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Abstract. Robotic and ambient intelligent environments are much more demanding regarding the knowledge a robot needs to 

have. A skilled robot performs human-scale manipulation tasks, interacts with a variety of objects, understands instructions 

given by humans and most importantly, requires the capability of interpreting ubiquitous resources and assembling them into a 

complex plan. In this paper, a novel Knowledge-enable Decision Making Framework (KDMF) is proposed for Component-

Based Robotic System (CBRS). We exploit that the use of domain knowledge is pivotal to endow robots with higher degrees 

of autonomy and intelligence in CBRS. Ontology knowledge about classes, properties, relations is organized in OWL based 

conceptual map, which allows automated inference to derive new pieces of information. Knowledge about tasks is specified in 

a tree data structure, and knowledge about components’ functions is formulated by a specific type of service specification pro-

file. Using the knowledge representation, a task-oriented decision making method is proposed that integrates knowledge infe-

rence and service components utilization. In practical applications of ambient and robotic assisted living, robot’s plans gener-

ated by the decision making software are based on the knowledge of components, rather than particular device instances, 

which improves the reusability and flexibility of the system. Experimental results validate the effectiveness of the proposed 

method. 
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1. Introduction 

In robotic and ambient assisted living applica-

tions [1–4], the ever increasing level of system com-

plexity and autonomy is naturally demanding a more 

powerful system architecture that enables automatic 

utilization of ubiquitous services. Taking the hetero-

geneity of resources into account, Component-

Based [5–8] robotic system (CBRS) approach pro-

vides a solution that shifts the emphasis from hard-

ware-specific software programming to composing 

application systems from a mixture of components. 

Nowadays, middleware-based component plat-

forms [8,9], such as ORCA [10], Miro [11], RT-

Middleware [12], OPRoS [13], etc., have been intro-

duced in a wide literature.  

Component-based robotic system needs to make 

decisions in robot’s perspective, about the selection 

and utilization of ambient services [14]. For example, 

in order to perform a daily object delivery task, a 

robot has to utilize a group of useful devices for per-

ception and manipulation, such as embedded sensors 

(e.g., camera, sonar, and laser), actuators (e.g., 

wheels, gripper, and arm) and other surrounding or 

network resources. Unlike traditional robotic systems 

in which most tasks are executed according to hand-

coded programs, the reusability nature of CBRS re-

quires a new service computing discipline [15] that 

ensures reusable decision making method as well as a 

new framework that allows flexible ambient service 

utilization. Another important problem is that the 

social nature of robots demands not only interpreting 

general control commands that are explicitly de-
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scribed, but also the capability of inferring implicit 

information during task execution [16]. For example, 

when receiving the user’s request “I need some wa-

ter”, robots usually need to infer and maintain a be-

lief state about the person’s intention, preference, 

object properties, place properties and other context 

information. 

Therefore, the decision making of CBRS is critical 

for allowing ambient service utilization. We believe 

that the growing tendency to introduce high-level 

semantic knowledge into robotic systems envisions a 

world of knowledge-enable CBRS. Knowledge-

enabled decision making improves the composability 

and reusability of CBRS. Composability is facilitated 

since the robot’s control program does not need to be 

changed but the extended knowledge will introduce 

more solutions [16]. Reusability is improved because 

knowledge that has been described once can now be 

used multiple times for recognizing objects, inferring 

facts or parametrizing actions. 

In traditional robotic systems, knowledge is usual-

ly hidden or implicitly described in terms of if-then 

statements. This makes it hard to re-use the know-

ledge and to apply it in different circumstances. A 

formal knowledge representation is needed to help 

the robot to make these aspects explicit and to in-

crease the re-usability and flexibility. Formal me-

thods such as Calculus of Communicating Systems 

(CCS) [17], Communication Sequential Processes 

(CSP) [18], PI-Calculus [19], Mobile Ambients [20], 

etc, are process algebra methods that are used to de-

scribe and theorise about concurrent systems. Of the 

formal methods, Mobile Ambients (MA) and their 

variants have been frequently applied to ubiquitous 

and pervasive systems, concerning the issues of  

requirement specification, runtime verification, 

etc. [21,22]. Although Mobile Ambients and their 

variants have inspired the applications in pervasive 

systems, they have not yet been adopted by the robot-

ic society. One major concern is that most existing 

network-enabled autonomous robots, rather than 

those Web based tele-operation systems, are still in 

the early days of their network structure, i.e., distri-

buted devices and resources are connected and ma-

naged via Local Area Networks (LANs). Though 

efforts have been made on Web tools for ro-

bots [23,24] and learning from Web [25], they are 

still far from the full capability of freely utilizing all 

kinds of Internet resources as humans do. Meanwhile, 

Mobile Ambients are designed for the mobile compu-

tation over the much larger scale of World-Wide 

Web and handling the administrative domains parti-

tioned by firewalls [20]. Another possible reason that 

Mobile Ambients are not used in our CBRS is in the 

mobility per se. An ambient is a bounded placed 

where computation happens, so Mobile Ambients 

allow moving or nesting ambients. In contrast, the 

computation capability of a component is tightly 

fixed to a specific physical device in CBRS. Thus 

CBRS is typically featured by neither the property of 

moving computation, nor the boundaries of compo-

nents.  

Constructing a knowledge base for robot applica-

tion is a challenging task since robotic applications 

have very specific demands. Generally, knowledge is 

usually encoded in the task planner in a suitable way. 

These include causal knowledge, that is knowledge 

about the effects of the robot’s actions, and world 

knowledge, that is knowledge about the objects in the 

world, their properties and their relations. Related 

work on knowledge based robotics comprises three 

directions: robot description languages, semantic 

sensor specifications and semantic maps. An example 

of robot description is the Unified Robot Description 

Format (URDF) [27]. Kunze [28] proposes Semantic 

Robot Description Languages (SRDL), which im-

proves URDF by explicitly representing the compo-

nents of URDF descriptions in a symbolic knowledge 

base containing encyclopedic knowledge about ro-

bots and their components. Semantic sensor specifi-

cation methods are mostly based on OWL ontolo-

gy [29–32]. For example, Compton [33] proposes an 

OWL ontology that focuses on the composition of 

sensors. Semantic maps encode knowledge about 

robot workspace and the current state of the world. 

Galindo [34] proposes a specific type of semantic 

maps, which integrates hierarchical spatial informa-

tion and semantic knowledge. Such semantic maps 

have two obvious benefits: extending the capabilities 

of the planner by reasoning about semantic informa-

tion, and improving the planning efficiency in large 

domains. 

In contrast to the traditional robotic system, CBRS 

requires not only knowledge representation of objects, 

relations and actions, but also the semantic properties 

of all types of components. Recently, Ontological 

knowledge is increasingly being used in distributed 

systems in order to allow automatic re-configuration 

in the areas of flexible automation and of ubiquitous 

robotics [16]. Ontological knowledge is also used 

recently to improve the inter-operability of robotic 

components developed for different systems. Panger-

cic [35]
 investigates semantic object maps (SOM+), 

which are a subcategory of maps that store informa-

tion about the task-relevant objects in the environ-

ment, possibly including geometric 3D models of  
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the objects, their position and orientation, their ap-

pearance, and object category. In addition, ambient 

service resources, which are packaged as ubiquitous 

components, are needed for on-line operation of ro-

bots. They should also be assembled into plans in 

order to perform complex tasks. Hence the compo-

nent-based robotic system also demands suitable me-

chanism that interprets knowledge about services and 

selects useful services according to task requirements. 

So in this paper we choose Description Logics 

(DL) as formalism to represent robot’s knowledge in 

component-based robotic system. Description logics 

are a family of logical languages. They are expres-

sive, capable of describing relational knowledge and 

provide formal semantics that allow to draw conclu-

sions from the available knowledge [26]. We build a 

Knowledge-enabled Decision Making Framework 

(KDMF) for CBRS. In particular, Ontology know-

ledge about classes, properties, relations are orga-

nized in a OWL based conceptual map, which can be 

further used for automated inference in order to de-

rive new facts by combining different pieces of in-

formation. Knowledge about tasks is specified in a 

tree data structure for decomposition, and knowledge 

about components’ functions is formulated by a spe-

cific type of service specification profile. Such know-

ledge representation provides models of robots and 

ambient services, respectively, and then software 

components can be designed and implemented based 

on the models rather than particular robot instance. 

The knowledge-enabled decision making of CBRS 

contains two major aspects: knowledge inference and 

task-oriented service component utilization. Firstly, 

since OWL is a file format for storing and exchang-

ing description logic formulas, the formally 

represented knowledge allows drawing conclusions 

using deterministic logical inference. Secondly, a 

search based service composition method is proposed 

using knowledge description of service components. 

2. A brief introduction of component-based 

robotic system 

The Component-Based Robotic System (CBRS) 

contains service providers (resources) that advertise 

Web Services at one end, and service requesters (ro-

bots) at the other end. Figure 1 shows the service 

discovery framework of CBRS. The resources usual-

ly represent sensors, actuators and other devices in 

robotic system. Atomic components are distributed 

and reusable software modules that run loosely 

coupled and independently. They make the heteroge-

nety of devices transparent to upper-level applica-

tions using an abstract description of services, inputs, 

outputs, preconditions, and effects (IOPEs) as well as 

the non-functional properties (NFPs), according to 

the defined domain ontology [14].  
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Fig. 1. Knowledge-enable decision making framework for CBRS. 
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In the CBRS architecture, the service repository 

aggregates services of atomic components. When a 

request from a robot is initiated, the requirement is 

formulated by the requirement formulation module. 

Requirement is specified by a six-tuple similar to the 

service model as described our previous work [36]. 

The candidate services in the repository are matched 

with the formulated requirement according to the 

IOPE parameters. In the situation that service re-

sources are in different runtime states, or providing 

different qualities of services, at a specific time, the 

service negotiation module is invoked to interact with 

the candidate providers to access dynamic informa-

tion, if any. The service negotiation module accesses 

the Finite State Machine (FSM) of the dynamic re-

sources and obtains their states for computing state 

dependent cost consumption, as described in [36]. 

Service selection and composition is then carried out, 

according to the requester’s preferences and/or based 

on NFP considerations. Finally, the selected service 

is invoked by the robot and the results are returned.  

An atomic component provides a specific service. 

The structure of an atomic component contains four 

major parts: basic functional module, service 

processing flow, component execution engine and 

service specification profile. The basic functional 

module implements functions and packages them 

into libraries. The service processing flow handles 

three types of information (method invocation, data, 

and events) and provides corresponding ports as in-

terface for inter-component communication. The 

component execution engine provides lifecycle man-

agement, fault tolerance and other important modules. 

The service specification profile specifies the func-

tion of the service resource using a Service Interface 

Definition Document and a Service description doc-

ument, as will be explained in Section 3.2. In general, 

an atomic component can be illustrated in Fig. 2 as a 

block with attributes and different types of interface. 

Figure 2 shows an example of assembling atomic 

components according to their source-sink corres-

pondences and connecting each pair of “matched” 

components. A pair of matched and connected com-

ponents communicates with each other through their 

service port, data port, or event port. A chain of com-

ponents connected in sequence forms a plan to be 

invoked by robots. 

3. Knowledge representation and inference  

for CBRS 

In order to match between robots and actions, the 

concept of “capabilities” is introduced. An action 

depends on a set of capabilities and a set of compo-

nents equips the robot with a certain capability. A 

capability is defined as a class in capability taxono-

my and its properties are specified as will be ex-

plained in this section. 

To store or query knowledge, existing description 

logic reasoners, such as Racer [37], Pellet [38] and 

Hermit [39] are not well-suited to robotics applica-

tions. One major reason is that robot’s knowledge is 

not static. Existing description logic reasoners can be 

costly to re-classify the complete knowledge base 

whenever a robot acquires new knowledge from new 

senor data or human’s teaching and updates its know-

ledge base.  

So the system uses the Web Ontology Language 

OWL for modeling knowledge about conceptual map 
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Fig. 2. Illustration of assembling components. 
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as well as robot task. The Conceptual Map integrates 

ontology knowledge of facts and semantic know-

ledge of ambient services, as will be described in 

Sections 3.1 and 3.2. Meanwhile, logical program-

ming language PROLOG [40] is employed for im-

plementing the inference algorithms. OWL and 

PROLOG interact in a rather shallow way: know-

ledge is internally stored in terms of PROLOG predi-

cates and implemented by a mapping from the OWL 

properties onto the first-order expressions in 

PROLOG [26]. For example, one class is assumed to 

be a sub-class of another one, so that the classifica-

tion of instances can be performed by applying stan-

dard PROLOG inference methods. In this system, 

Amzi!, a prolog inference engine [41] is used to im-

plement the inference predicates for reasoning about 

OWL classes, properties, restrictions and individuals.  

3.1. Conceptual knowledge representation and 

parsing 

Conceptual knowledge is used to specify know-

ledge about robots, sensors, actuators and others. In 

order to support knowledge storing and parsing, the 

static pieces of knowledge in the conceptual map are 

stored in OWL files using the standardized 

RDF/XML syntax format [42]. The implementation 

is based on the PROLOG Semantic Web Library for 

storing RDF triples and the OWL parser library for 

reasoning based on these representations. The repre-

sentation is extended with predicates that compute 

complex relations by combing single pieces of know-

ledge into hierarchies of classes and properties. This 

extension enables the more advanced features of 

OWL such as hierarchies of class and properties. 

Figure 3 shows an example of class hierarchy which 

describes spatial and object knowledge required in a 

home-care application context.  

� Classes and properties 

All classes are organized in a taxonomic structure, 

from general classes like Object to specific ones like 

Bottle. The inherit property of an object class to its 

super-classes is reflected by “is-a” relations that use 

multiple inheritance. The location property is reflect-

ed by “has-a” relations that describe the fact that 

certain objects are often located at certain places. The 

taxonomy is able to describe object properties, so that 

knowledge about objects can be represented at differ-

ent abstraction levels. Other properties of objects are 

also described by the RDF/XML syntax format. As 

an example of object properties shown in Fig. 4, an 

object has the properties of location, label, place, 

manipulation, features, affiliation, name, etc. These 

properties describe knowledge as concise and specif-

ic as possible. Note that although Figs 3 and 4 only 

illustrate part of important classes and properties, 

other parts of the ontology are also organized by sim-

ilar representations. 

In OWL individuals and their properties can be 

queried by using query predicates such as 

rdf(?Subj, ?Pred, ?Obj) to inspect the descriptions of 

classes and properties in the PROLOG database. For 

example, rdf(?S, ?P, ?O) returns only exactly match-

ing triples, owl_has(?S, ?P, ?O) returns the OWL 

inference of “has-a” properties. Exploiting the hierar-

chical structure of classes enables those queries with 

generic relations to return all and more concise rela-

tions asserted for any of the sub-classes. 

 

Fig. 3. Example of class relation and spatial relation. 
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� Qualitative spatial relations 

Apart from metric positions, objects are usually al-

so described by qualitative spatial relations to other 

objects. Such qualitative spatial relations are in ac-

cordance with the semantic knowledge of human. In 

this system we define a group of spatial relations, 

including leftOf, rightOf, behind, onTopOf, inside 

and connectedTo. The first five relations describe 

directional or topological relations between two ob-

jects, while the last relation can describe articulated 

objects and hinges, e.g., an instance of door is con-

nectedTo an instance of cabinet. Figure 3 represents 

an example that a cup is placed inside of a cabinet 

and a bottle is placed on top of a shelf. 

The qualitative spatial relations help to generalize 

spatial knowledge in robot application. For instance, 

if the system infers that an object is inside a cupboard 

whilst a cupboard is usually placed in the kitchen, the 

robot will firstly navigate to a room which is classi-

fied as kitchen, and then approach to the cupboard. 

Qualitative spatial relations of an object are obtained 

by PROLOG query, which will list all spatial rela-

tions corresponding to this object.  

3.2. Service resource function representation 

Service specification profile  A Service Interface De-

finition Document based on WSDL describes servic-

es as a set of endpoints operating on messages and 

defines interface model for service component which 

allows for inter-component communication. Such a 

profile contains five elements of <types>, <message>, 

<portType>, <binding> and <service>. The first three 

elements describe the functionality and the invoking 

method of a service, as well as the required/provided 

information of a service. The latter two elements 

provide details on how abstract message parts map 

into the concrete protocol and data formats of the 

binding.  

A Service description document is an XML based 

profile that describes concrete attributes of ser-

vices by factors: “SEAModel”, “QoSModel” and 

“OWLSModel”, as described in our previous 

work [36]. The OWLSModel inherits the OWL-S 

definition in “Profile”, “Model” and “Grounding”. 

Nevertheless, the “Profile” section models four as-

pects:  

• ServiceName, SN: It provides an access for 

accurate service discovery according the exact 

name.  

• ServiceCategory, SC: Semantic searching 

according to the service category can help 

reducing scope of searching. 

• Input/Ouput, IO: Inputs(outputs) of a service 

resource are described by a set of concepts, each 

representing an input(output) parameter. 

• Precondition/Effect, PE: The PE model consists 

of several RDF statements, each presented in a 

Subject-Predicate-Object structure. The subject 

and the object can be express by OWL classes, 

but the predicate can only be express by an 

OWL property. The RDF statements describe 

the states and the changes between states caused 

by the P-E relation.  

According to the above definition, the abstract ser-

vice model characterizes a component’s service using 

a six-tuple of <DN, SN, SC, IOPE, SEA, QoS>, in 

which DN stands for Device Num, SN is Service 

Name, SC is Service Category, SEA is Service Effec-

tive Area and QoS describes the Quality of Service. 

Table 1 sums up the content of the service descrip-

tion document. 

 

Fig. 4. Example of object properties representation. 
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4. Knowledge representation and inference  

for CBRS 

4.1. Task tree  

A task consists of several steps or sub-tasks which 

result in a hierarchical structure and are formulated 

as a knowledge tree. The task tree is specified by 

nodes and links a pair of nodes, in which nodes stand 

for tasks or sub-tasks and the links stand for the 

property hasSubTask. A task can be decomposed into 

multiple layers of sub-tasks. Sub-tasks arranged in 

each layers represent a sequence of actions which 

require services that are loosely coupled. Figure 5 

shows an example for task FetchTheCup consisting 

of 5 sub-tasks and one of them consists of three sub 

tasks. Actions in the third layer, e.g. RobotNavTo-

Goal can not be further decomposed because it re-

quires the collaboration of tightly coupled services, 

such as localization, path planning, and obstacle 

avoidance. 

4.2. Inferring and composing required service 

component 

After a complex task is decomposed into a se-

quence of sub-tasks, we now explain how to compose 

service components that are jointly able to perform a 

given sub task. This procedure is called service com-

position in our context. 

Generally, in the field of Web Service a typical 

service matchmaking algorithm [31,32] takes an 

OWL-S Query from the client as input and iterates 

over every OWL-S Advertisement in its repository in 

order to determine a match. An Advertisement and a 

Query match if their Outputs and Inputs match. The 

algorithm returns a set of matching advertisements 

sorted according to four degrees of match. 

In this paper, service composition is achieved by a 

search based service composition algorithm that en-

tails the concept of requirements and capabilities. An 

action depends on a set of service components, but 

it’s difficult to compare a sub-task with a component 

directly. Hence we explicitly specify the require-

ments and capabilities of tasks and service compo-

nents in an abstraction level to act as a bridge. This is 

achieved by the abstract description of service com-

ponents as well as tasks by the inputs, outputs, pre-

conditions, and effects (IOPEs) and the non-

functional properties (NFPs), according to the de-

fined domain ontology. Table 2 shows some exam-

ples of IOPE parameters. For the sake of clarity, we 

denote the Advertisement I/O/P/E parameters by 

AI/AO/AP/AE and the Requirement I/O/P/E parame-

ters by RI/RO/RP/RE, respectively. 

The service composition algorithm firstly formu-

lates the fundamental structure of a directed graph 
( , )G V E  called Service Resource Graph (SRG) to 

represent the “match” relations among a given task 

and candidate service components. The graph consist 

of a finite set of vertices V , which represents availa-

ble atomic service resources discovered by robot, and 

a set of directed edges E , each of which associates a 

pair of atomic service resources. In this context, an 

edge can be linked between an atomic service re-

sources A  and an atomic service requirement R  if 

their inputs and outputs “match” according to the 

following definitions: 

Definition 1 (Qualified Pre-composite Service). An 

atomic service resource A  is a qualified pre-

composite service for another atomic service re-

source R, iff A  meets the need of R: 

A R (Same(RO, AI)|(Contain(AI, RO))≡a .    (1) 

Fig. 5. Hierarchical task tree for FetchTheCup.  

Table 1  

Content of service description document 

SN: ServiceProfile/ServiceName SC: ServiceProfile/ServiceCategory 

I –> O: ServiceProfile/IOPE/Input/datatype  ServiceProfile/IOPE/Output/datatype→  

P –> E: ServiceProfile/IOPE/Precondition/datatype  ServiceProfile/IOPE/Effect/datatype→

SEA: {RoomSEA, CircleSEA, AreaSEA} 

QOS: {PerformIndex, PerformMap} 

Others: Other user defined data and additional property information about the service 
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Definition 2 (Qualified Post-composite Service). 

Similarly, A  is a qualified post-composite service 

for R , iff the following condition is satisfied: 

R A (Same(RI, AO)|(Contain(AO, RI))≡a .     (2) 

In the above definitions, Same(∑) and Contain(∑) 

are two types of relations defined in OWL-S. Note 

that not only I/O but also P/E parameters can be uti-

lized to compare R  with A  because they represent 

causality relations between actions.  

The service composition algorithm essentially 

makes use of a Bidirectional breadth-First Search 

(BBFS) [43] strategy for finding paths from an initial 

vertex to a goal vertex in the Service Resource Graph. 

We chose the BBFS strategy because of two con-

cerns: First, a bidirectional search can reduce the 

search time by searching forward from the start and 

backward from the goal simultaneously. Second, 

breadth-first search in both directions would be more 

likely to be guaranteed to meet, compared with a 

depth-first search in both directions. 

A virtual root node 
RI

S  which requires RI as in-

put is simulated to play the role of the maze entrance. 

Correspondingly, the exit of the maze is also simu-

lated by a virtual node 
RO

S . Note that the require-

ment of a given sub-tasks can also be specified using 

P/E parameters. The structure of the Service Re-

source Graph is formulated automatically as follow.  

Firstly, sub-tasks that can not be further decom-

posed are organized in action sequence by a back-

ward searching process. It starts from the exit node 

RO
S  according to the Qualified Post-composite Ser-

vice standard performed on P/E parameters and dis-

covers qualified service components to meet the need 

of R, as shown in Fig. 6. In the “FetchTheCup” ex-

ample, sub-tasks RobotNavToGoal, OpenCabinet and 

ArmApproach are organized in the sequence of action 

and are linked to 
RO

S . They are represented by node4, 

node5 and node6 in Fig. 7a and the link between each 

pair of nodes represents the match between the effect 

of an antecedent node and the precondition of a sub-

sequent node.  

Secondly, since these sub-tasks can not be further 

decomposed into other sub-tasks, their requirement 

and capability dependencies are analyzed. This in-

volves matching the I/O parameters of more service 

components to find those qualified services that don’t 

belong to actions. As shown in Fig. 7a, a query is 

conducted to find the required input of the node4. The 

matchmaking between node3 and node4 reports a 

qualified match and thus a link is established be-

tween them.  

Then, while the above search performed back-

wardly, a similar search procedure runs forwardly 

from the entrance node according to the Qualified 

Pre-composite Service standard as shown in Defini-

tion 1. The two full searching procedures execute in 

all candidate service components, resulting in a well 

organized Service Resource Graph. 

Finally, the Service Resource Graph is compared 

to a maze, in which typical elements are entrance, 

exit, channel, crossroad and dead path. The solution 

is to solve the maze by finding paths to connect the 

entrance and the exit with maximum accumulated 

fitness value and minimum cost. Here the Bidirec-

tional breadth-First Search (BBFS) algorithm is em-

ployed based on the established SRG structure start-

ing from both the entrance and the exit. The bidirec-

tional search stops when the two meet in the middle. 

Consequently, the resulting optimal path contains a 

sequence of atomic service resources that can be in-

voked by robot in sequence for accomplishing a spe-

cific sub-task, as shown in Fig. 7b. More details 

about the search algorithm can be found in our pre-

vious work [36]. 

Table 2

Examples of component specification using IOPE 

Service component Type Input Output Precondition Effect 

PlaceInference Static data Object Place   

QuerryDatabase Static data Place Position   
Object Properties   

PathPlanner Method invocation Position Path   

RobotLocalization Dynamic perception SensorData RobotPosition   

ObjectRecognition & Localization Dynamic perception Object Properties 3D position   

RobotNavigateToGoal Actuator manipulation Path, robotPos   goalReached

OpenCabinet Actuator manipulation   goalReached cabOpened 

ArmControl Actuator manipulation  3D position cabOpenned armReached
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5. Experiments and results 

In our previous work [4,36], we have built an in-

stance of robotic and ambient intelligent environment 

for assisting the elderly and disabled. The system 

aims to provide daily care services such as object 

delivery, accompany, health monitoring, etc. In order 

to facilitate robot’s manipulation, furniture and home 

appliances in the testing environment have been re-

build with simple sensing and reacting capabilities. 

For example, we have developed an automatic drink-

ing water machine that can fill a cup automatically 

and a proximity-sensing cabinet that opens and closes 

the doors automatically. We believe that the assistive 

furniture and appliances can effectively relieve the 

manipulation burden of our robots, since they are 

designed as low-cost service robots with less com-

plex manipulators. As such, the necessity of utilizing 

ubiquitous resources for accomplishing complex 

tasks is obvious. 

As shown in Fig. 8, in the system different robot 

platforms (e.g., ActivMedia Pioneer 3 DX, Peoplebot, 

and Southeast University SeuBot) are designed as the 

service requesters. A group of embedded sensors are 

integrated, including DSP-based video cameras, 

global cameras, laser scanner, Kinect sensor, sonar 

and other environmental sensors. They work as 

processing units for people detection, activity recog-

nition or environmental perception. An ARM-based 

smart device is developed to play the role of map 

server that provides the occupancy grid map of the 

environment for robot navigation. All these devices 

are encapsulated as software components in the 

CBRS. Besides, for supporting complex computa-

tional tasks, a set of method invocation components 

are developed, such as path planning, obstacle avoid-

ance, etc.  

Knowledge specifications are developed in the fol-

lowing way. In each component, the Service specifi-

cation profiles are developed using WSDL/XML 

documents, as described in Section 3.2. In the central 

server, Amzi! PROLOG is used for specifying con-

ceptual knowledge about classes, properties, relations 

and tasks. SQLite database is also used for storing 

and querying extensional knowledge such as objects 

and places properties. The central server runs the 

decision making software that generates plans for 

robot’s task accomplishment.  

The Knowledge-enabled Decision Making 

Framework (KDMF) was tested in several applica-

tion scenarios, such as smart device assisted robot 

navigation for fallen person rescue, people-following 

and so on. In this paper, the scenario of “CupFetch-

ing” application is described in detail to validate the 

system performance.  

In the “CupFetching” scenario, the decision mak-

ing software firstly decomposed the task into sub-

tasks as shown in Fig. 5. We take the first sub-task 

“ApproachToCup” as an example to illustrate the 

knowledge-based decision making. The requirement 

of “ApproachToCup” can be parametrized using two 

inputs (“cup” and global camera sensory data) and 

one casual effect (that the robot has reached the cup). 

The inputs and outputs (effect) of the sub-task are 

formulated as RI
S  and 

RO
S  respectively.  

Firstly, the sub action nodes that can not be further 

decomposed are organized in sequence by a back-

ward searching process that starts from the exit node 

RO
S . So that node4, node5 and node6 in Fig. 7a are 

Fig. 7. Service composition. 

Fig. 6. The forward and backward search. 
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connected. Similarly, node1 and node2 can also be 

connected because the input of node1, obj, matches 

one required input of 
RI

S , “cup”. Table 3 shows the 

service description of the PlaceInference component 

that corresponds to node1. 
Secondly, the requirement and capability of sub 

action nodes node4, node5 and node6 are further ana-

lyzed to find more necessary components, if they 

have more than one input. As shown in Fig. 9, a 

query is conducted to find the other required input of 

the node4, robotPos. By doing this, node4a is discov-

ered since it connects 
RI

S  and node4. Table 4 shows 

the service description of the RobotLocalization 

component that corresponds to node4a. Similarly, the 

matchmaking procedure also connects node6a and 

node6b with node6.  
The basic function of the RobotLocalization com-

ponent is implemented using global video cameras 

for detecting robots in its field of view. Data meas-

ured by the global cameras have previously been 

calibrated onto the ground plane in the 2D occupancy 

grid map coordinates, so that the component can di-

rectly report the global x–y position of targets.  

In the above mentioned matchmaking procedure, 

the search based service composition algorithm en-

sures that the chain of connected components has the 

highest matching likelihood and meets certain opti-

mization criteria, such as minimum energy costs or 

time costs. More details about the service composi-

tion algorithm can be found in our previous 

work [36].  

As a result, a plan is generated. In this example of 

sub-task “ApproachToCup”, the plan is executed in 

the sequence as indicated in Figs 7b and 9. The 

whole procedure of the “CupFetching” scenario was 

executed as follow. Firstly, a global camera was uti-

lized for initially localizing the robot. Secondly, the 

robot inferred about the fact that the cup was posi-

tioned inside the cabinet, and then queried the fact 

that the cabinet is located in the kitchen at a position 

(10.6 m, 12.8 m). Then the robot used the PathPlan-

ner component to obtain a trajectory that led from its 

current position to the goal position. In the following 

step, the robot used the RobotNavToGoal component 

to reach the goal place, and at the same time the Ro-

botLocalization component is also employed for up-

dating the belief about robot’s position using an ap-

propriate global camera. Once the robot had reached 

the goal place, the cabinet opened and the robot used 

the ArmApproach component to get closer to the tar-

get object. In order to approach to the target cup, the 

Fig. 8. The experimental system for ambient assisted living application. 

Table 3  

Examples of service description document of PlaceInference com-
ponent 

SN: QueryPlace       SC: StaticDataService 

I –> O: Object →  Place 

Data Topic: DataTopicList ( hasDataTopic "ConceptualMap")∋I
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robot queried about the color appearance feature of 

the cup, before it invoked the ObjectRecogni-

tion&Localization component to compute a 3D posi-

tion of the target using its eye-on-hand camera. After 

that, the robot used visual servo algorithm and kine-

matic control algorithm to grasp the cup and finally 

returned the cup to the person. Figure 10 illustrates 

some key steps of the experimental scenario. Fig-

ure 11 shows the results of robot navigation and ob-

ject grasping. 

The decision-making system is also tested in sev-

eral other scenarios, two of which are described 

briefly here.  

The second scenario is a person-following applica-

tion. A Pioneer 3 DX robot was assigned with the 

task of following a person and keeping a certain dis-

tance behind him/her, which was decomposed into 

three subtasks: acquiring person appearance, person 

feature extraction and motion velocity control. The 

robot first queried the knowledge base about the vis-

ual appearance model of the target person, then 

sought a component for tracking people using RGB-

D sensor (Kinect) and finally used a component for 

motion control that drove the wheel towards the tar-

get person. Figure 12 shows four snapshots of the 

person-following scenario, in which the executable 

plan was generated by the developed decision-

making software system. 

The third scenario is a remote object fetching ap-

plication that is similar to the first scenario but entails 

the assistance of external manipulation functions. 

During the task execution, the Pioneer 3 DX robot 

inferred about its capability, the object location, the 

human position as well as the environmental occu-

pancy grid map. Since the robot involved in the third 

scenario was not equipped with a flexible arm for 

accurately grasping small-size objects such as a pen, 

it sought the assistance of another robot (Robai Bi-

handed Cyton 14D-2G), which picked up the pen and 

loaded on the platform of the Pioneer 3 DX robot. 

Figure 13 shows the process of the trial. 

The computational performance of the system was 

evaluated by performing tests on executing the deci-

sion-making system with variations on scenarios and 

Table 4  

Examples of service description document of RobotLocalization component 

SN: RobotLocalization   SC: DynamicPerceptionService 

I –> O: Sensor data →  Robot position ( )x, y,θ  

SEA: 
RoomSEA ( hasRoomName " "),  CircleSEA ( hasCircleArea CircleArea

( hasCenter Center ( hasX "7.8m") ( hasY "12.9m")) ( hasTheta "30.0 ")) 

room404∋ ∋

∋ ∋ ∋ ∋

I I I

I I I
o , 

QOS: PerformIndex ( hasName "LocalizationError") ( hasValue ∋ ∋I I  

         Value ( hasAve "10cm") ( hasMin "5cm") ( hasMax "20cm"))∋ ∋ ∋I I I  

Others: Supported environmental map type: occupancy grid map. Supported map resolution: 10cm, Supported sensor: SICK LMS 200 laser
range finder. 

 

 

Fig. 9. Example of assembling services SubTask1 of the “CupFetching” scenario. 
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the number of candidate components. In the tests, a 

number of 25 components providing different servic-

es were developed. 95 additional simulated compo-

nents were also implemented in the tests. The compu-

tational performance tests were conducted on the 

central server, which was a laptop computer with a 

2.6 GHz Intel dual core, 2 GB RAM, and Ubuntu 

2.04 OS, fixed on board of the Pioneer 3 DX robot. 

Table 5 shows the average results of the tests with 20 

repeats, each with all subtasks executed. As expected, 

two major computationally expensive steps are se-

mantic matchmaking and service composition. The 

case including more candidate components takes 

larger mount of time for matching. Due to the fact 

that registered components are managed at the central 

server, most of the time consumed by the semantic 

matchmaking procedure is cost by reading the regis-

tered component file stored on the hard disk. But the 

number of candidate components basically doesn’t 

affect the service composition processing, because 

the structure of the established Service Resource 

Graph (SRG) is determined by the matched compo-

nents. Note that during the runtime execution of the 

tasks, remote service port communication takes much 

more time, mainly because of the remote procedure 

call over the network.  

 

Fig. 10. Example scenario of “CupFetching”. 

 

Fig. 11. Results of the experimental scene: scenario 1. 
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The third scenario is a remote object fetching ap-

plication that is similar to the first scenario but entails 

the assistance of external manipulation functions. 

During the task execution, the Pioneer 3 DX robot 

inferred about its capability, the object location, the 

human position as well as the environmental occu-

pancy grid map. Since the robot involved in the third 

scenario was not equipped with a flexible arm for 

accurately grasping small-size objects such as a pen, 

it sought the assistance of another robot (Robai Bi-

handed Cyton 14D-2G), which picked up the pen and 

loaded on the platform of the Pioneer 3 DX robot. 

Figure 13 shows the process of the trial. 

The computational performance of the system was 

evaluated by performing tests on executing the deci-

sion-making system with variations on scenarios and 

the number of candidate components. In the tests, a 

number of 25 components providing different servic-

es were developed. 95 additional simulated compo-

nents were also implemented in the tests. The compu-

tational performance tests were conducted on the 

central server, which was a laptop computer with a 

2.6 GHz Intel dual core, 2 GB RAM, and Ubuntu 

2.04 OS, fixed on board of the Pioneer 3 DX robot. 

Table 5 shows the average results of the tests with 20 

repeats, each with all subtasks executed. As expected, 

two major computationally expensive steps are se-

mantic matchmaking and service composition. The 

case including more candidate components takes 

larger mount of time for matching. Due to the fact 

that registered components are managed at the central 

server, most of the time consumed by the semantic 

matchmaking procedure is cost by reading the regis-

tered component file stored on the hard disk. But the 

number of candidate components basically doesn’t 

affect the service composition processing, because 

the structure of the established Service Resource 

Graph (SRG) is determined by the matched compo-

nents. Note that during the runtime execution of the 

tasks, remote service port communication takes much 

more time, mainly because of the remote procedure 

call over the network.  

The system features are also analyzed and  

compared with other robotic software plat-

forms [12,13,44,45], as shown in Table 6. KDMF 

proposed in this paper is based on distributed com-

ponent architecture including remote procedure calls 

and inter-component communication via various 

types of ports. KDMF supports automatic and seman-

tic service discovery and service composition, which 

are partially supported in many other platforms. 

Compared with our previous system [36], KDMF 

also integrates knowledge representation, query and 

inference, which ensures future expansion of know-

ledge acquisition for robots. 

6. Conclusions 

In this paper, we exploit that the use of deeper 

domain knowledge is pivotal to endow a robot with 

higher degrees of autonomy and intelligence in com-

ponent-based robotic system. We propose a know-

ledge-enable decision making framework that not 

only integrates ontology knowledge and service 

knowledge but also provides an effective solution to 

assembling qualified components for accomplishing 

complex tasks.  

As a result of knowledge-enabled decision making, 

the robot is capable of utilizing ubiquitous services in 

its daily task execution. The essential problem solved 

in our research work has three aspects. First, robot is 

empowered by the ability to understand instructions 

given by humans and translate them into effective 

task specification. Second, robot can adapt its actions 

in the correct way depending on the current context 

and infer new knowledge during task execution. 

Most importantly, the knowledge representation of 

services and the automatic ambient service utilization 

method improve the reusability and flexibility of the 

system. As heterogeneous resources are wrapped as 

software components, they can be composed to com-

plete different tasks without any additional develop-

ment efforts.  

  
(a)   (b) 

  

(c)   (d) 

Fig. 12. Scenario 2, a person-following application. 

Returned  
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By developing knowledge-enabled CBRS, we be-

lieve that we empower more skilled robots that oper-

ate in ambient and smart environment for assisting 

human living. 
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