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Abstract. This paper tackles the problem of supporting independent living and well-being for people that live in their homes
and have no critical chronic condition. The paper assumes the presence of a monitoring system equipped with a pervasive sensor
network and a non-monotonic reasoning engine. The rich set of sensors that can be used for monitoring in home environments
and their sheer number make it quite complex to provide a correct interpretation of collected data for a particular patient. For this
reason, we introduce a logic-based context model for situation assessment combined with high level declarative feedback policy
specification, and we use logic programming techniques to reason about different pieces of knowledge for prevention.
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1. Introduction

Over the last fifteen years, numerous efforts have
been made to create IT-based support systems for the
elderly. The main objective of these systems was to
help elderly people live a safe life while keeping their
independence as long as possible. There are many dif-
ferent ways in which such systems have offered sup-
port for independent life: for example tele-monitoring
chronic pathologies, recognizing activities-of-daily-
living and supporting their correct execution, remind-
ing the execution of important activities, jogging mem-
ory with exercises, helping movements with robotic
assistants, and so on. All these different technological
supports should cooperate for one main purpose: pro-
longing Healthy Life Years. A support system should
strive for people to live longer but not in a state
in which chronic conditions substantially cripple the
quality of life and the capability of living a productive
life. Therefore, we think one should stress cognitive
support as a way of improving all sides of life from the
use of memory to the capability of avoiding falls.

*Corresponding author.

An Independent-Living System (ILS) should be able
to (i) gather information about the world through sen-
sors, (ii) translate sensor data to map them into a con-
sistent assessment of the real situation, (iii) reason
about available knowledge to support the patient’s well
being, (iv) perform actions and give feedback to the pa-
tient according to the results of the reasoning process,
(v) capture reactions to feedback in order to adapt the
behavior of the system.

We believe that one of the most useful goals should
be to prevent situations that can cause drastic changes
for the worse of the quality of living, such as falls
and substantial weight loss. Rather than supporting
activities [12,13] and observing behaviors [15,39],
this paper considers a complementary view of artifi-
cial intelligence applied to home healthcare. In our
view, expressive knowledge representation and rea-
soning techniques should be used to (i) understand
health evolution identifying risky states in a context-
aware fashion and (ii) give clinical, behavioral or
environment-related feedback. This can be done by ap-
plying automated reasoning to a combination of dif-
ferent pieces of knowledge (common-sense, medical,
context-dependent), rather than dealing with prede-
fined plans and goals to be achieved.
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With this perspective, the capability of identifying
meaningful information about the context in which the
user lives is a critical issue for home healthcare sys-
tems. The use of a reasoning component that does not
only rely on static user-specific needs, but that con-
tinuously analyzes the evolving state of the patient
and of the environment, simplifies the situation assess-
ment process. The aggregation and the interpretation
of different kinds of information from heterogeneous
sources (such as light, position, movement, localiza-
tion, load cells) enhances reliability and accuracy of
context interpretation because considering heteroge-
neous sources of information helps in compensating
errors and incompleteness of data.

In order to address these concerns, we have designed
and developed a system (called SINDI [2]) that has the
following capabilities:

– gathering data about the user and his or her en-
vironment through a Wireless Sensor Network
(WSN);

– reasoning about collected data for context inter-
pretation and situation assessment using com-
monsense, constraints and qualitative preferences;

– combining different data sources to interpret the
evolution of the patient’s health state providing
absolute and differential evaluations of indicators
of well-being as well as of more general human
functioning;

– predicting changes into risky states according to
a graph-based computational model of medical
knowledge and the clinical profile of the person
monitored;

– identifying risky situations and providing feed-
back for prevention through the enforcement of
declarative feedback policies.

The first and the second aspects are strictly related
to context interpretation based on the model of context
described in Section 2. The logical framework used
for Knowledge Representation and Reasoning is intro-
duced in Section 3, while the reasoning steps aimed at
context interpretation are illustrated in Section 4; the
following aspects refer to reasoning about well-being
according to the graph-based structure of knowledge
about elderly care that we use in SINDI; in Section 5
we introduce the reasoning processes supporting pre-
diction and prevention, and we illustrate in more de-
tails the way feedback outputs for prevention are mod-
elled and provided to the patient according to results
of prediction. We use the prediction and prevention of
falls as an example in Section 6 because it is a problem

where both cognitive and physical impairment come to
play.

Other important requirements like: (i) technological
and medical soundness, (ii) adaptivity, (iii) unobtru-
siveness, (iv) user-friendliness, (v) reactivity and (vi)
affordability have also been investigated in the speci-
fication of our system, but in this paper we focus on
our context-aware knowledge representation and rea-
soning model supporting user-centered prediction and
prevention in home healthcare.

2. The context model

A well designed model is crucial for any context-
aware system. In the literature there is a rich variety
of context models discussed and proposed for different
purposes [1,33].

Context-dependent data can arise from different
sources; for example data may be gathered by sen-
sors or collected from several knowledge-bases. The
incompleteness and heterogeneous nature of such data
stress the need for expressive reasoning techniques in
order to implement effective, context-dependent rea-
soning.

While most of the implemented context models are
domain-dependent and do not support powerful infer-
ence, some logic-based models fail to provide a rep-
resentation of context-dependent data that is both ex-
pressive and with good computational properties [37].

The model we describe in this paper aims at being
generic and computationally rich at the same time. Al-
though we do not provide a comprehensive theory of
context in this work, this aspect deserves attention and
it is under investigation. Other requirements we take
into account are:

– readability of the problem specification,
– flexibility with respect to using heterogeneous

sources of knowledge,
– modularity in the specification of the problem that

describes properties of a desired solution, and
– expressivity of the modeling language and com-

putational efficiency of the inference engines.

To fulfill these requirements, we utilize a declarative
high-level description of home environments in terms
of rooms, areas, objects, properties, relations and ob-
servations. The space is represented as a grid where
each cell is identified by coordinates X, Y and has
some properties (being in a room, being a wall, being
a passage, etc.). In addition to the description of the
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model, a limited set of consistency constraints can be
specified to make sure that observations and context in-
terpretation are coherent with the person’s profile (e.g.
walking speed) and the environment (e.g. walls and
obstacles). The resulting context specification is then
mapped into a set of logic predicates in the Answer Set
Programming (ASP) framework (see Section 3 for pre-
liminary notions), so that reasoning under uncertainty
is possible and incompleteness of data can be taken
into account.

The physical description of the environment is avail-
able in terms of coordinates in a bi-dimensional grid.
Properties used in the model take into account generic
spatial properties rather than describing geometric spa-
tial relations between objects. This results in greater
generality because we do not need a complete physical
description of the environment. Generic spatial proper-
ties can be used in the inference process to better eval-
uate the feasibility of a solution. As an example, the
system can infer that the person is in a given area Aj

of a room Ri on the basis of information provided by
motion sensors only. However, coordinates evaluation
could return a different localization result, thus the sys-
tem deduce that the moving object could be a cat or
something else.

Occasional lack of specificity w.r.t. the spatial rela-
tions is compensated by the inference process: reason-
ing about relations and attribute values may help infer-
ring new information as detailed in Section 4.

In addition, while data gathered by the sensors are
processed and aggregated according to specific algo-
rithms for feature analysis, the information available at
upper levels is filtered by the abstraction. This enables
us to represent meaningful information as properties
of objects, rooms or areas, keeping the model indepen-
dent from sensors’ characteristics and positioning.

Our modelling approach is similar to what we would
obtain by using an ontology [26], with the difference
that the ASP reasoning enhances readability, expres-
sivity and computational efficiency of the model. We
are aware of the fact that research efforts are converg-
ing toward the combination of non-monotonic reason-
ing and ontology-based knowledge representation, but
available implementations are still domain dependent
and formal issues need to be further explored. For this
reason we decided to encode our contextual informa-
tion directly into first order logic under the ASP frame-
work. The domain description and inference rules can
be easily combined with domain knowledge extracted
from an (existing or new) ontology if needed.

Previous investigation of context models has indi-
cated that there are certain entities in a context that,
in practice, are more important than others. These are
location, identity, activity and time [29,31]. In fact, in
the context of home monitoring, the more intuitively
relevant aspects of a context are: where you are, who
you are (clinical profile), which resources you are us-
ing, what you are doing and when.

In order to represent this information in our model
we identify the following entities:

– Person entity to identify the person, her clinical
profile and her movements;

– Room entity to identify rooms in the environment;
– Area entity to identify disjoint areas of interest in

a room;
– Object entity to identify objects or resources the

person can interact with.

We also define a small subset of generic spatial rela-
tions among entities, summarized in Table 11. All the
other pieces of information are available at a higher
level of detail and can be indexed as attributes of the
context entities. Attributes value may come from (i)
external knowledge (such as observed values for clin-
ical attributes of the Person entity), (ii) opportunely
aggregated sensor data (such as attributes related to
the environment) or (iii) results of the inference pro-
cess (inferred values for attributes of the Person en-
tity, when observed values are not available). Values
of both attributes and spatial relations (except the in-
clusion of an area in a room which is static) are dy-
namic and need to be associated to a time T . In this
way, the reasoning system can take into account their
evolution during context interpretation. In such a dy-
namic domain it is necessary to conceive a model that
is able to support commonsense reasoning, reasoning
about actions and qualitative preferences.

Attributes associated with entities included in our
model and their values are detailed in Tables 2, 3 and 4.

Table 1

Generic spatial relations among entities

Relation Object Reference Relation Type

Name Object

person_in Person {Room, Area} generic directional relation

in Area Room generic directional relation

Object {Room, Area}

near Object Area generic distance relation

1Note that the spatial inclusion of areas A1, . . . , An in a room
R is such that

Sn
i=1 Ai ⊂ R.
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Table 2

Attributes representing information about the Person entity

Signature Domain Values Description

<Func,Val> Func={gait, balance, vision, cognition, bmi, sleep} Functional disability

Val ={absent, mild, moderate, severe}

<Adl,Val> Adl={mobility, dress, eat} ADL dependency

Val={ok, needy, dependent}

<Risk, Val> Risk={fall, depression, fragility} Risk assessment

Val ={absent, mild, moderate, severe}

<Test, Val> Test={amtest, minimental, nutritionTest, gds, visual, . . . } Test results

Val={ok, mild, moderate, severe}

<Drug, Val> Drug={benzodiazepine, antidepressant, diuretic, ssri, . . . } Medications

Val ={yes, no}

<Disease, Val> Disease={visual_impairment, arthrosis, depression, . . . } Diseases

Val={ok, mild, moderate, severe}

<wgt, Val> Val={1..300} Weight in kilograms

<motion,Val,P1> Val={walk, still, zeroSignal2}, P={0..100} Motion activity

<posture,Val,P1> Val={sit, lay, stand, zeroSignal2}, P={0..100} Posture of the person

<orientation,Val,P1> Val={turn, straight, zeroSignal2}, P={0..100} Direction of motion

1 Value “zeroSignal” is related to the fact that no signal is received from sensors detecting movement.
2 Parameter “P” represents data reliability, and it is computed by the algorithms used for feature extraction.

Table 3

Attributes representing information about the Room and Area entities

Attribute Name Domain Values Description

ambientLight {dark, . . . , bright} brightness of the environment

ambientLightType {natural, artificial} nature of the light

ambientHumidity {dry, medium, wet, superWet} humidity level

ambientTemperature {cold, chilly, warm, hot, burning} temperature

ambientSound {mute, mild, medium, noisy} noise level

presence {yes, no} presence of a moving entity

smoke {yes, no} presence of smoke

Table 4

Attributes representing information about the Object entity

Signature Domain Values Description

objectLight {dark, . . . , bright} light produced by the object

objectLightType {natural, artificial} nature of the light

objectSound {noSound, regularSound, loudSound} meaning depends on object

switch {open, closed} state of doors and windows objects

state {on, off} state of on/off devices

filteredLoad {0..300} weight measurement from load-cells

loadVolatility {stable, mildlyUnstable, veryUnstable} volatility of the load measurement

Most of the values for attributes associated to rooms,
areas and objects are the result of a process that maps
numerical sensor data into meaningful thresholds. The
thresholds are derived both from objective consider-
ations, e.g. a given temperature might be too hot for
the human body to survive, and from patient-profile

and environment related considerations, e.g. a southern
Italian and a British person might have a very different
idea of what is comfortably hot or cold.

As an example, if we want to model the environment
illustrated in Fig. 1 at time T , the partial description
we obtain by instantiating our first order specification
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Fig. 1. Example: modelling a bedroom.

in terms of propositional predicates, would be similar
to what follows:

obj(door). obj(lamp). obj(carpet). obj(heater).
obj(armchair). obj(window). obj(bed).
area(sleep_area). area(wardrobe). area(entrance).
room(bedroom).

in(sleep_area,bedroom,1).
in(wardrobe,bedroom,1).
in(entrance,bedroom,1).

in(door,bedroom,1). in(heater,bedroom,1).
in(lamp,sleep_area,1). in(carpet,sleep_area,1).
in(armchair,bedroom,1). in(window,bedroom,1).
in(bed,sleep_area,1).

objectLight(lamp,dark,1).
switch(door_1,open,1). switch(window_1,closed,1).
filteredLoad(armchair,0,1).
filteredLoad(carpet,0,1).
filteredLoad(bed,0,1).

...

Provided this description, commonsense rules, non-
monotonicity and preferences can be used for context
interpretation. These aspects will be illustrated in Sec-
tion 4.2. We now provide some preliminary notions
that are needed in order to understand the strength of
the ASP formalism and the way we use it.

3. The logical framework: Preliminary notions

The declarative logical framework we use for Knowl-
edge Representation and Reasoning in SINDI is that
of Answer Set Programming (ASP), based on the sta-

ble model semantics for Logic Programs proposed by
Gelfond and Lifschitz [10].

Compared to pure statistical approaches, logic infer-
ence based on ASP is highly expressive and computa-
tionally more performant because it can deal with first-
order representations, which are much richer than the
propositional ones characterizing probabilistic infer-
ence. Furthermore, ASP can deal with incomplete in-
formation and commonsense reasoning using defaults.
Cardinality and weight constraints together with op-
timization techniques are also interesting features for
our application, in that they can be used to model dif-
ferent degrees of uncertainty [5,9,14,32]: given the in-
completeness of available knowledge, we may need
to use preferences and optimization criteria to select
the best candidate solutions according to both qualita-
tive and quantitative measures. Declarativity also rep-
resents a desirable feature because it allows the au-
tomatic encoding of medical knowledge, thus making
the system easily extensible and medically sound.

Before we describe our reasoning tasks in detail, we
want to recall some basic ASP definitions. In ASP a
given problem is represented by a logic program whose
results are given in terms of answer sets.

A logic program P is a finite set of rules ri of the
form

ri : c ← a1, . . . , am, not bm+1, . . . , not bn . (1)

where each ai, bj , c is a literal, that is, an atom p ∈ P
or its negation ¬p for 0 � i � m and 0 � j � n, not
is a logical connective called negation as failure and
n � m � 0.
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For a rule ri as in (1), let head(ri) = {c1, . . . , cl}
be the head of ri and

body(ri) = {a1, . . . , am,not b1, . . . ,not bn}

be the body of r; and let body+(ri) = {a1, . . . , am}
and body−(ri) = {b1, . . . , bn}.

Rules ri with head(ri) = ∅ are called integrity con-
straints, while if body(ri) = ∅, we refer to ri as a fact.

An interpretation I is represented by the set of atoms
that are true in I . A model of a program P is an in-
terpretation in which all rules of P are true accord-
ing to the standard definition of truth in propositional
logic. Apart from letting ‘,’ stand for conjunction, this
implies treating rules and default negation by not as
implications and classical negation, respectively. Note
that the (empty) head of an integrity constraint is false
w.r.t. every interpretation, while the empty body is true
w.r.t. every interpretation. Answer sets of P are par-
ticular models of P satisfying an additional stability
criterion. Roughly, a set X of atoms is an answer set,
if for every rule ri of the program, c ∈ X whenever
a1, . . . , am belong to X and no bm+1, . . . , bn belongs
to X .

Formally, an answer set X of a program P is a min-
imal (in the sense of set-inclusion) model of

{head(ri) ← body+(ri) | ri ∈ P, body−(ri)∩X = ∅}.

Although answer sets are usually defined on ground
(i.e., variable-free) programs, the rich modeling lan-
guage of ASP allows for non-ground problem encod-
ings, where rules with variables (upper case names) are
taken as a shorthand for the sets of all their ground in-
stantiations. Grounders, such as gringo 2 and lparse 3,
are capable of combining a problem encoding and a
problem instance (typically a set of ground facts) into
an equivalent ground program, which can then be then
processed by one of the available ASP solvers. In our
implementation of SINDI, answer set programs are
grounded using Gringo [9] and interpreted using the
Clasp [8] solver.

For extending the expressive power of logic pro-
grams, we take advantage of three kind of rules [32].

The first type is the cardinality rule, which is of the
form:

ri : h ← l {a1, . . . , am} u (2)

2A user’s guide to gringo, clasp, clingo, and iclingo.
http://potassco. sourceforge.net

3Lparse 1.0. http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz

where C = l {a1, . . . , am} u is a cardinality con-
straint and l and u are two integers giving a lower and
upper bound, respectively, on the number of satisfied
literals within the constraint.

For a cardinality constraint C as in the body of (2),
we let lit(C) denote its set of literals {a1, . . . , am} and
let lb(C) = l and ub(C) = u. C is satisfied by a set of
literals S, if

lb(C) � |lit(C) ∩ S| � ub(C) .

Whenever bound l or u is missing, it is taken to be 0 or
|lit(C)|, respectively.

Rule 2 is interpreted as follows: if at least l and at
most u literals in the set {a1, . . . , am} are satisfied by
a stable model S, than atom h should be in S.

The second type of rule is the choice rule, which is
of the form

ri : {h1, . . . , hk} ← body(ri). (3)

which implements a nondeterministic choice over the
atoms in {h1, . . . , hk} whenever body(ri) is true in
the stable model. That is, the rule generates solutions
including any number of atoms among {h1, . . . , hk}.

The third type of rule is the weight rule, which is of
the form

If we associate a real-valued coefficient, i.e., a
weight to each atom in the cardinality constraint, we
obtain a generalization of rule 2, called weight rule of
the form

ri : h ← l {a1 = wa1 , . . . , am = wam} u (4)

where l and u are again two integers giving a lower and
upper bound, respectively, on the sum of the weights
of satisfied literals within the constraint.

The idea is that a stable model satisfies the con-
straint if the sum of the weights of the literals satis-
fied by the model is between l and u. This means that
the head of rule 4 is included in a stable model S if
l � Σai∈S wai � u. Whenever bound l or u is miss-
ing, it is taken to be −∞ or +∞, respectively. An-
swer sets of programs with cardinality and weight con-
straints are defined as in [23].

Another interesting feature of the ASP formalism
is the possibility of expressing both quantitative and
qualitative preferences. In the first case, we can use
weight rules while for qualitative preferences (used in
selecting the preferred action to be performed as a re-
sult of the application of a feedback policy) we intro-
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duce Ordered Disjunction in the head of rules. We re-
call the basic definitions of Logic Program with Or-
dered Disjunction (LPOD), as given in [4] and [5].

Given an alphabet P of propositional symbols, an
LPOD-program is a finite set of LPOD-rules of the
form

c1×· · ·×cl ← a1, . . . , am,not b1, . . . ,not bn. (5)

where each ai, bj , ck is a literal, that is, an atom p ∈ P
or its negation ¬p for 0 � i � m, 0 � j � n, and
0 � k � l.

The “non-standard” part of such a rule is the ordered
disjunction c1 × · · · × cl constituting its head. Given
that the body literals are satisfied, its intuitive reading
is:

– if possible c1, but if c1 is impossible, then c2,
– . . . ,
– if all of c1, . . . , cl−1 are impossible, then cl.

Each ck stands for a choice as a result of the applica-
tion of rule (5). Note that the “×” connective is allowed
to appear in the head of rules only; it is used to define
a preference relation that allows to select some of the
answer sets of a program by using ranking of literals in
the head of the rules, on the basis of a given strategy.
The semantics of an LPOD program is then given in
terms of a preference criterion over answer sets.

Answer sets of LPOD programs are formally de-
fined as in [30].

4. Intelligent monitoring and assessment of
well-being

We refer to an intelligent monitoring system as a
monitoring system that is able to (i) reason about gath-
ered data providing a context-aware interpretation of
their meaning and (ii) support understanding and deci-
sion.

In the SINDI system, results of context-aware inter-
pretation of gathered data are used to predict and ex-
plain possible evolutions of the person’s health state
in terms of functional disabilities, dependency in per-
forming daily activities and risk assessment, as well as
to identify correct interaction patterns [2,18]. In this
section we want to focus on how the system reasons
about incomplete and potentially inconsistent sensor
data to contextualize them and use them in supporting
intelligent monitoring.

4.1. Data collection and aggregation

First of all, reasoning about gathered data is used
to understand what the person is doing in terms of
movements, and to localize the person. Some data ag-
gregation (fusion) is already performed at the feature
extraction level with statistical algorithms, e.g. parti-
cle filters. Data can still be imprecise, even after this
aggregation process. The expressive power of ASP is
used at this stage to disambiguate unclear situations
(e.g. where the person is) using commonsense, de-
faults, nondeterministic choices and preferences to se-
lect the best candidates in the space of the solutions.

The continuous measurements provided by sensors
are stored in the database of SINDI with the results of
reasoning. In the actual implementation, data are ag-
gregated and extracted every hour to be processed by
the logic inference engine. Discrete time is in seconds
and the new data are extracted when values change be-
yond a given threshold. As an example, the light is ag-
gregated as the average light in a room with a value
V ∈ {0..500}, mapped in the following thresholds Vt

according to the value of V :

Vt = dark if V ∈ {0..125}
Vt = shadow if V ∈ {126..250}
Vt = clear if V ∈ {251..375}
Vt = bright if V ∈ {376..500}

A logic fact of the form

attribute_env(ambientLight, Room, Vt, T )

is generated whenever the new light value is mapped
to a different threshold. We are currently working on
a wrapper that will make it possible to use the Clasp
solver as a permanently running API that we can feed
with aggregated sensor data as soon as they are avail-
able. This will make the reasoning process faster.

The high level representation of the collected data
is automatically mapped into logic predicates resulting
in a set of facts which is combined with the ASP logic
program. This high level representation complies with
the context model described in Section 2.

4.2. Context interpretation to support health
assessment

As mentioned in the previous sections, common-
sense reasoning is used in SINDI to supplement the
description of the context when there is missing infor-
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mation. As an example, inertia law on the relation in()
can be used to detect where objects are at a given time,
as follows:

out(Obj,Room,T) :- in(Obj,R1,T), R1!=R.
in(Obj,Room,T) :- in(Obj,R,T-1),

not out(Obj,Room,T).

Interaction with multiple objects4 can be consis-
tently interpreted by generating all possible alterna-
tives: the interaction with two distant objects at the
same time puts the person in different locations, unless
one of them is supported by additional evidence; a con-
sistency constraint can be used to specify that options
should be treated separately (one location for each time
step), as follows:

n_attribute_obj(Name,Obj,V,T) :-
attribute_obj(Name,Obj,V1,T),
V1!=V, range(Name,V).

attribute_obj(Name,Obj,V,T) :-
attribute_obj(Name,Obj,V,T-1),
not n_attribute_obj(Name,Obj,V,T),
attribute_def(Name,Obj), time(T),
range(Name,V).

% possible locations
change_val(Obj,T) :-

attribute_obj(Name,Obj,V1,T-1),
attribute_obj(Name,Obj,V,T), V!=V1.

poss_in(R,A,T) :- change_val(Obj,T),
in(Obj,R,A,T).

% generate possibilities
{person_in(R,A,T) : poss_in(R,A,T)}.

% constraint on locations
:- person_in(R,A,T), person_in(R1,A1,T), A!=A1.

Besides localization, context interpretation is also a
crucial phase in understanding basic behaviours that
may be important for health assessment, such as night
activity. Specific sequences of changes in the attributes
of objects can help characterizing what is happening.
As an example, a change in bed’s load sensors fol-
lowed by lights off in the bedroom may indicate that
the person went to sleep, while a change in bed’s and
carpet’s load sensors followed by switching the lights
on in a room that is not the bedroom, indicates that the
person got out of bed, as follows:

4In the simplest scenario, a person is supposed to interact with
an object when the value of one attribute associated to the object
changes. These changes are also propagated using the inertia law.

in_bed(T) :-
person_in(bedroom,bed,T),
attribute_env(luce,bedroom,bedroom,dark,T),
attribute_obj(state,imud,off,T),
filteredLoad(bed,V,T), V>0.

out_bed(T) :-
person_in(bedroom,bed,T1),
filteredLoad(carpet,V,T), V>0, T1<T.

localized(T) :- presence(R,A,T).
awake(T) :- not in_bed(T), localized(T).
awake(T) :- out_bed(T).
bad_sleep(T) :-

attribute_obj(loadVolatility,bed,N,T),
in_bed(T), N!=stable.

sleep_interrupt(T) :- in_bed(T1), awake(T), T1<T.
back_to_bed(T) :- sleep_interrupt(T0), T0<T1,

awake(T1), in_bed(T), T1<T.

nightstart(T) :- in_bed(T).
nightend(T) :- sleep_interrupt(T), T<T1

not back_to_bed(T1), time(T).

In this paper, we do not focus on the way SINDI
deals with emergencies, but we want to mention
that they are introduced in our reasoning model in a
straightforward way: the condition indicating an emer-
gency (such as the temperature going beyond secure
threshold or a fall detected according to the inertial
sensors) can be specified as a logic rule, and the pred-
icate representing the emergency can be added as an
exception in the body of rules illustrated above, us-
ing not5. In general, results of the context interpreta-
tion process are used for the (absolute and differen-
tial) evaluation of (i) significant aspects of the patient’s
quality of life (referred to as indicators) in terms of
clinical profile, quality of the environment, quality of
movements, quality of sleep and other daily behavior
and (ii) a well-defined set of health-related factors (re-
ferred to as items) according to influences among them
and values of related indicators.

The relation between items and indicators is the fol-
lowing: each indicator can contribute to the evaluation
of one or more items when no direct evaluation of the
item itself is available; one indicator may contribute
to the evaluation of several items and one item can be
evaluated through changes of several indicators; while
indicators do not have any mutual dependency or cor-
relation among them, items are correlated by depen-
dency relations indicating how a change in the value
of an item may impact values of other items (see Sec-
tion 5 for details on how such dependencies are used
for prevention of falls).

5Note that not in ASP is intended as negation as failure.
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Table 5

Indicators of well-being evaluated through context-interpretation

Indicator Name Description

dayActivity Level of activity vs. inactivity period during the day

earlyNight Quality of sleep in the early night hours (11 p.m. to 1 a.m.)

middleNight Quality of sleep in the middle night hours (1 to 4 a.m.)

lateNight Quality of sleep in the early morning hours (4 to 6 a.m.)

tempQual / humQual / brightQual Quality of the environment w.r.t. temperature / humidity / light

. . . . . .

Indicators used to assess the quality of life of the el-
derly have been identified with the help of domain ex-
perts and they can be evaluated through results of ques-
tionnaires/clinical tests or continuous monitoring sup-
ported by (i) data aggregation (e.g. quality of move-
ment), (ii) specific inference rules (e.g. quality of
sleep) and (iii) commonsense reasoning (e.g. quality
of the environment). A reduced list of indicators eval-
uated by the system and encoded in form of logic facts
is provided in Table 5.

At each reasoning cycle, indicators are evaluated
as a result of the interpretation of context data, and
their value is compared with the results of previous in-
ferences, thus obtaining differential values. Admissi-
ble values for each indicator are part of the medical
knowledge and are encoded in the knowledge base of
the system; their differential evaluation has four possi-
ble outcomes: worsening, improvement, no substantial
change, undefined.

Results of the absolute evaluation are defined over
specific ranges according to the medical practice,
which also guides the conditions used in logic rules for
evaluation, and they are expressed as logic predicates
of the form obsInd(I, V, H), where H is a time stamp
identifying the hour associated to the inference cycle
the evaluation refers to6.

If we consider again the night activity, context inter-
pretation makes it possible to evaluate indicators ear-
lyNight, middleNight and lateNight associated to the
quality of sleep. The following encoding is related to
lateNight according to the Hamiltonian Scale7 for the
score of Insomnia Late:

0 = No difficulty in sleeping
1 = Walking in early hours of the morning but goes

back to sleep

6Time stamp H = 0 is associated to the hour being evaluated,
while timestamps H > 0 refers to previous inference steps: the
highest H , the oldest the hour.

7http://healthnet.umassmed.edu/mhealth/HAMD.pdf

2 = Unable to sleep again if he gets out of bed

The correspondent encoding in ASP is as follows:

sleep_break :- sleep_interrupt(T).
back_sleep(T,T1) :- sleep_interrupt(T),

back_to_bed(T1), T<T1.

obsInd(lateNight,ok,0) :- not sleep_break,
not exception.

obsInd(lateNight,moderate,0) :-
sleep_interrupt(T), presence(R,A,T1),
R!=bedroom, back_sleep(T,T2), T<T1, T1<T2,
not obsInd(lateNight,consistent,0),
not exception.

obsInd(lateNight,consistent,0) :-
sleep_interrupt(T), not back_sleep(T),
not exception.

exception :- fall_detected.

Given the difficulty of the evaluation when there is
no human observer involved, what we obtain from the
reasoning process described so far is a partial evalu-
ation. Exceptions specific to the patient can be intro-
duced in the encoding (such as the triggering of the
evaluation rules only when there are no ongoing treat-
ments that may impact the evaluation). The following
step is that of using static dependencies and influence
relations between evaluated items in order to predict
the risk of worsening for items which have not been
evaluated. This process which we call prediction is an
off-line reasoning mechanism that suggests the care-
taker which are the risky items one has to pay atten-
tion to, given a partial evaluation. At the same time, re-
sults of the partial evaluation are used by the system to
determine how to react to certain conditions (preven-
tion). In the next section we illustrate SINDI’s reason-
ing tasks aimed at prediction and prevention in home
healthcare.

5. Context-aware prediction and prevention

A careful analysis of health care in home settings
suggests that health-related aspects that are crucial for
elderly care (referred to as items) can be classified into
three classes [17]:
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– functionalities, evaluated in terms of functional
disabilities including physical and cognitive func-
tional aspects of elderly behavior;

– daily activities, evaluated in terms of level of de-
pendence in performing daily activities;

– risks, representing complex aspects usually in-
volving functional disabilities, level of depen-
dence in daily activities and the clinical setting.

Items have been identified according to the medi-
cal practice in health assessment of the elderly [7] and
encoded in our declarative framework. An additional
class of items represents the state of the person and the
state of the environment in our context-aware model
of health. This classification is important for clinicians
because it makes it possible to keep the structure of
knowledge they are used to and thus it makes it easier
to investigate inference results.

Starting from these considerations, we characterize
SINDI’s reasoning tasks aimed at prediction and pre-
vention in our context-dependent scenario. We refer to
prediction as one or more (consistent) guesses that a
healthy condition might change into a risky condition.
Prevention is referred to as all those interventions that
may keep health changes within safe boundaries. Pre-
diction and prevention are strictly related: when risky
conditions are identified by the system as a result of
prediction, appropriate feedback actions are selected
and performed for prevention. We focus on the combi-
nation of pervasive monitoring and efficient reasoning
to support prediction and prevention in the context of
a logic-based approach that tackles both physical and
cognitive impairments.

In both prediction and prevention, context-awareness
is a desirable property since reasoning support should
consider not only static clinical knowledge, but also
user-specific needs as well as the evolving state of the
patient and of the environment. We use non-monotonic
logical reasoning to summarize and correlate sensor
data in a consistent interpretation of the situation, tak-
ing into account knowledge about elderly care, state of
the environment, state of the person monitored (local-
ization, movement), clinical profile information, and
results of previous inferences.

The evaluation process results in incomplete infor-
mation about items’ values, represented by a partially
labeled graph where nodes are items and oriented arcs
are influences of value changes of an item on the eval-
uation of other items. The following reasoning step is
in charge of predicting possible health changes for un-
labeled items; intuitively this is done by computing all

possible consistent labellings of the graph for the miss-
ing information according to SINDI’s logic model of
dependencies between items.

Arcs representing dependencies connecting items
are similar to arcs going from indicators to items. An
item may influence/be influenced by several items.

SINDI’s knowledge model allows different kinds of
dependencies among a source (item Ii or indicator
Indi) and a target (item I):

1. strictly negative/positive influence of item I
(resp. of indicators Indi) on item I1;

2. strictly negative/positive inverse influence of
item I (resp. of indicators Indi) on item I1;

3. directly proportional influence of item I (resp. of
indicators Indi) on item I1;

4. inversely proportional influence of item I (resp.
of indicators Indi) on item I1.

As a result of prevention, the logic program may
yield different solutions according to which of the de-
pendency relations prevail over the others. From these
results we extract labellings that are coherent in all so-
lutions or the ones that maximize the sum of weights of
the dependency arcs that determine the labellings [21].

The reasoning task also provides explanation (in
terms of alternative paths in the dependency graph) for
the inferred guesses. As a result, caregivers are sup-
ported in understanding how and why the health state
of a person could evolve in a given direction. We also
deployed a graphical interface to let caregivers access
data intuitively, but we still do not have sufficient test
data to give a fair evaluation of the caregiver inter-
face.

The logical framework of Answer Set Programming
(ASP) [10] is well suited to deal with such a com-
plex knowledge representation and reasoning task, in
that it overcomes most of the limitations of previous
logic programming systems. Compared to pure statisti-
cal approaches, logic inference based on ASP is highly
expressive and computationally more efficient because
it can deal with first-order representations, which are
much richer than the propositional ones characteriz-
ing probabilistic inference. Furthermore, ASP can deal
with incomplete information and commonsense rea-
soning using defaults. Cardinality and weight con-
straints together with program optimization techniques
can also be used to model different degrees of uncer-
tainty [9,14,32]. We use Clingo as the ASP reasoning
engine8.

8http://potassco.sourceforge.net/
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In the remainder of this section we focus on how we
represent appropriate knowledge used by the system to
react to specific situations and support prevention.

Since we believe feedback represents the key for ef-
fective preventive interventions, an additional part of
the domain knowledge of SINDI is related to the rep-
resentation of admissible feedback from the system
to the person monitored. Furthermore, given that each
person has a different clinical history of cognitive de-
cline and reacts in different ways to external stimuli, it
is extremely important to select the most appropriate
feedback according to the context.

The system can provide feedback in five different
ways:

– suggestions according to the medical practice and
the results of the prediction reasoning task;

– alerts when the system identifies behaviors or sit-
uations that are potentially dangerous according
to the results of the prediction reasoning task;

– alarms when specific environmental or clinical
conditions are detected;

– notifications when the system receives new input
or terminates the inference process;

– reminders according to an agenda.

The main difference between a suggestion and an
alert is that the second is triggered by the identification
of a specific behavior and may generate an immediate
action as output (e.g. a blinking light to indicate that
there is a call), while the first is purely based on the
medical knowledge encoded in the system and gives
a report as output. Alarms also generate an action but
usually need an immediate response (e.g. a call to the
caregiver when a fall is detected).

In our first specification reminders do not include
support on how to perform complex activities as in [3,
25]. The system deals only with simple reminders ac-
cording to an agenda.

Independently of how it is delivered, a feedback ac-
tion can be related to:

– the environment: making the environment safer
and of better quality, improving interaction with
the environment, e.g. a phone call that is not ac-
knowledged by the patient can trigger actions like
reducing the volume of the TV or blinking a light;

– the user’s behavior: suggesting how to modify
habits when the health assessment indicates risky
conditions or providing reminders according to an
agenda;

– the clinical setting: consulting a doctor, suggest-
ing a more accurate test, reviewing a therapy, re-
minding medical appointments, and so on.

The combination of inference results (prediction)
and context-related knowledge about the person and
the environment is used to determine (i) what should
be provided as feedback, (ii) in which form and (iii)
when.

The content of the feedback is determined according
to the medical literature (evidence-based studies) and
encoded in the system (see Section 6 for an example of
fall prevention).

The most appropriate form of feedback is inferred
by the system on the basis of the results of prediction
and context-related information about the patient and
the environment: the same feedback can be provided
in different forms (and at different times).

A feedback can be provided as soon as it is inferred
or at a later time. Alarms are usually immediate, while
other forms of feedback can be performed immediately
or at a later time according to:

– triggers: pushing a button at a specific time or
when particular conditions hold;

– user/caregiver preferences: qualitative ordering to
identify more urgent/important suggestions ac-
cording to the environmental/personal context
setting and the form of feedback;

– static ordering: certain forms of feedback may
have higher priority than others, simply because
of their nature; similarly, some communication
patterns can be preferred to others on the basis of
clinical settings.

When the system determines a set of feedback ac-
tions that should be performed at a given time, they are
qualitatively analyzed in order to infer which action is
more urgent. Each feedback action can be associated
to a list of possible reactions of the patient. Simple re-
actions can be monitored through sensors, while more
complex reactions can be inferred combining sensors
and reasoning.

A reaction to a feedback, when detected, is logged
to be used at a later time. Exploring this history, care-
givers can improve the way feedback actions are per-
formed and identify the most effective communication
patterns.

Learning interaction patterns is an interesting is-
sue [28], but we do not tackle it in this paper. Given
that we consider different forms of feedback, an ap-
propriate reward function should be identified in order
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to take into account how the combination of different
feedback actions and communication patterns impact
the quality of life of the person monitored.

6. A case study: Prediction and prevention of falls

Falls are the top cause for loss of independence
which then leads to a lower quality of life. It has
been shown that hip fractures continue to generate
significant costs throughout the first-year period af-
ter discharge. Costs associated with the treatment
of hip-fracture patients are about three times greater
than those resulting from the treatment of age and
residence-matched controls without a fracture [11]. As
a matter of fact, causes of falls in elderly adults are
quite diverse, the largest culprits being: environment-
related (31%), gait/balance disorders (17%) and dizzi-
ness/vertigo (13%) [27]. Identifying risk factors and
initiating preventive interventions can substantially
lower the probability of a fall. It is therefore very ad-
vantageous both for the patient’s quality of life and for
the minimization of the costs to devise systems that are
able to warn caregivers and patients that action has to
be taken well before a fall happens.

It is hard to identify a single specific cause for
falling, as falls usually depend on multiple interrelated
factors [27]. Some of them are mainly related to clin-
ical aspects (metabolism, nervous systems, anaemia,
hypothyroidism, osteoporosis and so on), while oth-
ers are more concerned with causal relations among
aspects (quality of the environment and health-related
items) whose worsening may predispose to risk of
falls.

We are interested in the latter set of causes, and
want to illustrate how the SINDI system reasons about
dependencies to support falls prediction and preven-
tion. Several assessment tools have been proposed and
used to evaluate the risk of falls, most of them im-
possible to apply without the help of a skilled hu-
man observer [24,35,40]. The reasoning component
of our system partially assesses the risk of falls ac-
cording to the Tinetti Performance-Oriented Mobil-
ity Assessment [35] scale, as it is one of the stan-
dard tools in our country for assessing mobility dys-
functions in the elderly. Since balance and gait as-
sessment using sensor data analysis are sometimes
non-definitive, they are combined with other informa-
tion about the environment, the clinical profile and
evidence-based medical knowledge derived from ex-
perimental trials [6,22,27,34].

6.1. Knowledge-based model and reasoning tasks

In the remaining part of this section we describe the
reasoning mechanism of SINDI applied to prediction
and prevention of falls. The Knowledge-based model
is as described in Section 2 and the reasoning tasks are
(i) prediction intended as the identification of possible
health evolutions, and (ii) prevention intended as the
action of providing appropriate feedback as a result of
prediction, and observing reactions to that feedback.

6.1.1. Fall prediction
In the SINDI system, health-related items that influ-

ence the risk of falls are illustrated in Table 6. We re-
call that indicators associated to items are periodically
evaluated and labelled as worsening, improving, being
stable or undefined, according to data gathered by the
sensors, test results and logic-based context interpreta-
tion and evaluation.

In order to identify a problematic item, the reason-
ing process takes into account the evaluation of all in-
dicators associated with that item and some additional
knowledge about specific pathologies and drugs that
can influence the evaluation.

Once problematic items have been identified, the
reasoning system analyses item-related dependencies
to infer possible evolutions of the general health state
and identifies items that are not yet problematic, but
are potentially at risk. A subset of dependencies among
items that are relevant to the risk of falls can be seen
in Fig. 2. In this way, the results of reasoning are not
purely clinical, but they are related to the context in

Table 6

Items and indicators used for prediction

Item Indicators used for evaluation

Mobility # steps, walking time

sitting down, standing up,
Balance equilibrium when sitting/standing,

test results

Gait walking/turning speed, step length,
test results

Nutrition weight loss, diet, test results

BMI weight

Vision optometric tests, lights usage

Hearing audiometric tests

Sleep night activity, hours of sleep

Environment lightening, humidity, temperature, barriers

Clinical profile # diseases, # drugs, age, gender
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Fig. 2. Results of prediction for the example in Section 6.2.

which they have been observed and to the evolution of
the person’s health state.

To sum it up, fall prediction is achieved through the
following steps:

– sensor data are aggregated and interpreted in or-
der to evaluate relevant indicators;

– values of indicators are used to identify problem-
atic items;

– dependency relations among items are used to
identify items at risk;

– following causal dependencies backwards, the
system is able to explain why an item is tagged as
being at risk.

6.1.2. Fall prevention
Results of prediction are used by SINDI to provide

feedback aimed at prevention. Research on the impact
of feedback in reducing the risk of falls has shown that
people informed that they are at risk of falls are more

likely to make changes in their habits and in the envi-
ronment they live in [22]. We identified a well known
set of aspects that can significantly contribute to fall
prevention among persons that are at risk. These as-
pects are summarized in Table 7.

Possible forms of feedback are indicated as S (sug-
gestion), AA (alarm), A (alert), N (notification), R (re-
minder) and they can be related to:

– the environment: how to make the environment
safer (e.g. suggestions about lighting, detection of
events that the patient has not noticed, and so on);

– correct behavior: which healthy habits should be
practiced and which potentially risky behaviors
are to be avoided;

– clinical actions: consult a doctor, suggest a more
accurate test, review medication, provide re-
minders according to an agenda, and so on.

It is interesting to notice that, according to [34,36],
falls prevention strategies targeting several risk factors
concurrently are more likely to have a greater impact in
reducing falls than strategies that target only one risk
factor.

Knowledge contained in Table 7 is represented as
logic predicates of the form
possible_form(Output, Form) associating the con-
tent of a feedback to its possible forms. In order to
identify which feedback to provide, in which form and
when, the reasoning component applies a set of rules
we refer to as a feedback policy. Rules of a feedback
policy can be of six different types:

Event-triggering rules trigger a specific form F as a
candidate for a feedback output X when events

Table 7

Classification of feedback outputs for fall prevention

Class Output Form System Action

Environment do not walk in the dark S, A, N turn lights on

check temperature S, A, N vocal warning

incoming call S, A, AA, N blinking lights

remove clutter S, A, N vocal warning

emergency AA call 911

Behaviour keep active S, A, N, R propose exercises

stand up slowly S, A, N vocal warning

fix carpets S vocal warning

use chair to get dressed S vocal warning

Clinical actions review drugs S on screen

see a specialist S, R on screen

(S) suggestion (AA) alarm (A) alert (N) notification (R) reminder
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Table 8

Mapping policy rules into ASP

Rule Description ASP Encoding

event-triggering rule rk1 : feedback_form(X, F ) ← obs(e1), . . . , obs(en), poss_form(X, F ), [C].

feedback selection rk2 : min{sel_form(F1), . . . , sel_form(Fk)}max ←
feedback_form(X, F ), [C].

default preference rule rk3 : sel_form(Fi) × sel_form(Fj) ← not exception, [C].

exceptions to default exception ← [C].

E1, . . . , En are detected and a boolean condition
C holds:

E1, . . . , En triggers feedback_form(X, F ) if C

(6)

Multiple choice rules express the fact that one of all
possible forms Fi for a given feedback output X
can be selected at each inference cycle:

1{select_form(X, Fi) : feedback_form(X, Fi)}1
(7)

Default ordering rules are binary relations expressing
the fact that, in general, a form F1 for a given
feedback output X is preferred to the form F2 for
the same feedback output, where > is a transitive
ordering relation:

select_form(X, F1) > select_form(X, F2)

(8)

Exceptions to default ordering are used to make a de-
fault ordering rule not applicable when a boolean
condition C holds:

exception(X) if C (9)

Event-Condition-Action (ECA) rules express the fact
that an action A should be performed by the sys-
tem when a given feedback output X of the form
F is the chosen candidate and a condition C
holds:

select_form(X, F ) causes A if C (10)

Consistency rules express the fact that some actions
A1, . . . , An cannot be executed together when

boolean condition C holds, and there is a prefer-
ential relation on which action should be dropped:

never A1 × . . . × An if C (11)

All these high level rules are automatically mapped
into ASP as illustrated in Table 8, while mapping for
rules of the form in Eqs (10) and (11) is done in a sim-
ilar way as in [19,20].

The rule-based specification illustrated above is a
compact way to express:

– which feedback outputs are triggered by a given
set of events;

– non-deterministic choice among alternative forms
for a feedback output;

– a static ordering on possible forms for the same
feedback output and exceptions to this ordering;

– actions associated to a feedback output of a spe-
cific form and a preference relation over conflict-
ing actions.

The result of the enforcement of a feedback policy
is a consistent set of actions to be performed by the
system.

The application of a feedback policy may yield sev-
eral solutions representing acceptable communication
patterns. In the current specification, one of the solu-
tions that minimizes the number of interruptions is se-
lected. It is interesting to study methods that enable
the system to learn the most effective communication
patterns, but the complexity of this domain makes it
harder than in contexts where only user preferences
matter [38].

6.2. Example

In the following example we want to capture one
possible concrete scenario to illustrate how the rea-
soning component works in prediction and prevention
tasks.
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In this scenario, we track a hypothetical patient
monitored by SINDI, called Eve. When Eve wakes up,
the data aggregation module and the reasoning compo-
nent of SINDI track her getting out of bed, movements
and location around the house. After a long period sit-
ting on the sofa and watching TV in the morning, Eve
walks to the kitchen to prepare some food. The evalu-
ation of her gait indicates that something has changed,
since walking speed is reduced due to the long inactiv-
ity period. Trying to get things out of a cupboard, Eve
slightly injures her back. This is noticed by the sys-
tem because her subsequent sitting-down movements
are performed with more difficulty.

Functional dependencies are evaluated every hour,
thus SINDI identifies gait, balance and mobility as
problematic after analyzing indicators like walking
speed and quality of sitting action in the time inter-
val under investigation. Given that gait and balance
problems directly affect mobility and that a reduced
mobility may have a negative impact on the risk of
falls, SINDI predicts a possible worsening of the risk
of falls. Balance also influences dependency in getting
dressed; though we have no indicators-based evidence
of it, the prediction task marks dependency in this ac-
tivity as being potentially at risk. Results of this step
of the inference process are illustrated in Fig. 2.

A set of event-triggering rules (6) identifies poten-
tial feedback in form of suggestions: stand up slowly,
use a stable chair to get dressed, don’t stay inactive
for too long during the day, keep stairs and walk areas
clear of clutter. An ECA rule (10) indicates that feed-
back outputs in form of suggestions and notifications
should be provided as a report at the end of the day.
This holds unless a form of higher priority is triggered
for the same feedback.

Later, the quality of the environment with respect
to light is marked as decreased. According to the pre-
diction task, a wrong use of lights may indicate visual
problems, thus a possible disability in vision is inferred
and added among possible causes for the prediction of
an increase of the risk of falls. Through the specifica-
tion of an appropriate event-triggering rule (6), another
suggestion is added to the list: do not walk across a
dark area.

In the following inference cycle, context interpreta-
tion reveals that Eve walked through areas that were
not properly lighted. At this point, an event trigger-
ing rule indicates that the same feedback output should
now be treated as an alert. Given that there is a default
ordering rule giving alerts higher priority than sugges-

tions, alert becomes the preferred form for the feed-
back “do not walk across a dark area”.

While suggestions are usually included in a report,
alerts are usually associated with a specific action to
be performed. If there are no other conflicting actions
inferred by the system, the feedback is provided as in-
dicated by the corresponding ECA rule, in a way that
minimizes interruptions.

This example shows how inference results predict-
ing potential risks are used to identify the appropriate
feedback for prevention, and how policy rules make
this list dynamic according to how the prediction and
the context evolve. In this way, SINDI can provide the
most appropriate feedback at the right time. In fact, if
the wrong use of lights was not detected, a feedback
related to the use of lights would have been a sugges-
tion in the final report, rather than an alert.

In the next day, the impact of feedback and the way
Eve reacts to them are monitored: in case Eve reacts
to one of the feedback outputs (e.g. she becomes more
active), a policy rule of the form described in (6) can
generate a Notification that is added to the daily report.
Notifications are used to give evidence of (i) whether
Eve has followed or not feedback outputs and (ii) how
much does preventive intervention impact the risk of
falls. This makes it possible to keep track of the whole
cycle (feedback, reaction to feedback when available,
impact on possible evolutions of the health state) and
it can be a source of data for tests and trials to iden-
tify the correct intervention for a more general class of
patients.

7. Preliminary evaluation

The main contribution of our solution is that data are
interpreted by a component that is able to draw from
a knowledge database and make complex inferences.
Our approach to context-aware monitoring has the fol-
lowing desirable characteristics to support healthcare
and well-being:

– declarative context representation and interpreta-
tion make it possible to cope with an assortment
of patient conditions under different settings;

– prediction of situations that can cause drastic
changes for the worse of the quality of living
make it possible to identify preventive strategies
to maintain autonomy and independence for a
longer time;
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– continuous monitoring makes it possible to auto-
matically collect a massive amount of data that
can be used to identify interesting case studies.

It is very hard to evaluate the performance of SINDI
in its entirety without extensive field deployment and
analysis. We are working towards this goal but do not
yet have hard results from field experiments that are
long enough and diverse enough to yield scientific sig-
nificance.

However, we tested the correctness of inference re-
sults concerning context interpretation based on plau-
sible sensor data. To do that, we generated large data
sets simulating several years of the household activ-
ities of an agent-modeled person using Repast Sim-
phony (Repast S), a free and open source agent-based
modeling toolkit. The simulation scenario is specified
in an XML file describing rooms, areas, properties of
cells, position of sensors, light and heat sources, status
of windows and light switches.

The data-generation is driven by two different event
schedulers that are used to: (i) simulate the behaviour
and the habits of the person, (ii) simulate light, tem-
perature and humidity evolution during the day.

In order to simulate the behaviour and the habits of a
person living and moving in a realistic home environ-
ment, we defined an XML-based file that contains a de-
tailed list of high-level Activities that the Person agent
is required to execute during the data generation; activ-
ities are composed of one or more ActionSets, which
are composed of several low-level Actions that indeed
specify what the Person agent should do.

The second event scheduler used by the data gen-
eration tool is the one controlling the evolution of the
natural light during the simulated day and the propa-
gation of temperature, humidity and light variations in
the simulation environment.

Using such data generated in a complete simulation
scenario, we did several tests on the WSN and on the
inference engine9, mainly concerning the localization
algorithm: the correct location in the grid is identified
70% of the time without further filtering techniques,
and the average distance of the solution from the real
position is between 25 and 50 centimeters.

The reasoning processes for context interpretation
and evaluation takes advantage of the non-monotonic
nature of ASP. If we consider localization, results are

9We evaluated ASP programs by using Gringo [9] and
Clasp [8], which supports constraints, choice rules and weight
rules [23].

obtained quite fast on a grid of 50 × 50 cells with 500
time steps. However, when the size of the ground in-
stance becomes bigger (e.g. for planning and schedul-
ing), we believe that the integration of ASP reason-
ing with constraint solving techniques [16] could make
context interpretation from sensor data more efficient
and we plan to investigate it. This of course does not
include situations in which emergencies arise, since
they are detected almost immediately.

Reasoning tasks for prediction rely on the compu-
tational power of ASP: a complex reasoning process
takes into account the whole of dependencies to find
maximal consistent labellings; local explanation can
consider an arbitrary class of items to find subsets
of dependency arcs that represent a minimal common
explanation, obtained by using qualitative and quan-
titative optimization techniques. Tests on random in-
stances10 showed that when a solution exists, the pre-
diction task produces an average of 60% consistent
guesses for the unlabeled items even with less than
10% initial information.

Prevention is based on a compact representation of
feedback policies that are automatically mapped into
ASP and enforced by applying consistency mecha-
nisms and adaptive optimization strategies taking into
account contextual settings.

Given the high variability among trials and studies
addressing prediction and prevention issues, it is still
difficult to extract a coherent picture of what leads to
disability and to develop coherent prevention strate-
gies. In this respect, our system has the potential to au-
tomatically collect a massive amount of data in order
to evaluate context-related prediction patterns and ef-
fective communication strategies for prevention.

There are several issues that have to be considered
and which need further investigation. Among them, we
mention the fact that extending the Knowledge Base of
the system with new evidence-based medical knowl-
edge in a modular and consistent way is a challenge,
and appropriate interaction paradigms targeted to the
elderly should be designed and developed.
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