trusted CAs
and therewith the risk of relying on maliciously issued certificates. We first introduce
computational trust and present related work.

3. Computational trust and related work

3.1. Background on computational trust

Computational trust is a means to support entities in making decisions under un-
certainty, e.g., under incomplete information. The two most widely-used definitions
of trust are reliability trust and decision trust. Gambetta describes reliability trust as
a subjective probability of performance without the option to monitor the performed
action [18]. While this definition only captures the beliefs of an entity that is poten-
tially unaffected by its trust, Jøsang defines decision trust as the will to depend on a
trusted entity (Jøsang et al. in [37], inspired by McKnight and Chervany [46]):

Decision trust is the extent to which a given party is willing to depend on some-
thing or somebody in a given situation with a feeling of relative security, even
though negative consequences are possible.

Starting from recommendations, experiences from previous interactions, and
context-related indicators of trustworthiness, computational trust models calculate an
approximation for the quality of future interactions. For this paper, the CertainTrust
trust model by Ries et al. [51] is used. CertainTrust was extended with CertainLogic,
a set of operators to combine CertainTrust opinions. These operators are similar to
those of propositional logic, but consider the inherent uncertainty of CertainTrust
opinions.

CertainTrust can handle two ways of expressing trust-related information:

• The experience space collects results from interactions as binary experiences,
i.e., an interaction was either positive or negative.

• The opinion space uses a triple (t, c, f) to express an opinion oS about a state-
ment S. The value t ∈ [0; 1] represents the trust in the correctness of the state-
ment, while the certainty c ∈ [0; 1] represents the probability that t is a correct

918 J. Braun et al. / CA trust management for the Web PKI

approximation. c scales with the amount of information (for example, the num-
ber of collected experiences): the more information available, the more reliable
is the approximation. Finally, f ∈ [0; 1] defines a context-specific, initial trust
value in case no information was collected, yet. This parameter serves as a base-
line and represents systemic trust. Besides that, CertainTrust has a system-wide
parameter n, which defines how many experiences are expected on average for
a statement. This means after the collection of n experiences, for one opinion,
the opinion’s certainty is 1. We set n = 10. The effects of the parameter choice
for n are discussed in Section 6.1.1.

There exists an ambilateral mapping between the experience space and the opinion
space by parameterizing a Bayesian probability density function with the amount of
positive and negative experiences. For details, see [50]. In this paper, trust informa-
tion is collected in the experience space while the opinion space is used to combine
trust statements about different CAs.

A CertainTrust opinion represents a statistical estimate that the next experience
will be a positive one. Based on the experiences already collected, a maximum like-
lihood estimate for the next experience is given by the trust value. The concordant
certainty value represents the confidence in the estimate. Positive and negative expe-
riences are weighted equally in order to supply an unbiased estimate for the binary
experiences – thereby forming a binomial sample.

From opinions, an expectation can be computed. It represents the expectation for
future behavior. In CertainTrust, the expectation of an opinion oA is defined as

E(oA) = tA · cA + fA(1 − cA).

Herein, with increasing certainty (which means that a larger amount of experiences
is available), the influence of the initial trust f ceases.

There are several operators to combine different opinions. From two opinions
about two independent statements a combined opinion about the statement regarding
the truth of both input statements is computed with the AND-Operator of Certain-
Logic [51].

Definition 1 (CertainLogic AND-Operator). Let A and B be independent state-
ments and the opinions about these statements be given as oA = (tA, cA, fA) and
oB = (tB , cB , fB). Then, the combined opinion on the statement regarding both A
and B is defined as follows:

oA ∧ oB = (tA ∧ tB , cA ∧ cB , fA ∧ fB) with

cA∧B = cA + cB − cAcB

− (1 − cA)cB(1 − fA)tB + cA(1 − cB)(1 − fB)tA
1 − fAfB

,

J. Braun et al. / CA trust management for the Web PKI 919

if cA∧B = 0: tA∧B = 0.5,

if cA∧B �= 0:

tA∧B =
1

cA∧B
,

×
(
cAcBtAtB

+
cA(1 − cB)(1 − fA)fBtA + (1 − cA)cBfA(1 − fB)tB

1 − fAfB

)
,

fA∧B = fAfB .

The CertainLogic AND-Operator is commutative.

The AND-Operator can be used to combine independent opinions on statements.
Besides combining independent opinions, there might be the need to combine de-
pendent opinions, i.e., opinions on the same statement made by different entities.
CertainLogic provides three FUSION-Operators for this task. We will only use the
cFUSION-Operator [23], which combines opinions by taking their inherent conflict
into account. For example, asking different entities about the trustworthiness of a
CA A might result in two completely different opinions based on different experi-
ences made. One opinion oA1 might be positive with high certainty cA1 ≈ 1, while
the other opinion oA2 might be negative, also with high certainty cA2 ≈ 1. Obvi-
ously, these two opinions carry some conflict as they cannot both be correct at the
same time. The cFUSION-Operator handles this conflict by lowering the certainty of
the combination result. Other FUSION-Operators, e.g., [23,35], do not account for
conflict and only average the trust and certainty values of the resulting opinion. Fur-
thermore, cFUSION allows to assign weights to input opinions to give them higher
or lower importance. cFUSION is defined in [23].

Definition 2 (CertainLogic cFUSION-Operator). Let A be a statement and let
oA1 = (tA1 , cA1 , fA1), oA2 = (tA2 , cA2 , fA2), . . . , oAn

= (tAn
, cAn

, fAn
) be

n opinions associated to A. Furthermore, the weights w1, w2, . . . , wn (with
w1,w2, . . . ,wn ∈ R

+
0 and w1+w2+· · ·+wn �= 0) are assigned to the opinions oA1 ,

oA2 , . . . , oAn , respectively. The conflict-aware fusion of oA1 , oA2 , . . . , oAn with de-
gree of conflict DoC is denoted as:

o⊕̂c(A1,A2,...,An)

=
(
(c⊕̂c(A1,A2,...,An), t⊕̂c(A1,A2,...,An), f⊕̂c(A1,A2,...,An)),DoC

)
with

if all cAi
= 1: t⊕̂c(A1,A2,...,An) =

∑n
i=1 witAi∑n
i=1 wi

,

920 J. Braun et al. / CA trust management for the Web PKI

if all cAi
= 0: t⊕̂c(A1,A2,...,An) = 0.5,

if {cAi
, cAj

} �= 1:

t⊕̂c(A1,A2,...,An) =

∑n
i=1(cAi

tAi
wi

∏n
j=1,j �=i(1 − cAj

))∑n
i=1(cAi

wi
∏n

j=1,j �=i(1 − cAj
))

,

if all cAi
= 1: c⊕̂c(A1,A2,...,An) = 1 −DoC,

if {cAi
, cAj

} �= 1:

c⊕̂c(A1,A2,...,An) =

∑n
i=1(cAi

wi
∏n

j=1,j �=i(1 − cAj
))∑n

i=1(wi
∏n

j=1,j �=i(1 − cAj
))

· (1 −DoC),

f⊕̂c(A1,A2,...,An) =

∑n
i=1 wifAi∑n
i=1 wi

,

DoC =

∑n
i=1,j=iDoCAi,Aj

n(n− 1)/2
,

DoCAi,Aj
= |tAi

− tAj
| · cAi

· cAj
·
(

1 −
∣∣∣∣wi − wj

wi + wj

∣∣∣∣
)
.

The CertainLogic cFUSION-Operator is commutative.

3.2. Further related work

The multitude of problems and disadvantages of the currently deployed Web PKI
is described by well known researchers [15,19,20]. Monitoring of the Web PKI re-
veals its enormous size and shows that indeed malpractices are common [13,28,55].

Many attempts exist to circumvent the problems imposed by possible CA failures
and thus to enhance Internet security. Certificate or public key pinning (e.g., [16,49])
means that relying entities store certificates of formerly accessed websites. Based on
the trust on first use approach, it implies that a possible attacker must be present dur-
ing the first connection establishment to a website and thus provides a clear security
benefit by reducing the freedom of action for possible attackers. Unfortunately, this
either implies that each CA is trusted equally in case a new web page is accessed or
that the trust decision is transferred to the relying entity requiring it to have PKI ex-
pertise. Also, the approach suffers from the problem how and when to allow pinned
certificates to be exchanged (e.g., due to certificate expiry), which again provides
some room for an attacker.

Notarial solutions [6,30,42] maintain databases containing formerly observed cer-
tificates and can be queried to reconfirm the authenticity of a specific certificate.
Some of the solutions also involve consensus decisions of several independent no-
tary servers or employ multi path probing. When incorporating notaries to evaluate
the quality of certificates, trust is deferred from CAs to the notaries or a majority of

J. Braun et al. / CA trust management for the Web PKI 921

notarial services. While notaries are a powerful addition to the security of the Web
PKI, they suffer from the problem of false positives, e.g., when hosts serve different
certificates [38] like in the case of Google and Facebook or if new certificates are
deployed, which have previously not been observed and are not in the database of
the notaries. Furthermore, querying a notarial service for the validity of a certificate
reveals the service an entity is trying to connect to and thus, reveals privacy relevant
information. In contrast to local evaluation only, contacting notarial services during
the setup of every secure connection introduces communication overhead delays that
are undesirable from the entity’s perspective.

Certificate transparency [40] is an experimental proposal for publicly logging the
existence of TLS certificates to allow public auditing of CAs and the detection of
erroneously issued certificates. Yet, it requires web page operators to monitor public
logs and CAs to publish all issued certificates in order to function.

An often discussed alternative to the Web PKI is the binding of certificates – above
all self-signed certificates – to Domain Name System (DNS) names using DNSSEC
[27]. This mechanism removes many drawbacks of the current PKI system, yet secu-
rity then relies on the security of the hierarchical DNS infrastructure which recreates
many of the problems of the Web PKI. Furthermore, DNSSEC is still not completely
accepted and requires major protocol changes and implementation efforts.

Recently, Kasten et al. [38] proposed CAge, which works by restricting the set of
domains, for which a certain CA is trusted to sign certificates. Basically, they propose
that browsers should realize the functionality that was originally intended with the
name constraints extension [10] but is barely employed by CAs themselves. Based on
an Internet-wide survey, Kasten et al. show that CAs generally sign certificates for a
certain set of domains and that their behavior is stable in most cases which allows the
restriction based on past behavior. It turns out that such a restriction could reduce the
attack surface by 65–90%. CAge is complementary to our approach. While CAge
globally limits the power of each CA and therewith the impact of its failure, our
approach limits the number of trusted CAs in a user-specific way.

The enhancement of PKI with trust computation has been proposed by many re-
searchers. The CertainTrust model and CertainLogic [51] used by us are equivalent
to the Beta Reputation System and Subjective Logic, both by Jøsang et al. [34–36],
as these models both rely on binary experiences that are combined using a Bayesian
approach with beta probability density functions. A survey on different trust mod-
els that rely on this computational approach and similar ones can be found in the
surveys by Jøsang et al. [37] and Ruohomaa et al. [52]. Jøsang proposes an algebra
for trust assessment in certification chains in [33] but mainly addresses trust net-
works similar to PGP [63]. Huang and Nicol [29] also define another trust model
for trust assessment in PKI. Both approaches require trust values recommended by
the intermediates to evaluate trust chains. Such recommendations are in general not
included within commercial certificates. Different certificate classes like domain val-
idated (DV) or extended validation (EV) can be indicators for such trust values, but
are to coarse grained for trust evaluation and are also not CA specific.

922 J. Braun et al. / CA trust management for the Web PKI

Other researchers base trust evaluation in CAs on their policies and the adherence
to those [7,57]. This requires policy formalization [7,57,59] for automated process-
ing. Such formalized policies are not provided by CAs, and are in general far to
complex to be evaluated by the relying entities. Therefore, such approaches require
technical and legal experts to process policies [58].

In general, by including recommendations, systems using computational trust can
be extended toward trust management systems. A survey on systems that evolve local
trust into global trust can be found in [2] and, more specific to reputation-based trust
management systems, in [26,41,52].

In the following section, we present the concept of trust views and trust validation.
It uses the CertainTrust model and while it employs certificate pinning and notarial
solutions, also additional mechanisms like certificate transparency or DNSSEC can
be integrated, e.g., as additional validation services used to reconfirm certificates. An
optional reputation system for CA trust management is then explained in Section 5.

4. Trust view and trust validation

The purpose of establishing a trust view is to enable explicit trust validation
thereby locally reducing the number of trusted CAs on a per-entity level. The dif-
ferences in the trust needed for different applications are considered during trust
validation. For example, there is a difference in the trust needed to visit a search
engine and the trust needed to supply an online-shopping web site with your credit
card information.

4.1. Challenges

The set of CAs required by an entity is not fixed but changes over time. The chal-
lenge herein is to establish and manage a trust view in a dynamic way. We identified
the following constraints for dynamically updating the set of trusted CAs as well as
for assigning trust levels to them:

(1) Minimal user involvement: an informed assessment of the quality of a CA’s
certification processes is beyond the capabilities of the average Internet user
[25,54].

(2) Incomplete information on CA processes: data on the quality of a CA’s cer-
tification process might be incomprehensible, incomplete, or not available at
all.

(3) Incomplete information on the entity’s requirements: in general, the web ser-
vices that an entity will contact in the future are unknown and therefore also
the CAs that are required to verify the certificates of such web services.

J. Braun et al. / CA trust management for the Web PKI 923

4.2. The trust view

For trust validation, entity e1 has a trust view View. The trust view is the local
knowledge base of e1 and contains all previously collected information about other
entities and their keys. It is built incrementally during its use for trust validation. The
trust view of e1 consists of:

• a set of trusted certificates,
• a set of untrusted certificates,
• a set of public key trust assessments.

The trusted certificates are all certificates that have previously been used to establish
a trustworthy connection to another entity. The untrusted certificates are those cer-
tificates, for which the connection was evaluated untrustworthy. Furthermore, there
is one public key trust assessments for each pair of (public key, CA name) that was
contained in a previously evaluated certification path. A trust assessment represents
all information collected for the respective pair during prior trust validations.

A public key trust assessment TA is a tuple (k, ca,S, okl, oca
it , oee

it), where

• k is a public key.
• ca is the name of a certification authority.
• S is a set of certificates for k. The subject of these certificates is ca. This set

contains all the certificates with subject ca and public key k that have previously
been verified by e1.

• okl is an opinion. It represents the opinion of e1 whether k belongs to ca or not
(key legitimacy of k).

• oca
it is an opinion. It represents the trust of e1 in ca to issue trustworthy certifi-

cates for CAs (issuer trust in ca when using k to sign CA certificates).
• oee

it is an opinion. It represents the trust of e1 in ca to issue trustworthy certifi-
cates for end entities (issuer trust in ca when using k to sign end entity certifi-
cates).

In order to decide whether the connection to entity e2 is trustworthy, entity e1 runs
the trust validation algorithm (cf. Section 4.4).

4.3. Initialization of trust assessments

A trust assessment TA = (k, ca,S, okl, oca
it , oee

it) is initialized whenever a pair
(public key, CA name), for which there is no trust assessment in the trust view View,
is observed within a CA certificate C. We assume that a root store is available during
initialization. Then, TA is initialized as follows:

• k = public key.
• ca = CA name.
• S = {C}.

924 J. Braun et al. / CA trust management for the Web PKI

• okl = (1, 1, 1) if the CA is a Root CA, else okl = unknown.
• The initialization of oxit ,x ∈ {ca, ee} is the following:

(1) If there exists T̃A ∈ View such that c̃a = ca and (ca is a Root CA or the
issuing CA of C equals the issuing CA of one C̃ ∈ S̃), then set oca

it = õca
it

and oee
it = õee

it .
(2) If there exists no such T̃A then:

(a) If for 1 � i � n there are trust assessments TAi ∈ View with Ci ∈
Si, where the issuing CA of Ci is equal to the issuing CA of C, then
compute fx = 1

n

∑n
i=1 E(oxit,i) and set oxit = (0.5, 0, min{maxF, fx})

for x ∈ {ca, ee} and maxF = 0.8. min{a, b} denotes the minimum of
the input values.

(b) Else set oca
it = oee

it = (0.5, 0, 0.5).

The key legitimacy is set to complete (okl = (1, 1, 1)) for Root CA keys as these
keys are confirmed via the root store. For other CA keys, key legitimacy is computed
during trust validation as long as key legitimacy is unknown. During the evolution of
the trust view, key legitimacy may be fixed and set to complete as soon as enough
evidence has been collected. We discuss this in Section 4.5.2.

Step 1 of the oxit initialization realizes the transfer of earlier collected information
about a CA to TA, which is especially relevant for CA key changes. Herein, the
requirement of either being a Root CA, i.e., being authenticated via the root store,
or having the same issuing CA ensures that the collected information undoubtedly
belongs to the CA in question.

Step 2 provides an initialization mechanism if no prior information about the CA is
available. If the new CA’s key is certified by a CA that certified keys of several other
CAs, i.e., there are siblings for which experiences have already been collected, we
use the average over the expectations of the respective issuer trusts for initialization.
The reason is that a CA evaluates a Sub CA before signing its key, and thus, these
Sub CAs are assumed to achieve a similar level of issuer trust, like a stereotype [5].
While Burnett et al. apply machine learning techniques to identify the features that
describe stereotypes, the solution presented here assumes that being certified by the
same CA is the only relevant feature for stereotyping. Therefore, all known CAs that
are certified by the same CA form a stereotype. We bound the initial trust value f
by maxF in order not to overestimate a CA’s trustworthiness (cf. Section 6.1.1 for
a discussion of the effects of the parameter choice for maxF). If also no siblings
are available in the trust view, the issuer trust oxit = (0.5, 0, 0.5) reflects that no
experiences have been collected and that the CA may either be trustworthy or not.

Optimally, further information is collected for initialization. Our system is open
for such extensions. In Section 5, we describe how to realize a reputation system,
which recommends the issuer trust of a CA to an entity based on the trust views
of other entities. Further information could be gathered from policy evaluation as,
e.g., proposed by Wazan et al. [57,58]. A drawback of this approach is its need for

J. Braun et al. / CA trust management for the Web PKI 925

some kind of expert or expert system to evaluate the certificate policies and practice
statements, because these documents cannot be processed automatically at the time
being. So far, no such services are available in practice. Yet, given such additional
data, it can be mapped into an opinion and integrated into the initialization process.

4.3.1. Bootstrapping
Despite the fact that an entity will often access the same services and see the

same CAs repeatedly [3], it takes a certain time until enough experiences are col-
lected such that the system may operate autonomously (cf. Section 6.1 for details
on the evolution of exemplary trust views). Therefore, a bootstrapping procedure is
required to face possible delays and usability problems due to the involvement of ad-
ditional validation services (cf. Section 4.4). A possibility for such a bootstrapping
procedure is to scan the browsing history. From the history, the services that are ac-
cessed via a TLS connection can be identified and the respective certification paths
can be downloaded. The paths can then be used to bootstrap the trust view. This ini-
tial bootstrapping is only to be performed once and afterward, the system can mainly
fall back on the collected experiences.

4.4. Trust validation

We now describe the trust validation algorithm. It takes the trust view of entity e1
and a certification path for the certificate of entity e2 as input and computes the key
legitimacy of e2’s key to decide whether a connection established with e2’s key is
to be considered trustworthy. The decision depends on the security criticality of the
application that is to be secured by the connection from e1 to e2. The information
available in the trust view may not be sufficient to complete the trust validation. In
such a case, validation services are used as a fall back mechanism. We present the
detailed algorithm in the following:

Input:

• The certification path p = (C1, . . . ,Cn) without intermediary self signed cer-
tificates.

• The trust view View of e1.
• A security level l ∈ [0; 1] for Cn. l is selected by e1 and represents the security

criticality of the application that is to be secured by the connection from e1
to e2. The higher l, the more security critical is the application.

• A list of validation services VS = (vs1, . . . , vsj) with outputs Ri = vsi(C) ∈
{trusted, untrusted, unknown}, 1 � i � j on input of a certificate C.

Output: R ∈ {trusted, untrusted, unknown}.

The algorithm proceeds as follows:

(1) If Cn is a trusted certificate in View then R ← trusted.

926 J. Braun et al. / CA trust management for the Web PKI

(2) If p contains a certificate that is an untrusted certificate in View then R ←
untrusted.

(3) If Cn is not a certificate in View then

(a) For 1 � i � n − 1 set ki to the public key in Ci and cai to the subject
in Ci.

(b) Initialize the trust assessments for pairs (ki, cai) for which there is no trust
assessment in View (as described in Section 4.3). Store the new trust as-
sessments in the temporary list TL.

(c) For 1 � i � n− 2 set okl,i to the key legitimacy of ki and oca
it,i to the issuer

trust (for CA certificates) assigned to ki in View.
(d) Set okl,n−1 to the key legitimacy of kn−1 and oee

it,n−1 to the issuer trust (for
end entity certificates) assigned to kn−1 in View.

(e) Set h = {max(i): okl,i = (1, 1, 1)}.
(f) Compute okl,n = (t, c, f) = oca

it,h ∧ oca
it,h+1 ∧ . . . ∧ oca

it,n−2 ∧ oee
it,n−1.

(g) Compute the expectation exp = E(okl,n).
(h) If exp � l then R ← trusted.
(i) If exp < l and c = 1 then R ← untrusted.
(j) If exp < l and c < 1 then

(i) For 1 � i � j query validation service vsi for Cn and set Ri =
vsi(Cn).

(ii) Set Rc to the consensus on (R1, . . . ,Rj), then R ← Rc.

(k) Update View. (See Section 4.5 for details.)

(4) Return R.

According to previous works [33,44,63], the key legitimacy of a key is computed
as the key legitimacy of the CA’s key in conjunction with the issuer trust in the CA
issuer: okl = okl,issuer ∧ oit,issuer. The computation of the key legitimacy based on a
certification path with length greater than one follows directly from chaining this rule
and the fact that the key legitimacy of the first key kh in the path is okl,h = (1, 1, 1).
Such a key always exists as this holds at least for Root CA keys. Thus, okl,n =
(t, c, f) = oca

it,h ∧ oca
it,h−1 ∧ . . .∧ oee

it,n−1 as for the CertainLogic AND-Operator holds
if oA = (1, 1, 1) then oA ∧ oB = oB .

4.4.1. Security levels
Entity e1 assigns security levels to classes of applications according to their value-

at-stake (cf. [57] for a similar approach). That means, e1 defines which security level
the trust evaluation must achieve for the certification path in question in order to be
accepted without further reconfirmation. Note, that e1 does not rate the trustworthi-
ness of applications.

A security level is a real number between 0 and 1. The higher the security level
l is, the higher is the required key legitimacy for a connection to be evaluated trust-
worthy. The assignment of security levels is a subjective process and depends on the

J. Braun et al. / CA trust management for the Web PKI 927

risk profile of e1, which is out of scope of this paper. We propose to apply three
classes of security levels lmax = 0.95, lmed = 0.8 and lmin = 0.6 (cf. Section 6.1.1
for details on the choice of security levels and the associated effects). An exemplary
assignment of applications to the security levels could then be lmax for online bank-
ing, lmed for e-government applications, and lmin = 0.6 for social networks. Please
refer to Section 4.4.3 for details how this input may be provided to CA-TMS for trust
validation.

4.4.2. Validation services
A certification path containing previously unknown CAs results in a low key le-

gitimacy for the key certified in the end entity’s certificate. On the one hand this is
intended, as it leads to firstly distrusting in keys certified by unknown CAs. However,
this is not necessarily due to malicious behavior, but due to a lack of information.
Thus, whenever the key legitimacy is too low to consider a connection trustworthy,
and the certainty is less than one, validation services like notary servers (cf. Sec-
tion 3.2) are queried to reconfirm a certificate. Note that also solutions like certificate
transparency or DNSSEC could be integrated here. If a certificate is reconfirmed to
be authentic, the connection is considered trustworthy. If the validation services reply
with unknown, i.e., it is unclear if the certificate is trustworthy or not, the algorithm
outputs unknown. Only in this case, the relying entity is asked for a decision.

4.4.3. User interaction
As stated in Section 4.1, CA-TMS aims at minimal user involvement. While there

exists a user interface for CA-TMS, where experienced users may change the system
parameters described in Section 6.1, and may also have direct access to the trust
view, this is not designed to be used during normal operation. Initialization of trust
assessments, trust validation and the trust view update is performed autonomously in
the background, using passively collected local information (from past behavior and
interactions) and the input of validation services and the reputation system for CA
trust management (cf. Section 5).

The only user interaction during normal operation is that the relying entity pro-
vides the security level, he requires for the web site or web service he is about to
open, as an input to trust validation. While an automatized decision on the security
level by the determination of the class of application together with a predefined rule
set would be desirable, this is out of scope of this work. Possible solutions can, for
example, be based on content filtering (as also used to detect phishing sites [62]) or
based on analyzing the type of entered data (cf. [43]). For now, the required security
level can be given by the entity, using radio buttons that provide the different options
for security levels from which an entity may choose as part of the browser’s user
interface.

Additional user interaction is only required as a fallback mechanism in case the
validation services finally cannot provide a decision on the acceptance of an end en-
tity certificate and trust validation outputs ‘unknown’. Then, the relying entity must
decide upon acceptance. However, in this case, no experiences are collected for the

928 J. Braun et al. / CA trust management for the Web PKI

involved CAs. Note that experience collection can be caught up later by putting the
certificates on a watch list and adding the experiences after a later reconfirmation.
As the lack of expertise makes user involvement problematic, the ‘unknown’ case
needs to be avoided whenever possible by the use of an adequate set of validation
services. Further research on additional information sources and the optimization of
the use of validation services is due to future work. Yet, given sufficient support,
involving the user for decision making might be a viable approach, for example,
when a bank provides his customers with further information about their certifi-
cates.

Apart from these cases no user interaction is required. In particular, relying enti-
ties do not actively provide their personal assumptions about the trustworthiness of
obtained certificates, involved CAs or even the content of a web page and feed them
back into CA-TMS. This is also one of the main differences to other user-centric
approaches, like the Web of Trust [60], where users vote for the trustworthiness of
provided content, or PGP [63], where users state their opinion about the trustworthi-
ness of other users and the legitimacy of their public keys.

4.5. Trust view update

New information needs to be incorporated into the trust view to be available dur-
ing future trust validations. Based on the output of the trust validation, either positive
or negative experiences are collected for the involved trust assessments. Herein, it is
important that only strictly new information is collected. Therefore, it is checked if
a certificate, which is contained in the considered certification path, is evaluated for
the first time based on the state of the trust view. We present the detailed algorithm
in the following:

Input:

• A certification path p = (C1, . . . ,Cn) without intermediary self signed certifi-
cates.

• A trust view View.
• An output of the trust validation R.
• A list of new trust assessments TL.
• A Boolean value v ∈ {true, false} that indicates whether Cn was validated by

validation services or not.
• A list of validation services VS = (vs1, . . . , vsj) with possible outputs Ri =

vsi(C) ∈ {trusted, untrusted, unknown}, 1 � i � j on input of a certificate C.
• (optional) A reputation system RS (as described in Section 5) which outputs

recommended issuer trusts rs(k, ca) = (õca
it , õee

it) on input of a pair (k, ca).

Output: The updated trust view.

J. Braun et al. / CA trust management for the Web PKI 929

The algorithm proceeds as follows:

(1) If R = unknown then return View.
(2) For 1 � i � n−1 set ki to the public key in Ci, set cai to the subject in Ci and

set TAi = (ki, cai,Si, okl,i, o
ca
it,i, o

ee
it,i) to the corresponding trust assessments.

(3) (optional) If (R = trusted ∧ v = true) then ∀TAi ∈ TL do:

(a) Request rs(ki, cai) = (õca
it,i, õ

ee
it,i) from RS.

(b) If RS did not return unknown do:
If (i < n− 1) set oca

it,i = (0.5, 0,E(õca
it,i)), else set oee

it,i = (0.5, 0,E(õee
it,i)).

(4) If R = trusted then

(a) For 1 � i � n− 1 do

(i) If Ci /∈ Si then add Ci to Si.
(ii) If (i = n − 1) then update oee

it,i with a positive experience, else if
(TAi+1 ∈ TL) or (Ci+1 /∈ Si+1) then update oca

it,i with a positive
experience.

(iii) If TAi ∈ TL then add TAi to View.

(b) Add Cn to View as trusted certificate.

(5) If R = untrusted then

(a) Set h = {max(i): TAi /∈ TL or the consensus of (vs1(Ci), . . . , vsj(Ci)) =
trusted}.

(b) For 1 � i � h− 1 do

(i) If Ci /∈ Si add Ci to Si.
(ii) If (TAi+1 ∈ TL) or (Ci+1 /∈ Si+1) then update oca

it,i with a positive
experience.

(iii) If TAi ∈ TL then add TAi to View.

(c) If Ch /∈ Sh add Ch to Sh.
(d) If TAh ∈ TL then add TAh to View.
(e) If Ch+1 is not an untrusted certificate in View then: if (h < n − 1) update

oca
it,h else update oee

it,h with a negative experience.
(f) Add Ch+1 to View as untrusted certificate.

(6) Return View.

Given a new certificate that was evaluated as trusted, a positive experience is col-
lected for the issuing CA. In case the certificate was evaluated as untrusted, a negative
experience is collected. For the calculation of the trust value alone, every negative
experience cancels out a positive one and vice versa. In many situations, negative ex-
periences should have a bigger influence on trust than positive ones: a certificate that
failed the evaluation should not be trusted less but not at all. To meet these concerns,

930 J. Braun et al. / CA trust management for the Web PKI

the affected untrusted certificate is immediately added to the list of untrusted certifi-
cates, in addition to the collection of a negative experience for the CA that issued
the certificate. Thus, the certificate will never be accepted in the future. Moreover,
the actual impact of negative experiences on the final outcome of the trust evaluation
can be controlled by using adequate security levels (cf. Sections 4.4.1 and 6.1.1).

4.5.1. Example
A simplified example of the evolution of the trust view is shown in Fig. 1. It

visualizes the experience collection process. Root CAs are denoted with R-CA, Sub
CAs with S-CA. The arrows represent observed certificates.

(a) The system obtains the chain R-CA1 → S-CA1 → EE1. The certificate of EE1
is accepted. A positive experience is added to each involved CA.

(b) The chain R-CA1 → S-CA2 → EE2 is obtained. The certificate of EE2 is
accepted. A positive experiences is added to each involved CA.

(c) The chain R-CA1 → S-CA2 → EE3 is obtained. The certificate of EE3 is
rejected. A negative experience is added to S-CA2. However, the certification
R-CA1 → S-CA2 was approved during prior observations, thus no negative
experience is added to R-CA1.

(d) The chain R-CA2 → S-CA3 → EE4 is obtained. The certificate of EE4 is
rejected. Thus, the certificate R-CA2 → S-CA3 must be checked. Assuming
its reconfirmation, a negative experience is added to S-CA3, while a positive
experience is added to R-CA2.

Fig. 1. Evolution of the trust view.

J. Braun et al. / CA trust management for the Web PKI 931

(e) The chain R-CA1 → S-CA2 → S-CA3 → EE5 is obtained. The certificate
of EE5 is accepted. A positive experience is added to S-CA2 and S-CA3.
R-CA1 → S-CA2 was evaluated during prior observations, no new experience
is added.

4.5.2. Fixing the key legitimacy
Different from the issuer trust, which might change over time, key legitimacy theo-
retically is constant once it is approved. From that point on, the issuer trust in super-
ordinate CAs is of no further relevance. To consider this fact in the trust validation,
key legitimacy is set okl = (1, 1, 1) as soon as enough evidence for the key legiti-
macy of a trust assessment is available. We fix the key legitimacy after a CA’s key
was involved into several certification paths served by different web servers. This
strategy is similar to multi path probing applied by certificate notaries. To realize
the strategy, we introduce the parameter fixkl and set fixkl = 3, meaning that we fix
the key legitimacy after collecting three positive experiences for the respective trust
assessment (cf. Section 6.1.1 for an evaluation of the effects on the trust view for dif-
ferent parameter choices). Other approaches could be to fix the key legitimacy based
on the number of certificates contained in the trust assessment or given multiple in-
dependent certification paths have been encountered.

4.5.3. Cleaning the trust view
To prevent a continuous growth of the trust view and to allow the adaptation to

current requirements (e.g., changing browsing behavior), a removal mechanism is
integrated. A trust assessment TA is removed from the local trust view after a fixed
time period has been passed since TA was last used within trust validation. The length
of this time period can be implemented as a system parameter, e.g., one year. The
determination of the optimal parameter setting is due to future work.

5. A reputation system for CA trust management

In the above sections, we have described how the trust view is established in-
crementally by querying notaries for any certificates as long as not enough locally
collected information is available. We propose to integrate an additional reputation
system to increase the amount of data that decisions are based on from local expe-
riences to aggregated opinions from people with similar browsing behavior. While
doing this, the trust views are kept minimal in order to adhere to the principle of
least privileges, which is currently not followed in the Web PKI [13]. Therefore, an
entity’s requirements concerning CAs have to be considered during the aggregation
of the proposed issuer trust. Otherwise, experiences collected for application uses
completely irrelevant to the requesting entity might lead to unnecessarily high trust
values in this entity’s trust view. Furthermore, the reputation system is only queried
after the relevance of a CA for an entity was approved due to the CA being part
of a reconfirmed certification path (cf. Section 4.5). The purpose of the reputation

932 J. Braun et al. / CA trust management for the Web PKI

system is to improve the bootstrapping of the trust view and to evolve an entity’s
trust view towards a stable state. When reaching a stable state, CA-TMS may work
mainly autonomously, even for entities that only collect only few own experiences.

The remainder of this section is organized as follows. First, we discuss the ar-
chitecture of the reputation system in Section 5.1 and its basic functionality in Sec-
tion 5.2. Afterward, in Section 5.3, we discuss a strategy to select trust views for the
computation of the recommended issuer trust. In the case of insufficient information
on the reputation system’s side, a service provider handover may be performed as
described in Section 5.4. In Section 5.5, we discuss additional services that a rep-
utation service provider may offer to its users. While being nonfunctional for the
reputation system itself, these services provide an additional benefit that may attract
entities to use the reputation system. Finally, we discuss privacy aspects that arise
from uploading personal trust views to the reputation system.

5.1. Architecture

There are two main principles for building reputation systems [37], namely the
centralized and the distributed architecture. But only the centralized one is suitable
in the case of recommending issuer trust of CAs. In a distributed approach the par-
ticipants are responsible to collect ratings directly from other participants. But in our
setting, this requires another way of authenticating arbitrary Internet users in order
to build so called identity trust, which is essential to distributed reputation systems
[37]. However, requiring a pre-established authentication system in order to build a
reputation system that shall enhance another authentication system would reduce the
whole approach to absurdity.

Thus, we realize the reputation system using a centralized service provider (or, for
scalability reasons, a network of service providers). The users register at the service
provider and upload their trust views. Note that the authentication of a single service
provider is not considered a problem. E.g., its certificate may be hard coded into the
client software. Due to the registration, users can be re-identified when requesting
a recommendation for the issuer trust of a CA with key k. The service provider
aggregates the opinions from many trust views in his database to a recommendation
and provides it to a requesting user (or the public).

Model. To describe the reputation system we extend our model from Section 2.2.
Recall that there exists an entity e1 with trust view View and another entity e2. e1
establishes a TLS connection to e2 and needs to decide if the connection is trust-
worthy. Additionally, there are other entities u1, . . . ,un (other Internet users) with
trust views View1, . . . , Viewn and a network of service providers sp1, . . . , spm. The
service providers are assumed to have pre-established trust relationships and are able
to communicate securely, i.e. their keys are exchanged using an out of band chan-
nel. The network of service providers does not need to be complete, i.e., a service
provider is not required to trust any other service provider. We assume that e1 and

J. Braun et al. / CA trust management for the Web PKI 933

Fig. 2. Architecture of the reputation system.

u1, . . . ,un have registered at sp1 and uploaded their trust views to the database of
sp1. In general, an entity can choose which service provider to use. Thus, each ser-
vice provider has its own customer base and set of trust views. The clients’ local trust
views are regularly synchronized with the ones in spi’s database. Figure 2 depicts the
architecture.

5.2. Functionality

The reputation system provides recommendations for the issuer trust assigned to
a CA with key k. Whenever e1 updates his trust view with a new trust assessment TA
for CA ca and public key k, e1 requests a recommendation for the associated issuer
trust from sp1. sp1 aggregates the correspondent opinions for ca from j different trust
views by applying the conflict aware fusion operator cFUSION (cf. Definition 2). In
case sp1 does not have information about ca, sp1 forwards the request to other service
providers he trusts.

The process is the following:

(1) e1 establishes a TLS connection to sp1 and authenticates itself (e.g., by using a
user name and password).

(2) e1 sends the pair (k, ca) to sp1 using the secure connection.
(3) Depending on e1’s trust view, sp1 selects j � 0 trust views View1, . . . , Viewj

from its database according to selection strategy S (see Section 5.3 for trust
view selection strategies).

934 J. Braun et al. / CA trust management for the Web PKI

(4) If j > 0 do

(a) For 1 � i � j sp1 extracts oca
it,i and oee

it,i for (k, ca) from Viewi.
(b) sp1 aggregates the opinions on the issuer trust with the cFUSION operator

ôca
it =

⊕̂
c(oca

it,1, . . . , oca
it,j) and ôee

it =
⊕̂

c(oee
it,1, . . . , oee

it,j).

(5) If j = 0 (i.e., sp1 has no information for (k, ca)) sp1 forwards the request to
another service provider he trusts. The other service provider responds with a
recommendation (ôca

it , ôee
it) or with unknown. This step may be repeated or run

in parallel for several service providers.
(6) sp1 responds to e1 with either the aggregated issuer trust scores (ôca

it , ôee
it) or, if

no recommendation is available, with unknown.

In the following we describe in detail how to choose trust views for the aggregation
step and how to aggregate opinions to a single recommendation.

5.3. Trust view selection and trust aggregation strategy

We first present the selection and aggregation strategy. Afterward we show, how
to apply clustering for pre-computation and efficiency improvements.

5.3.1. Trust view similarity weighting and cut off
The aggregation of the recommended issuer trust should consider an entity’s in-

dividual requirements. This cannot be achieved by simply averaging the respective
opinions over all trust views in the service provider’s database. The recommendation
should be based on the trust views of entities that have comparable requirements
as the requesting entity, namely entities with similar browsing behavior and similar
security requirements. From the fact that CAs mostly work on certain domains [38]
and the dependence of the trust views on the subjective browsing behavior as shown
in [3], we follow that trust views reflect an entity’s requirements in respect to the
relevance of CAs.

Thus, we propose to weight the trust views to be aggregated based on their sim-
ilarity and to cut off all opinions with a similarity below a certain lower bound b.
Similarity of trust views can be measured with the Jaccard similarity index J(A,B)
defined in [11].

Similarity of trust views. The Jaccard similarity index is a measure for the similarity
of sets. Given two sets A,B, the Jaccard similarity index is defined as

J(A,B) =
|A ∩B|
|A ∪B| ,

where |A| is the cardinality of A. Informally speaking, J(A,B) is the number of
common elements divided by the total number of elements contained in the two sets.

J. Braun et al. / CA trust management for the Web PKI 935

Only considering the sets of TAs contained within trust views, the Jaccard similarity
index can be applied to trust views as follows. Herein, we consider the TAs from
different trust views as equal, if the contained CA name and key are identical. Then,
J(View1, View2) = n

n1+n2−n , where ni is the total number of TAs contained in Viewi,
i ∈ {1, 2} and n is the number of TAs shared by the trust views. Note that the
inclusion of certificates into the computation is omitted due to privacy issues (cf.
Section 5.6).

Trust view selection process. Let TV(k,ca) be the set of trust views in the ser-
vice provider’s database that contain a trust assessment for (k, ca) and let e1 be
the requesting entity with trust view View. Then the service provider chooses all
trust views Viewi, i = 1, . . . , j from TV(k,ca) for which the weight wi > b with
wi = J(View, Viewi). From these views, the service provider extracts the opinions
on issuer trust oca

it,i and oee
it,i for (k, ca) and aggregates them using the cFUSION-

Operator (cf. Definition 2) with the corresponding weights wi. Thereby, trust views
that are more similar to the requesting entity’s trust view influence the aggregated
recommendation more than less similar trust views.

Cutting off trust views with weights below the bound b prevents trust views that
are too different from View from being taken into account. The rationale behind
this is that the cFUSION-Operator only considers weights relatively. Thus, in case
that solely trust views with a low Jaccard similarity are found, this would result
in relatively high weights. Cutting off those trust views may come at the cost of
not finding adequate trust views but prevents the recommendation of high issuer
trusts, if the importance of a CA to an entity is not plausible. The definition of an
optimal bound b requires a larger data set than currently available to us and is due to
future work. A legitimate choice could be b = 0.8 (cf. Section 6.1.3 for exemplary
comparisons of trust views). Besides that, the similarity weighting and cut of strategy
provides protection against Sybil attacks which we discuss in Section 6.4.1.

One drawback of this strategy is the computational cost and scalability. To identify
the j trust views for aggregation, the Jaccard similarity index needs to be computed
for all trust views in the service provider’s database that contain a trust assessment
for (k, ca). This can be done more efficiently by clustering the trust views and then
performing a local search within the cluster that is most similar to the one of the
requesting entity.

5.3.2. Trust view similarity clustering
Trust views can be clustered according to their similarity. The resulting clusters

can be used to find similar trust views by only measuring a trust view’s similarity to
a few cluster centers. Even though the result will in general be less precise compared
to computing the full set of similarities, it still contains “nearby” trust views. Clusters
can be used to realize a pre-selection of trust views and realize the cut off of distant
trust views more efficiently when the service provider’s database contains many trust
views. Now we explain how clustering is realized. Note that clustering can be done
as a pre-computation within regular time intervals.

936 J. Braun et al. / CA trust management for the Web PKI

K-means clustering. With K-means clustering and the Jaccard similarity index for
trust views, κ clusters of similar trust views can be built. According to [24], the main
steps of K-means clustering are:

• initially select κ random trust views as cluster centers,
• repeat the following steps until cluster center convergence:

assignment: assign each trust view to cluster center for which the Jaccard sim-
ilarity is maximal,

update: reselect the cluster center within each cluster such that the arithmetic
mean of Jaccard similarities of the new center with all other trust views in
the cluster is maximized.

K-means tends to make cluster sizes equal and each trust view is assigned to only one
cluster. Equal sized clusters have the advantage of always providing a certain number
of candidate trust views for the aggregation step, and the computational effort is
bounded during request.

On the other hand, K-means clustering often fails finding the “natural” partition-
ing [32], where entities may belong to multiple groups and groups may have very
different sizes and shapes. Furthermore, K-means clustering only finds local optima.

To escape local optima, K-means clustering is normally run several times with
different initializations and for different sizes of κ. The outcomes are then compared
using the arithmetic mean of similarities to the cluster centers. For the selection
of the most suitable outcome, the criterion of a maximizing the arithmetic mean
of similarities (which solely considered would lead to clusters of size one) and the
criterion of adequate cluster sizes for aggregation need to be balanced.

Therefore, the parameter κ, which steers the number of clusters and thus their
sizes, is chosen depending on the lower bound b to which trust views are accepted
for the trust aggregation. Given b, we set κ = 1/(1 − b) as a first approximation.
Given trust views were equally distributed within the set of possible trust views, this
choice would lead to clusters where the minimum similarities to cluster centers were
around b. Since trust views are not distributed equally, outliers with lower similarities
will occur. If the number of outliers is above a certain limit, for example 10%, κ is
increased in order to rerun K-means.

5.4. Service provider handover

In case the service provider sp1 has no trust views to compute a recommendation
for (k, ca) – either there is no trust view with a trust assessment for (k, ca) at all or
none that meets the minimal similarity constraint b – he can request a recommenda-
tion from other service providers.

sp1 queries other service providers sp2, . . . , spm he trusts for their recommen-
dation. If more than one trusted service provider answers with a recommendation,
i.e. aggregated opinions on issuer trust for (k, ca), the responses are aggregated us-

J. Braun et al. / CA trust management for the Web PKI 937

ing the cFUSION-Operator with equal weights. Querying other service providers
is transparent to the requesting entity. If all service providers sp2, . . . , spm respond
with unknown, sp1 also answers with unknown to the requesting entity.

In order to enable sp2, . . . , spm to locally perform the aggregation of opinions to a
recommendation as described in Section 5.3.1, sp1 hands over the requesting entity’s
trust view. To protect the entity’s privacy, the trust view can be shortened by all end
entity certificates.

Note that if sp1 utilizes clustering, sp1 could hand over the center of the cluster
to which the entity’s trust view is assigned. While this provides a stronger privacy
protection, it comes at the expense of precision during the computation of the weights
during the aggregation step and it cannot be guaranteed that the minimal similarity
constraint b is met.

5.5. Additional services

A centralized service provider can provide additional complementary services to
its users. On the one hand, the services can incentivize more users to submit their
trust views and thereby indirectly enhance the accuracy of the reputation system due
to the availability of a larger set of data for calculation of recommendations. On the
other hand, the services provide additional benefits in itself. We describe potential
services that provide a surplus for users.

Backup. Uploading and regularly updating a trust view results in a copy of this
trust view on the service provider’s side. This – in fact – is a backup as trust views
are linked to user accounts. Providing the option to download one’s own trust view
is a simple backup solution for all users.

Migration to other devices. Trust views develop incrementally and are highly user
specific. Thus, switching to new devices (or a new web browser) should not lead to
a loss of the trust view. Instead of having to start with a new trust view, the backup
service provides all functions necessary to migrate trust views from one device to
another as long as both are under control of the same user.

Synchronization between devices. Whenever a user concurrently uses several de-
vices (or several web browsers), there is an interest to access the same set of trust
information, i.e., the same trust view, on all devices. With the possibilities already
provided by the backup feature, synchronization of a user’s trust view between all
possessed devices is possible. Furthermore, by implementing incremental synchro-
nization and filtering by use cases, a more sophisticated approach can be taken.

Revocation monitoring. A service provider who knows the trust view of a user can
monitor the revocation status of the contained certificates and inform the user about
revocations. While revocation is considered problematic [31] in many ways, this
can resolve availability issues of revocation information, as these do not have to be
available during connection establishment, but are obtained on a regular basis from
the service provider.

938 J. Braun et al. / CA trust management for the Web PKI

5.6. Privacy issues

Trust views contain the certificates of CAs and end entities that a user has had
contact with. The data from trust views can be used to profile users and their web
browsing habits at least concerning services that use secure connections. Thus, trust
views are sensitive data in terms of privacy which needs to be considered when this
data is not exclusively maintained locally but uploaded to a service provider.

Despite the fact, that a reputation system requires the data in plain and reveals
trust information to other users, privacy protection is possible. Recommendations
are in general aggregated knowledge of several of its users. The recommendations
are furthermore not linked to the source of information and trust views are never
revealed as a whole to the public. Thus, a recommendation at most reveals the trust
in a single CA and therefore is not considered privacy critical.

Besides that, not the complete trust views are required for the reputation system,
but only the trust assessments. As CAs in general sign certificates for arbitrary web
services, the privacy criticality of this part of the trust views is limited. As mentioned
above, this can be utilized during service provider handovers. To even protect this
information from being known to the service provider of a user, the parts of the
trust view that reveal which services a user consumes (namely the set of trusted and
untrusted end entity certificates) can be stored encrypted with a user-specific key.

6. Evaluation

In this section we evaluate the system. We first summarize the different system
parameters and show their influence on the trust views by simulating the system
behavior based on the data sets collected in a previous study [3]. Afterward, we
present the security gains and discuss attacks and defense mechanisms regarding
trust management systems.

In the study, data about browsing histories from different entities where collected.
From the histories, the web services (hosts) accessed via TLS connections were ex-
tracted along with the respective certification paths. These paths are available se-
quentially ordered based on the date when they where first accessed. This sequen-
tially ordered paths allow us to simulate the evolution of the respective trust views.
Note that in the simulation, the collection of experiences is limited to positive ex-
periences. Furthermore, querying the reputation system cannot be simulated. Due to
only collecting positive experiences, the resulting opinions on the issuer trusts form
an upper bound for the actually derived trustworthiness in real life applications. For
the simulations we used the twenty histories that contain data for at least one year.

6.1. Parameters and system behavior

The system behavior is controlled through different system parameters. We dis-
tinguish between general parameters and parameters that are only relevant for the
optional reputation system.

J. Braun et al. / CA trust management for the Web PKI 939

6.1.1. General parameters
Parameter n. The parameter n of CertainTrust opinions is the number of the ex-
pected average number of experiences for a statement. It is a system-wide parameter.
We propose n = 10, which means that after collecting ten experiences for one of the
opinions, its certainty becomes 1.

Due to its impact on the certainty of an opinion, the parameter n of CertainTrust
influences the development of the expectation of opinions during the course of col-
lecting experiences. This is shown in Fig. 3 for different values of n. While n has
only little influence on the expectation during the collection of the first three to four
experiences, n significantly influences the number of required positive experiences
to reach expectation values approaching the upper bound of 1. That means, n, in con-
junction with the security levels, can be used to adjust how fast CAs are considered
fully trustworthy, while n concurrently has only minimal influence on the CAs that
are approaching minimal security levels. Thus, increasing n mainly means shifting
CAs from the group of fully trustworthy CAs to medium trustworthy CAs while the
group of CAs that reach the minimal security level remains unaffected.

Security levels. The expectation value of CertainTrust opinions is continuous.
Thus, the required security level l for each application could also be chosen as any
number between 0.5 and 1. However, we propose to assign applications to three
distinct classes as already discussed in Section 4.4.1. Doing so makes the system
clearer and easier to use for potential users, as it reduces the complexity to decide
which security level to require for an application.

We choose three security levels to which a user may assign applications as
lmin = 0.6, lmed = 0.8 and lmax = 0.95. A CA for which the expectation of the

Fig. 3. The influence of n on the development of the expectation of a CertainTrust opinion.

940 J. Braun et al. / CA trust management for the Web PKI

derived key legitimacy for issued host certificates exceeds lmax is considered to be
fully trustworthy (medium or minimally trustworthy respectively).

Given a complete key legitimacy of the CA’s key and n = 10, at least one positive
experience has to be collected to reach the minimal security level for certificates
issued by the CA. The medium security level requires three positive experiences
while the maximum security level requires seven. For this choice, it can be seen that
increasing n, e.g., up to n = 30, would have no influence on when a CA is considered
minimally or medium trustworthy, but twelve instead of seven positive experiences
would be required for the CA to be considered fully trustworthy.

Parameter fixkl. In Section 4.5.2, we proposed to fix the key legitimacy of a CA’s
key after observing a CA’s key within fixkl certification paths. After the fixation of
the key legitimacy, the certification path has no further influence on the evaluation
of certificates issued by the CA. Then we rely solely on the experiences made with
the CA directly. We propose to fix the key legitimacy after three positively evaluated
encounters, i.e., set fixkl = 3.

Fixing the key legitimacy effects the development of the trust view. Similar to
n, increasing fixkl mainly reduces the number of fully trustworthy CAs, while the
number of medium and minimal trustworthy CAs grows. This is shown in Fig. 4. It
depicts exemplary for one trust view how the distribution of hosts associated with
CAs reaching the different security levels changes for values from fixkl = 1 up to
fixkl = 80. The distribution is measured after observing 604 different TLS-enabled
hosts.

The explanation for the effects yielded by fixing the key legitimacy is that the ex-
pectation for issued certificates is not lowered by the trustworthiness of superordinate

Fig. 4. Percentage of total hosts that are assigned to a CA with the security level max: l � 0.95, med:
0.95 > l � 0.8, min: 0.8 > l � 0.6 and <min: l < 0.6 for the derived key legitimacy of certificates
issued to end entities for different values of fixkl. For one exemplary trust view.

J. Braun et al. / CA trust management for the Web PKI 941

CAs (which is due to transitively lowering the key legitimacies along the certifica-
tion path). Thereby, this mainly affects the distribution of CAs among the reached
security levels, while the effect on the number of hosts that are associated to CAs not
reaching any security level is rather low.

The value of fixkl also has influence on how fast a CA achieves its previous secu-
rity level after its key was changed. Directly after the key renewal, the derived key
legitimacy of signed end entity keys will be low, as the key legitimacy of the CA’s
key is computed based on the path from the root to the CA’s (new) certificate. But
after fixkl encounters of the CA’s key, the previous security level is reestablished, i.e.
the system solely relies on the experiences collected for the CA in question.

Stereotyping and parameter maxF. Stereotyping is a means to derive trust for
newly observed CAs based on experiences collected for other CAs. This, on the
one hand, allows to trust in CAs never observed before. Thus the number of required
reconfirmations is reduced. On the other hand, the anticipated trustworthiness of the
CA is not based on the CA’s behavior anymore and information gained from stereo-
typing should not be overestimated to prevent threats. Threats may evolve when a
less trustworthy CA profits from the reputation of its siblings. Therefore, we limit
the influence of stereotyping by selecting the parameter maxF = 0.8. This limits the
certificates that are directly trusted due to stereotyping to low security applications.

The effects of stereotyping and fixing of the key legitimacy. The effects of stereotyp-
ing and fixing of the key legitimacy is shown in Figs 5–7. The figures show how the
percentage of hosts, for which a reconfirmation is required, develops over the course

Fig. 5. Percentage of observed hosts for which a reconfirmation was required given a required security
level l = 0.95 considering the different strategies: basic: no fixing of key legitimacy or stereotyping;
kl fixing: fixing of key legitimacy with fixkl = 3 and no stereotyping; stereotyping: stereotyping used but
no fixing of key legitimacy; combined: both fixing of key legitimacy and stereotyping used.

942 J. Braun et al. / CA trust management for the Web PKI

Fig. 6. Percentage of observed hosts for which a reconfirmation was required given a required security
level l = 0.8 considering the different strategies: basic: no fixing of key legitimacy or stereotyping;
kl fixing: fixing of key legitimacy with fixkl = 3 and no stereotyping; stereotyping: stereotyping used but
no fixing of key legitimacy; combined: both fixing of key legitimacy and stereotyping used.

Fig. 7. Percentage of observed hosts for which a reconfirmation was required given a required security
level l = 0.6 considering the different strategies: basic: no fixing of key legitimacy or stereotyping;
kl fixing: fixing of key legitimacy with fixkl = 3 and no stereotyping; stereotyping: stereotyping used but
no fixing of key legitimacy; combined: both fixing of key legitimacy and stereotyping used.

J. Braun et al. / CA trust management for the Web PKI 943

of the evolution of an exemplary trust view. This is shown for different required
security levels.

Using only stereotyping has practically no effect if the required security level is
lmax (see Fig. 5: the rates for the strategies basic and stereotyping are nearly identi-
cal), while fixing of the key legitimacy lowers the rate of reconfirmations by 50%.
In the combined strategy, both mechanisms strengthen each other’s effects. For a re-
quired security level of lmed (cf. Fig. 6), stereotyping performs better as the basic
strategy. However, the strengthening effect in the combined strategy is not observ-
able. Figure 7 shows the strongest effect of stereotyping, being equally effective as
fixing the key legitimacy. In this case, the effects accumulate. The effects of stereo-
typing are weaker than the effects of key legitimacy fixing at first, but after the en-
counter of several hosts, both curves approach each other. For stereotyping to strike,
experiences for siblings must be available first, which is not the case in the early
states of a trust view.

The difference in the functioning of the two mechanisms is that fixing the key
legitimacy mainly affects known CAs and therewith new host certificates issued by
the known CAs, while stereotyping affects newly observed CAs and the certificates
issued by those. To sum up, using both strategies concurrently, significantly reduces
the number of hosts for which a reconfirmation is required.

Figure 8 shows the evolution of an exemplary trust view, concerning the distri-
bution of hosts to minimal, medium, and maximal trustworthy CAs. The parameter
setting thereby is as follows: lmax = 0.95, lmed = 0.8, lmin = 0.6, maxF = 0.8,
fixkl = 3 and n = 10. The curve denoted <min depicts the percentage of hosts as-
signed to CAs that did not reach any security level. The curve drops below 10% after

Fig. 8. Changes of the percentages of total hosts that are assigned to CAs with the security level max:
l � 0.95, med: 0.95 > l � 0.8, min: 0.8 > l � 0.6 and <min: l < 0.6 for the derived key legitimacy of
certificates issued to hosts, during the course of the evolution of a trust view.

944 J. Braun et al. / CA trust management for the Web PKI

the observation of around 120 different hosts with the corresponding certification
paths. It can be interpreted as an approximation for the marginal rate of reconfir-
mations, assuming that the minimum trustworthiness of a CA is adequate in most
cases. The approximated marginal rate of reconfirmations for applications requiring
the maximal security level can be computed as one minus the percentage of hosts
assigned to fully trusted CAs. For medium security applications analogously as one
minus the percentage of fully and medium trusted CAs.

6.1.2. System behavior for different trust views
Now, we show the system behavior for the different trust views for the following

parameter values: lmax = 0.95, lmed = 0.8, lmin = 0.6, maxF = 0.8, fixkl = 3 and
n = 10.

Figure 9 shows the distribution of hosts to the CAs, for which the derived key
legitimacy for issued end entity certificates reach the security levels lmax, lmed or
lmin. The plotted data shows the distribution for the twenty analyzed trust views
after completely simulating the history information. The trust views are ordered by
the amount of different hosts found in the history. On the X-axis, the number of
hosts for the respective trust views is depicted. A growing number of hosts leads
to a growing percentage of CAs being trusted with a maximum of 85% of hosts
assigned to fully trusted CAs. The percentage of hosts assigned to untrusted CAs
continuously drops. As Fig. 10 shows, this does not come from a dramatic growth in
the number of fully trusted CAs. The percentage of CAs that are able to issue fully
trusted certificates reaches a maximum of 28% of the total number of CAs contained
in the corresponding trust view. In summary, only a rather small number of fully

Fig. 9. Percentage of total hosts that are assigned to CAs with the security level max: l � 0.95, med:
0.95 > l � 0.8, min: 0.8 > l � 0.6 and <min: l < 0.6 for the derived key legitimacy of certificates
issued to end entities.

J. Braun et al. / CA trust management for the Web PKI 945

Fig. 10. Percentage of total CAs that reach the security level max: l � 0.95, med: 0.95 > l � 0.8, min:
0.8 > l � 0.6 and <min: l < 0.6 for the derived key legitimacy of certificates issued to end entities.

trusted CAs (we found a maximum of 29 CAs) issues the majority of the certificates
an entity observes.

While for trust views based on histories that contain only few hosts, the distri-
bution of hosts to trusted CAs is rather chaotic, it seems to stabilize around 100
observed hosts. This also holds for the percentage of CAs that reach the respective
security levels. There is a clear rationale: Firstly, for trust views with only few hosts
only few experiences can be collected. Secondly, the number of CAs grows strictly
under-proportional to the number of CAs. The ratio #CAs

#hosts hereby drops from 1.6 to
0.17 in our data sets, meaning that for each CA more experiences are collected on
average. This means that trust views perform good for entities that access many dif-
ferent hosts (good in the sense that entities mainly rely on their local data and do
not require to reconfirm most of the certificates). For other types of entities, most
certificates need to be reconfirmed (while the absolute number is rather low). In such
cases, a reputation system as described in Section 5 can help in categorizing the CAs
such entities observe. We note that each host certificate only needs to be reconfirmed
once due to certificate pinning.

The complete numbers for the twenty analyzed trust views can be found in Ta-
bles 1 and 2. The number of CAs that do not reach any security level (l < 0.6) in
Table 2 only contains CAs that actually do sign end entity certificates. CAs only
issuing Sub CA certificates are not included.

6.1.3. Reputation system parameters
Trust view similarity bound b. We evaluated the Jaccard similarity measure on the
twenty trust views derived from the twenty analyzed histories. The average similarity
of one view to all others thereby lies between 0.25 and 0.52, while the maximum

946 J. Braun et al. / CA trust management for the Web PKI

Table 1

Numbers of hosts and their distribution to CAs with different security levels for different trust views

Trust view #hosts #hosts assigned to CAs with security level

l � 0.95 0.95 > l � 0.8 0.8 > l � 0.6 l < 0.6

1 10 0 3 1 6

2 21 0 11 3 7

3 47 7 18 8 14

4 48 0 22 13 13

5 51 9 26 6 10

6 55 9 21 13 12

7 83 55 10 3 15

8 105 44 38 19 4

9 107 31 45 18 13

10 110 62 21 14 13

11 144 99 22 13 10

12 157 78 47 15 17

13 178 93 62 13 10

14 202 123 48 14 17

15 203 137 46 7 13

16 340 236 77 15 12

17 341 233 78 21 9

18 347 278 38 19 12

19 371 267 80 15 9

20 604 517 65 13 9

similarity that we found between two trust views was 0.69. Our data set is not large
enough to determine the best value for the similarity bound b, from which on trust
views are considered for the computation of recommendations. However, we believe
that selecting b = 0.8 is suitable – given a large enough database of trust views.

As explained in Section 5.3.2 the initial choice for κ directly depends on b. With
b = 0.8, κ is initially set to κ = 5.

6.2. Attacker model

We summarize the attacker’s goal, capabilities and limitations.

Attacker goal. The attacker targets at TLS connections established between enti-
ties and web servers. The goal of the attacker is to inject a malicious certificate for
which he controls the private key during key agreement in order to be finally able to
eavesdrop, monitor or manipulate the secured communication. The goal is achieved
if the maliciously generated certificate is not detected and thus accepted by the target
entity.

J. Braun et al. / CA trust management for the Web PKI 947

Table 2

Numbers of CAs and host signing CAs and their distribution to security levels for different trust views

Trust view #CAs #host signing CAs #CAs trusted for security level

l � 0.95 0.95 > l � 0.8 0.8 > l � 0.6 l < 0.6

1 16 7 0 1 1 5

2 25 13 0 3 3 7

3 41 24 1 5 5 13

4 44 25 0 5 9 11

5 39 22 2 6 4 10

6 40 26 2 5 9 10

7 46 27 8 3 3 13

8 49 30 3 10 13 4

9 55 34 4 10 11 9

10 48 30 6 5 9 10

11 58 38 11 8 11 8

12 72 48 8 17 10 13

13 80 59 10 30 12 7

14 79 50 11 15 11 13

15 69 43 14 11 7 11

16 90 59 15 21 13 10

17 98 73 17 32 15 9

18 83 56 21 10 15 10

19 90 62 18 25 12 7

20 103 76 29 29 11 7

Attacker capabilities. The attacker is active. Thus, he is able to intercept and alter
the communication between two entities, e.g. he acts as a man-in-the-middle. In
the evaluation, a distinction is made between permanent attackers that can intercept
all communication of an entity and time-limited attackers that can only intercept
communication channels during a fixed time frame.

Additionally, the attacker can obtain malicious certificates issued on behalf of at
least one CA of the Web PKI. The malicious certificates are obtained either by com-
promising a CA’s private key and using it to issue certificates, or by a CA failure.
Note that self-signed certificates are unsuitable for attacks as they will be detected
during standard path validation.

Besides the attacker specific capabilities, the attacker has all capabilities of regular
entities. For example, the attacker can register at a reputation service and upload trust
views.

Attacker limitations. The relying entity’s system under consideration is assumed
not to be compromised (which does not mean that there do not exist compromised or
malicious user systems at all). Thus, the attacker is unable to access or manipulate
the locally stored trust view. We do not consider relying entities that change their

948 J. Braun et al. / CA trust management for the Web PKI

own trust view maliciously, which indeed would only be to their own disadvantage.
Such malicious behavior (of other entities) becomes only relevant when considering
the upload of trust views to the reputation system and is discussed under Sybil attacks
in Section 6.4.1.

The reputation system itself is assumed not to be compromised, i.e., the attacker is
unable to arbitrarily manipulate the database of the reputation system or its compu-
tation processes. Even further, it is assumed that the communication between relying
entity and the corresponding servers of the reputation system is secure. Intrusion
detection and attacks on user systems are separate fields of security research and
independent from this paper. Furthermore, we assume that the attacker does not ma-
nipulate the validation services to provide false reconfirmations.

The attacker is not capable of breaking the cryptographic algorithms. In particular
this means, once a secure channel has been established the attacker cannot eaves-
drop on the content of the communication or manipulate the sent data undetectably.
Also, standard security mechanisms of the Web PKI are assumed to be intact. For
example, the detection of a maliciously issued certificate results in countermeasures
like revocation and blacklisting. The time period between compromise and detection
is called gray period. The actions of an attacker are limited to the gray period, as a
malicious certificate would be detected afterward by standard means.

6.3. Protection against PKI attacks

In this section, we evaluate how CA-TMS reduces the attack surface of the Web
PKI given CA-TMS is not manipulated by the attacker. Attacks against CA-TMS are
discussed separately in Section 6.4.1.

When the relying entity uses CA-TMS, trust validation must succeed for a pre-
sented certificate chain. Otherwise, validation services are queried and a potential
attack is detected. Trust validation can only succeed if the certificate was either used
before or if the issuing CAs are contained in the entity’s trust view. Furthermore,
those CAs must be considered sufficiently trustworthy for the required security level
of the application. Thus, the attacker must compromise a CA with sufficiently high
issuer trust in order to be successful. Attacking a specific group of entities requires
the compromise of a CA with a sufficiently high issuer trust in each of the group
member’s trust views. The same holds when attacking a specific service. In this case,
the relevant set of trust views are those of the group of service users.

Therefore, the attacker needs to identify a CA that is sufficiently trusted by all tar-
geted entities. Otherwise, the attacker risks an immediate detection of the compro-
mise when the validation services are triggered. However, as trust views are specific
to individual entities and not publicly visible, it is hard to identify such a sufficiently
trusted CA. Even if this is possible, it is questionable if the attacker can purposefully
compromise this CA.

Generally speaking, by the use of CA-TMS, an attacker can hardly exploit ac-
cidental CA failures. The possible damage is reduced due to the limitation of the

J. Braun et al. / CA trust management for the Web PKI 949

number of attackable entities accompanied by the increased compromise detection
probability. Furthermore, with CA-TMS, the damage a compromised CA may cause
highly depends on the CAs visibility in the certification business. The result of using
CA-TMS is a much more natural setting than each existing CA being equally critical.

6.3.1. Reduction of the attack surface
The overall attack surface is reduced by CA-TMS by limiting the number of

trusted CAs. We measure the effectiveness of the system by adapting the metric
of Kasten et al. [38], which measures the attack surface as AS =

∑
ca∈CAs dom[ca].

Therein, dom[ca] is the number of domains that a given CA is allowed to sign. CAs
describes the set of all CAs which are part of the Web PKI. We extend the metric to:

AS(View) =
∑

ca∈CAs

(
bca

1 · dommax + bca
2 · dommed + bca

3 · dommin
)

with

bca
1 =

{
1 if for ca: E

(
oee

it

)
� lmax,

0 else,

bca
2 =

{
1 if for ca: E

(
oee

it

)
� lmed,

0, else,

bca
3 =

{
1 if for ca: E

(
oee

it

)
� lmin,

0 else,

where dommax, dommed and dommin are the respective numbers of domains for which
the relying entity requires a maximal, medium or minimal security level. The input
View represents the trust view of the entity.

Herein, dommax + dommed + dommin = dom, which describes the total number of
validly signed domains, i.e., for which a valid TLS certificate exists. Note that for
simplicity, we do not parametrize dom by the respective CA as we do not consider
the restriction of domains for which a CA is allowed to issue certificates.

We base our calculations on the number of 1590 CAs found by Durumeric et
al. [13]. Currently, all CAs are trusted for signing certificates for any domain, thus
AS = 1590 · dom, which equals the attack surface computed with the original met-
ric.

The metric enables us to relatively quantify the reduction of the attack surface
resulting from the use of CA-TMS with the above specified parameters. As the dis-
tribution of the domains to dommax, dommed and dommin depends on the relying
entity’s preferences, the exact attack surface is also specific to the entity and further-
more depends on its specific trust view. We do not have data about the distribution for
the data sets analyzed in Section 6. Thus, we do the comparison for the three extreme

950 J. Braun et al. / CA trust management for the Web PKI

cases where either lmax, lmed or lmin is assigned to all domains. If we apply the metric
to our data sets, the relative attack surface is simply the quotient of CAs in the trust
view that can issue certificates for a given security level (cf. Table 2) divided by the
total number of CAs. For lmax, the relative attack surface lies between 0 and 0.018,
for lmed between 0 and 0.036 and for lmin between 0.001 and 0.043. In any case, the
surface is reduced by more than 95%. The minimum numbers clearly come from the
least evolved trust views where nearly no CAs are trusted. This comes at the cost of
querying validation services whenever new hosts are observed. However, even in the
most evolved trust view, where 604 different TLS-enabled hosts were accessed and
the approximate marginal rates of reconfirmation (cf. Fig. 8, Section 6.1.1) are below
15%, 5%, and 2% for the different security levels lmax, lmed or lmin shows the enor-
mous security increase by using CA-TMS. Nevertheless, the overhead by querying
validation services is kept in an acceptable range.

6.3.2. Limitations
While trust views can significantly reduce the attack surface, past experiences are

no guarantee for correctness. Trust views do not protect CAs from being compro-
mised. If a CA, for which many positive experiences were collected, suddenly fails,
the relying entity may still falsely rely on a maliciously issued certificate. On the
other hand, it is also possible that a connection is falsely evaluated not to be trustwor-
thy. The behavior lies in the nature of basing decisions on incomplete information.

Furthermore, trust in the key legitimacy of a service provider’s key is different
from the trustworthiness of the service provider itself. The trustworthiness of a ser-
vice provider comprises, for example, the quality of the web page and its content.
The latter is not addressed by CA-TMS and requires additional mechanisms like the
Web of Trust [60] or commercial web page ratings, e.g., Norton SafeWeb [48] or
McAfee SiteAdvisor [45]. However, such mechanisms require authentication, which
is again achieved via authentic public keys.

6.4. Protection against computational trust attacks

This section is focused on attacks against specific components of CA-TMS. At-
tacks are categorized into two groups: either attacks on manipulating a target entity’s
local trust view or attacks aiming towards manipulating the external reputation sys-
tem. The latter one ultimately leads to a manipulation of local trust information on
the target entity’s side, too. Following from the above attacker model, the intention
behind these attacks is to finally increase the attacker’s success probability when he
attacks the entity’s communication with a forged certificate. Note that the reputation
system is only queried when a new trust assessment is initialized after the legitimate
use of the CA’s key has at least been reconfirmed once. Thus, the reputation system
cannot be employed by an attacker to introduce additional trust assessments into the
target entity’s trust view. Following the analysis framework from [26], our analysis
identifies the attack vectors based on the separation into formulation, calculation,
and dissemination components of CA-TMS.

J. Braun et al. / CA trust management for the Web PKI 951

Formulation resembles the reputation metric and sources of input. A CA’s reputa-
tion is stored as opinion, which is updated by positive or negative experiences. The
information source is either direct, namely an observed certification path, or indirect
via the reputation system. Thereby, the information source for the reputation system
are trust views uploaded by its users. Thus, an attacker can positively or negatively
influence the trust in a CA, either by directly serving manipulated certification paths
or by influencing the recommendations served by the reputation system. The reputa-
tion system itself may be influenced via uploading manipulated trust views.

Calculation concerns the algorithms that derive trust from the input information.
In CA-TMS, these algorithms are deterministic and executed either locally or, con-
cerning a recommendation, centrally by the reputation system. Thus, as the system
of the relying entity and the reputation system are assumed not to be compromised,
an attacker cannot influence the calculation other than by injecting manipulated input
data.

Finally, dissemination concerns all transfer of data between system components.
As communication between user systems and the reputation system as well as be-
tween different service providers is secure, the attacker cannot manipulate the com-
munication. He may indeed block or disturb the communication and thus, perform a
denial-of-service (DoS) attack on the reputation system. In this case, CA-TMS falls
back on local information. As a validated certification path is always checked by
validation services before the reputation system is queried, a DoS does not introduce
a direct threat. As DoS attacks can be detected, the blocked information can be re-
sent later. DoS attacks are therefore of limited relevance for security and thus not
considered further.

6.4.1. Attack vectors
Following from the analysis, the possibilities to manipulate and influence the trust

evaluation of CA-TMS under the given assumptions is limited to injecting false input
data. We now explain the attack vectors an attacker might use to inject false data
either directly into the entity’s trust view or indirectly via the reputation system, and
explain the respective protection mechanisms. We also discuss social engineering
which may serve as a auxiliary attack vector to support other attacks.

Certification path manipulation. To directly inject information into the trust view,
the attacker needs to inject manipulated certification paths into the target entity’s
communication during the connection establishment. In order to inject positive ex-
periences (for a CA of which the attacker controls the key), he must inject the CA’s
certificate into certification paths such that trust validation succeeds. Note that vali-
dation services could also provide false information. However, this was excluded for
the analysis as the security of validation services is outside the scope of this paper.

To inject the CA’s certificate, the attacker can either replace the whole path, by
generating a new certificate for the web service with the CA’s key, or by issuing a
certificate for one of the intermediary CAs contained in the original path sent by the

952 J. Braun et al. / CA trust management for the Web PKI

web server. Therefore, this certificate replaces only the part from the Root CA to the
newly issued Sub CA’s certificate. In both cases, standard path validation succeeds.

The first option is exactly from what CA-TMS shall protect and was discussed in
Section 6.3. The attacker then may only succeed if the compromised CA is already
trusted by the relying entity. This means that this attack vector may only be used
to increase the trust in CAs that are already trusted. The second path manipulation
option will not be detected as the end entity certificate remains unchanged. Yet, this
way the attacker can only increase the corresponding issuer trust for issuing CA
certificates.

Injecting forged certificates in order to generate negative experiences is impossible
for CAs the attacker does not control, as he cannot generate certificates in the name
of CAs of which he cannot access the keys.

Sybil attacks. When targeting the reputation system, the attacker needs to inject
manipulated trust views into the database of the reputation system to finally manipu-
late the recommendations. This is done using the scheme of a Sybil attack. Perform-
ing a Sybil attack means the attacker forges or controls a large amount of entities
and acts on behalf of them. Also, a large amount of entities that act in a coordinated
manner when uploading manipulated trust views resembles a Sybil attack. Whereas
a single entity acting maliciously only has limited influence, as its opinions would
be overruled by a majority of honest entities.

Whenever an attacker is able to register itself with several forged identities at the
reputation system (or the attacker can control the systems of already registered enti-
ties), the attacker can upload manipulated trust views in their name to the reputation
system. As the reputation system generates its opinions based on the trust views of
its users, the attacker can influence the recommendations either negatively or posi-
tively by adding a suitable trust assessment for the targeted CA to the trust views he
controls. If the attacker controls a large enough fraction of a reputation system’s user
base, the attacker effectively controls the content of the recommendations generated
by the reputation system.

There are several defense mechanisms to prevent Sybil attacks. Countering Sybil
attacks usually includes making the registration of new users costly to prevent attack-
ers from generating and registering fake identities. Popular mechanisms include user
authentication upon registration, a registration fee or computationally complex regis-
tration processes, e.g., CAPTCHAs. As our reputation system requires a registration
of its users anyway, these are adequate measures.

Furthermore, the selection strategy for the computation of recommendations using
similarity weighting (cf. Section 5.3.1) provides protection against Sybil attacks (cf.
[56] for a similar approach). When the reputation system is requested to calculate a
recommendation on the issuer trust for a CA, only those trust views are selected that
are similar to the one of the requesting entity. However, the requesting entity’s trust
view in general is unknown to the attacker. A trust view uploaded by an attacker is
only by chance considered during the calculation. This makes it difficult for an at-
tacker to generate and submit trust views to manipulate the recommendation without

J. Braun et al. / CA trust management for the Web PKI 953

knowing the target entities trust view. The trust view is only communicated over se-
cured connections. Thus, gathering information about trust views requires observing
the TLS traffic of the target entity or sophisticated social engineering attacks. Even
if the attacker manages to tailor the manipulated trust views for one target entity, the
overall success is limited.

Moreover, proactive techniques can be implemented to protect reputation systems
against Sybil attacks. The upload of a large amount of trust views within a certain
time interval or sudden changes of a CA’s issuer trust within trust views can be sta-
tistically detected as shown in [61]. Besides that, Sybil attacks can be lessened when
the reputation system considers only trust views or trust assessments of a certain
minimal age. The presented techniques significantly increase the costs of an attack,
as they increase the time span during which the attack is to be executed. This helps
to bridge the gray period and after the associated certificate has been revoked or
blacklisted, the attack is anyway without effect.

Social engineering. In general, social engineering means an attacker tries to manip-
ulate other entities such that they behave differently than they would in the absence
of a social engineering attacker.

The direct influence of social engineering attacks on the reputation of a CA is
limited, as relying entities do not manually set the key legitimacy or issuer trust as-
signed to a CA. In CA-TMS, user involvement is minimal. Relying entities only have
to make their own decision on the acceptance of a certificate if their trust view does
not contain sufficient information and if all queried validation services respond with
unknown. However, if a relying entity manually accepts a certificate, no experiences
are collected for the CAs. The only possibility to directly influence the trust view
of a relying entity is to lead the relying entity to web pages whose certificates were
legitimately signed by the CA controlled by the attacker. This can either introduce
additional CAs into the trust view or result in the (legitimate) collection of additional
experiences for a CA.

Another possibility for an attacker is to influence a relying entity to setting the
required security level l to a low value, which would increase the probability for
the attacker’s certificate to be accepted. Therefore, CA-TMS should recommend rea-
sonable values and warn the user when changing the security level. Furthermore,
automatic detection of the required security level according to a specific rule set in
conjunction with the content of a web page is an interesting future research direction.

Additionally, an attacker could try to gain information about the user’s browsing
behavior, for example by interviewing the user to find out some of his interests. This
in fact would help the attacker during a Sybil attack to generate trust views similar
to the one of the relying entity. Anyway, these sorts of social engineering attacks are
limited to single relying entities and require a lot of preparation.

6.4.2. Attacker goals and defenses
The previous subsection discussed the attack vectors that an attacker can use to

manipulate trust views. In this section, specific attacker goals, their possible realiza-
tion, and how they apply to CA-TMS are discussed.

954 J. Braun et al. / CA trust management for the Web PKI

Self-promoting. Self-promoting describes actions of the attacker towards making
him or a CA under his control appear more trustworthy. This in fact is the attacker
goal with highest relevance as it increases the success probability of the attacker
when finally issuing malicious certificates to attack the secured communication.

A self-promoting attacker can approach his goal either by injecting manipulated
certification paths or by a Sybil attack on the reputation system. As discussed in Sec-
tion 6.4.1, certification path manipulation only works for the issuer trust concerning
the issuance of CA certificates. This might subsequently allow an attacker to issue
CA certificates for which the key legitimacy is high. However, he cannot influence
the issuer trust concerning the issuance of end entity certificates, which in fact is
required to benefit from the attack. This is only possible for CAs that are already
trusted making the attack needless.

To use a Sybil attack, the attacker must overcome the above described defense
mechanisms. Additionally, as the reputation system is only queried when a trust as-
sessment is newly initialized, the CA controlled by the attacker must be new to the
targeted entity. On the other hand, due to the use of validation services, the CA must
be legitimately observed first, which in fact can hardly be steered by the attacker for
multiple entities. Even for a single entity, this requires social engineering coordinated
with the Sybil attack and perfect timing.

Slandering. In opposition to a self-promoting attack, slandering aims at lowering
the reputation of a specific CA. As the attacker does not directly benefit from de-
creased trust in CAs, he might only aim at disturbing the proper functioning of CA-
TMS. As described in Section 6.4.1, an attacker cannot inject malicious certificates
on behalf of CAs he does not control, thus he cannot utilize the attack vector of
manipulated certification paths to inject negative experiences.

The only possibility is to use a Sybil attack on the reputation system. However,
he must overcome the defense mechanisms and may only influence newly initial-
ized trust assessments on the relying entity’s side. During the bootstrapping of a
trust view, this has a certain impact, but afterward, the attack is of limited relevance.
Furthermore, the attack in the worst case increases the number of required reconfir-
mations. In this case, local experiences are collected, which leads to a fade out of the
influence of the manipulated recommendation.

Whitewashing. Whitewashing describes the approach of an entity with negative
reputation to re-appear under a new, clean identity.

An attacker that controls a CA with negative reputation might want to give this
CA a new identity to issue certificates that will appear trustworthy. However, white-
washing does not apply to CA-TMS. Newly observed certificates are not automati-
cally trusted and thus, an attacker gains no advantage from whitewashing. Moreover,
whitewashing is prevented by standard PKI mechanisms as for a CA to re-appear un-
der a new identity, its new CA certificate either needs to be added to the root stores
or needs to be certified by some CA which is already part of the Web PKI.

J. Braun et al. / CA trust management for the Web PKI 955

7. Conclusion and future work

We have presented CA-TMS, a user-centric CA trust management system for the
Web PKI based on trust views. The trust view maintains a minimal set of trusted CAs
and furthermore assigns different ratings to each CA, such that trust decisions can be
made depending on the context. Thus, the risk of relying on a malicious certificate
can be governed by the assignment of adequate security levels to the applications.
This enables more restrictive trust decisions for critical applications like e-banking,
where security is more important and less restrictive rules for less security critical
applications. These rules can be adapted to the relying entity’s risk profile.

By the local and user-centric management of trusted CAs instead of relying on
global trust settings, the attack surface of the Web PKI is reduced. We have discussed
the different parameters of CA-TMS and presented a suitable parameter setting. Our
evaluation based on authentic browsing histories shows that CA-TMS allows a re-
duction of the attack surface to less than 5% of its original size. This prevents attacks
induced by CA failures and compromises. Attacks employing CA keys not contained
in the relying entity’s trust view are detected. The security analysis shows, that the
majority of attacks based on CA failures and compromises can be prevented. At-
tacks against the trust management itself have been shown to require sophisticated
planning on the attackers side, while the attacker only has incomplete information
to base his attacks on. Furthermore, attacks need to be mounted over a certain time
period. This has two effects. The probability of detection is increased and second,
the increased attack complexity helps to bridge the gray period until a compromise
is detected.

Notably, the core functionality of CA-TMS can be implemented on top of the
existing infrastructure without its alteration and can be implemented locally on the
relying entity’s side. Solely the optional reputation system requires additional ser-
vice providers. For the reconfirmation of certificates, CA-TMS falls back on notarial
solutions. Our performance evaluation shows, that the frequency of occurrence of
this fall back mechanism fades out the more local experiences are collected. This
continuously reduces the overhead and possible delays. For entities that only collect
few own experiences, the reputation system is an important addition, while certificate
pinning prevents recurring reconfirmations.

A specific strength of CA-TMS is its extensibility which allows the addition of
more information sources and leaves room for further improvements of the recon-
firmation and data collection processes. To conclude, we state that CA-TMS does
not open additional vulnerabilities because it is designed as an addition and not as
a replacement of the Web PKI. This renders the system ready to use. The experi-
mental use of the system can then also help to collect data and further investigate on
improvements and optimal or alternative parameter settings.

Ongoing and future research. We are currently implementing CA-TMS. The im-
plementation will allow us to quantify the overhead and delays introduced by the

956 J. Braun et al. / CA trust management for the Web PKI

additional trust computation and certificate checks. The minimization of delays dur-
ing page loading is long known to be an important success factor for acceptance [1].
Besides that we will carry out user studies to achieve a good usability. A detailed
analysis using a larger set of trust views accompanied by long term field tests will
most likely reveal options for fine-tuning the system parameters, especially regarding
the reputation system.

Regarding the extensibility of our system, we will investigate in the addition of
further information sources. A promising extension might be combining local infor-
mation with expert recommendations based on different indicators of trustworthiness
as, e.g., derived from the evaluation of CA policies [58]. Furthermore, we aim at the
flexible integration of arbitrary validations services, requiring methodologies to eval-
uate and combine different response types. Also, the incorporation of complementary
approaches like CAge [38] is promising to further reduce the attack surface. On the
other hand, the development of feedback and reporting mechanisms when anomalies
are detected yields potential for future research.

Besides careful design in terms of security and robustness of our system, the pre-
vention of false or maliciously inserted trust views into the reputation system is still
an open field of research. Also, measures for privacy protection of the users need
further research. Promising directions involve homomorphic cryptography and zero
knowledge proofs.

References

[1] Akamai – Press Release, Akamai Reveals 2 Seconds as the New Threshold of Acceptability
for eCommerce Web Page Response Times, 2009, available at: http://www.akamai.com/html/
about/press/releases/2009/press_091409.html, visited March 2014.

[2] M. Blaze, J. Feigenbaum and J. Lacy, Decentralized trust management, in: Proceedings of the 1996
IEEE Symposium on Security and Privacy, IEEE Computer Society Press, 1996, pp. 164–173.

[3] J. Braun and G. Rynkowski, The potential of an individualized set of trusted CAs: Defending against
CA failures in the web PKI, in: 2013 International Conference on Social Computing (SocialCom),
September 2013, pp. 600–605, extended version available at: http://eprint.iacr.org/2013/275.

[4] J. Braun, F. Volk, J. Buchmann and M. Mühlhäuser, Trust views for the web PKI, in: Public Key In-
frastructures, Services and Applications, S. Katsikas and I. Agudo, eds, Lecture Notes in Computer
Science, Vol. 8341, Springer, Berlin/Heidelberg, 2014, pp. 134–151.

[5] C. Burnett, T.J. Normal and K. Sycara, Bootstrapping trust evaluations through stereotypes, in:
Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems,
AAMAS’10, Vol. 1, International Foundation for Autonomous Agents and Multiagent Systems,
2010, pp. 241–248.

[6] Carnegie Mellon University, Perspectives project, available at: http://perspectives-project.org//, vis-
ited July 2012.

[7] D.W. Chadwick and A. Basden, Evaluating trust in a public key certification authority, Computers
& Security 20(7) (2001), 592–611.

[8] W.T.H. Choice, SSL/TLS in a post-prism era, available at: https://wiki.thc.org/ssl#OtherIncidents,
visited December 2013.

[9] Comodo, The recent RA compromise, http://blogs.comodo.com/it-security/data-security/the-recent-
ra-compromise/, visited November 2011.

J. Braun et al. / CA trust management for the Web PKI 957

[10] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley and W. Polk, RFC 5280 – Internet
X.509 public key infrastructure certificate and Certificate Revocation List (CRL) profile, RFC 5280
(Proposed Standard), 2008.

[11] M.M. Deza and E. Deza, Encyclopedia of Distances, Springer, Berlin/Heidelberg, 2009.
[12] T. Dierks and E. Rescorla, RFC 5246 – The Transport Layer Security (TLS) Protocol Version 1.2,

RFC 5246 (Proposed Standard), 2008.
[13] Z. Durumeric, J. Kasten, M. Bailey and J.A. Halderman, Analysis of the HTTPS certificate ecosys-

tem, in: Proc. 13th Internet Measurement Conference (IMC’13), Barcelona, Spain, ACM, New York,
NY, USA, 2013, pp. 291–304.

[14] P. Eckersley and J. Burns, The (decentralized) SSL observatory, Invited talk at 20th USENIX Secu-
rity Symposium, August 2011.

[15] C. Ellison and B. Schneier, Ten risks of PKI: What you’re not being told about public key infras-
tructure, Computer Security Journal 16(1) (2000), 1–7.

[16] C. Evans, C. Palmer and R. Sleevi, Public key pinning extension for HTTP, Internet-Draft, 2013.
[17] FOX IT, Black Tulip – Report of the investigation into the DigiNotar Certificate Authority breach,

2012, available at: http://www.rijksoverheid.nl/documenten-en-publicaties/rapporten/2012/08/13/
black-tulip-update.html.

[18] D. Gambetta, Can we trust trust?, in: Trust: Making and Breaking Cooperative Relations, Blackwell,
Basil, 1988, pp. 213–237.

[19] P. Gutmann, PKI: It’s not dead, just resting, Computer 35(8) (2002), 41–49.
[20] P. Gutmann, Engineering security, draft, 2013, book draft available at: http://www.cs.auckland.

ac.nz/˜pgut001/pubs/book.pdf.
[21] h-online, Flame – oversights and expertise made for windows update worst case scenario, available

at: http://h-online.com/-1614234, visited July 2012.
[22] h-online, Attack on Israeli certificate authority, available at: http://h-online.com/-1264008, visited

November 2011.
[23] S.M. Habib, S. Ries, S. Hauke and M. Mühlhäuser, Fusion of opinions under uncertainty and con-

flict – application to trust assessment for cloud marketplaces, in: TrustCom 2012, 2012, pp. 109–118.
[24] J.A. Hartigan and M.A. Wong, Algorithm as 136: A k-means clustering algorithm, Journal of the

Royal Statistical Society Series C (Applied Statistics) 28(1) (1979), 100–108.
[25] C. Herley, So long, and no thanks for the externalities: the rational rejection of security advice

by users, in: Proceedings of the 2009 Workshop on New Security Paradigms Workshop, NSPW’09,
ACM, New York, NY, USA, 2009, pp. 133–144.

[26] K. Hoffman, D. Zage and C. Nita-Rotaru, A survey of attack and defense techniques for reputation
systems, ACM Computing Surveys (CSUR) 42(1) (2009), 1–31.

[27] P. Hoffman and J. Schlyter, RFC 6698 – The DNS-Based Authentication of Named Entities (DANE)
Transport Layer Security (TLS) Protocol, TLSA, RFC 6698 (Proposed Standard), 2012.

[28] R. Holz, L. Braun, N. Kammenhuber and G. Carle, The SSL landscape: a thorough analysis of the
x.509 PKI using active and passive measurements, in: Proceedings of the 2011 ACM SIGCOMM
Conference on Internet Measurement Conference, IMC’11, ACM, New York, NY, USA, 2011,
pp. 427–444.

[29] J. Huang and D. Nicol, A calculus of trust and its application to PKI and identity management, in:
IDTrust’09, ACM, New York, NY, USA, 2009, pp. 23–37.

[30] ICSI, The ICSI Certificate Notary, 2013, available at: http://notary.icsi.berkeley.edu/.
[31] ImperialViolet, Revocation doesn’t work, available at: https://www.imperialviolet.org/2011/03/18/

revocation.html, visited December 2013.
[32] A. Jain, Data clustering: 50 years beyond k-means, Pattern Recognition Letters 31(8) (2010), 651–

666.
[33] A. Jøsang, An algebra for assessing trust in certification chains, in: Proceedings of the Network and

Distributed Systems Security Symposium (NDSS’99), The Internet Society, 1999.

958 J. Braun et al. / CA trust management for the Web PKI

[34] A. Jøsang, A logic for uncertain probabilities, International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 9 (2001), 279–311.

[35] A. Jøsang, Fission of opinions in subjective logic, in: 12th International Conference on Information
Fusion (FUSION ’09), IEEE, 2009, pp. 1911–1918.

[36] A. Jøsang and R. Ismail, The beta reputation system, in: Proceedings of the 15th Bled Electronic
Commerce Conference, 2002.

[37] A. Jøsang, R. Ismail and C. Boyd, A survey of trust and reputation systems for online service pro-
vision, Decision Support Systems 43 (2007), 618–644.

[38] J. Kasten, E. Wustrow and J. Halderman, Cage: Taming certificate authorities by inferring restricted
scopes, in: Financial Cryptography and Data Security, A.-R. Sadeghi, ed., Lecture Notes in Com-
puter Science, Vol. 7859, Springer, Berlin/Heidelberg, 2013, pp. 329–337.

[39] A. Langley, Further improving digital certificate security, available at: http://googleonlinesecurity.
blogspot.de/2013/12/further-improving-digital-certificate.html, visited December 2013.

[40] B. Laurie, A. Langley and E. Kasper, RFC 6962 – Certificate Transparency, RFC 6962 (Experimen-
tal), 2013.

[41] S. Magin and S. Hauke, Towards engineering trust systems: Template-based, component-oriented
assembly, in: Proceedings of the Eleventh Annual International Conference on Privacy, Security
and Trust (PST2013), 2013.

[42] M. Marlinspike, Convergence, available at: http://convergence.io/, visited July 2012.
[43] M.-E. Maurer, A.D. Luca and S. Kempe, Using data type based security alert dialogs to raise online

security awareness, in: SOUPS, 2011, p. 2.
[44] U.M. Maurer, Modelling a public-key infrastructure, in: Proceedings of the 4th European Sympo-

sium on Research in Computer Security: Computer Security, ESORICS’96, Springer, 1996, pp. 325–
350.

[45] McAfee, SiteAdvisor, available at: http://www.siteadvisor.com/, visited March 2014.
[46] D.H. McKnight and N.L. Chervany, The meanings of trust, Technical report, University of Min-

nesota, 1996.
[47] Microsoft Security Response Center, Security Advisory 2798897, 2012, available at: http://technet.

microsoft.com/en-us/security/advisory/2798897.
[48] Norton, Safe Web, available at: https://safeweb.norton.com/, visited March 2014.
[49] PSYC, Certificate Patrol, available at: http://patrol.psyced.org/.
[50] S. Ries, Extending Bayesian trust models regarding context-dependence and user friendly represen-

tation, in: Proceedings of the 2009 ACM Symposium on Applied Computing, ACM, New York, NY,
USA, 2009, pp. 1294–1301.

[51] S. Ries, S.M. Habib, M. Mühlhäuser and V. Varadharajan, Certainlogic: A logic for modeling trust
and uncertainty (short paper), in: TRUST 2011, Springer, 2011, pp. 254–261.

[52] S. Ruohomaa, L. Kutvonen and E. Koutrouli, Reputation management survey, in: Seventh Interna-
tional Conference on Availability, Reliability and Security (ARES 2007), 2007, pp. 103–111.

[53] C. Soghoian and S. Stamm, Certified lies: Detecting and defeating government interception attacks
against SSL, Technical report, Indiana University Bloomington – Center for Applied Cybersecurity
Research, 2010.

[54] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri and L.F. Cranor, Crying wolf: An empirical study
of SSL warning effectiveness, in: Proceedings of the 18th Conference on USENIX Security Sympo-
sium, 2009, available at: http://static.usenix.org/event/sec09/tech/full_papers/sunshine.pdf.

[55] The EFF SSL observatory, available at: https://www.eff.org/observatory.
[56] K. Walsh and E.G. Sirer, Experience with an object reputation system for peer-to-peer filesharing,

in: Proceedings of the 3rd Conference on Networked Systems Design & Implementation, NSDI’06,
Vol. 3, USENIX Association, Berkeley, CA, USA, 2006, p. 1.

[57] A.S. Wazan, R. Laborde, F. Barrère and A. Benzekri, A formal model of trust for calculating the
quality of x.509 certificate, Security and Communication Networks 4(6) (2011), 651–665.

J. Braun et al. / CA trust management for the Web PKI 959

[58] A.S. Wazan, R. Laborde, F. Barrère and A. Benzekri, The x.509 trust model needs a technical and
legal expert, in: ICC, 2012, pp. 6895–6900.

[59] G.A. Weaver, S. Rea and S.W. Smith, A computational framework for certificate policy operations,
in: Public Key Infrastructures, Services and Applications, F. Martinelli and B. Preneel, eds, Lecture
Notes in Computer Science, Vol. 6391, Springer, Berlin/Heidelberg, 2010, pp. 17–33.

[60] WOT, Know which websites to trust, available at: https://www.mywot.com/, visited March 2014.
[61] Y. Yang, Y. Sun, S. Kay and Q. Yang, Securing rating aggregation systems using statistical detectors

and trust, IEEE Transactions on Information Forensics and Security 4(4) (2009), 883–898.
[62] Y. Zhang, J.I. Hong and L.F. Cranor, Cantina: a content-based approach to detecting phishing web

sites, in: WWW ’07: Proceedings of the 16th International Conference on World Wide Web, ACM,
New York, NY, USA, 2007, pp. 639–648.

[63] P.R. Zimmermann, The official PGP user’s guide, MIT Press, Cambridge, MA, USA, 1995.

