
Modeling and intelligibility in ambient

environments

Anind K. Dey

Human-Computer Interaction Institute, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213,
USA. E-mail: anind@cs.cmu.edu

Abstract. The field of ambient environments and ubiquitous computing has matured greatly over the past 20 years. We are no

longer building toy applications but are focusing on real applications that have real impacts on user. We must now consider

usability concerns when designing these applications, and particularly support for intelligibility, or the ability of applications to

explain their behavior. This paper discusses the importance of intelligibility, particularly for applications that model human

activity, and describe work my group has conducted in understanding how users understand these applications and toolkit sup-

port for intelligibility.

Keywords: Intelligibility, modeling context-aware, ambient environments

1. Introduction

Weiser’s vision of a future world with ubiquitous,

invisible computing [22] has led to the promise of

smart environments that anticipate, adapt to, and pro-

vide for occupants’ needs. An important aspect of

this vision is context-aware computing, where appli-

cations adapt their behavior to changes in their local

context [17]. Context is any information that can be

used to characterize the situation of an entity. An

entity is a person, place, or object that is considered

relevant to the interaction between a user and an ap-

plication, including the user and application them-

selves [7]. Application behavior adaptation can in-

clude presenting information related to the current

context, presenting a list of services relevant to the

current context and executing a service based on the

current context. A common example of a context-

aware application is the mobile tour guide [1]. A user

walks around a smart environment with a handheld

device that proactively shows information to the user

about the exhibit or venue she is in front of. In addi-

tion, it can direct the user to other exhibits that are

similar to the ones the user has enjoyed most, based

on the amount of time she has spent at each exhibit,

for example.

The vast majority of the research in context-aware

computing in smart environments has been focused

on two main areas. The first area is the building of

novel applications, such as the tour guide systems

mentioned above, reminder systems [6], environ-

mental control systems [8], location-based services

[21] and context-based retrieval systems [9] where

stored information is tagged with context to aid later

retrieval of that information. The second area is the

building of software infrastructure, or middleware,

that supports programmers in more easily building

context-aware applications [3,7,18]. These efforts are

an important first step towards context-awareness

being viable, and now that it is possible to build in-

teresting applications, there is a need to address the

challenges faced by end-users – the occupants of

smart environments – who are being asked to adopt

and use these applications.

Similarly, a major focus in ubiquitous computing

is in recognizing human activity in these smart envi-

ronments. The recent Ubicomp, Pervasive Comput-

ing and Ambient Intelligence conferences are full of

papers recognizing a variety of human activities such

as medicine taking [20], movement through a house

[16], and washing dishes [12]. The ability to model

everyday human behavior and to accurately infer user

Journal of Ambient Intelligence and Smart Environments 1 (2009) 57–62
DOI 10.3233/AIS-2009-0008
IOS Press

1876-1364/09/$17.00 © 2009 – IOS Press and the authors. All rights reserved

57

intent and goals from that behavior is the holy grail
of context-aware computing. While the focus of con-

text-aware computing has been on location and other

simple forms of context, these are just proxies for

user intent.

However, the ability to accurately model this be-

havior is limited at this time to simple activities and

intent cannot be adequately inferred. What often re-

sults are either simplistic applications that have been

scoped down so much that they are not interesting, or

interesting applications that often make mistakes in

selecting and executing a context-aware behavior. As

a research community developing and evaluating

ambient intelligent systems for smart environments,

we should be focusing on pushing the boundary of

what can be built, and building more interesting ap-

plications. That means needing to both improve our

ability to model real human activities, and provide

support to users when applications do things that are

confusing or are incorrect.

2. Activity modeling

My research group in the Human-Computer Inter-

action Institute at Carnegie Mellon University is ac-

tively engaged in modeling real human behavior1 .

Currently, four different types of activities are being

modeled:

• how users, and in particular elders, drive [23];

• how and when users participate in physical ac-

tivity [11];

• the routines and deviations of dual-income fam-

ilies [4]; and,

• how users with memory impairments engage

with and retain memories [10].

In each of these settings, it is currently impossible

to perfectly model these activities. As with any real

human behavior, there is a lot of randomness in

sensed data about these behaviors and it is not possi-

ble to sense everything you want to about a particular

behavior. In the absence of this perfection, my group

is investigating the concept of intelligibility, which is

a system’s ability to explain its own behavior, both

the suggestions it makes or the actions it takes and

the rationale or reasoning process for coming up with

those suggestions and actions.

1 More information on these projects available at

http://www.cs.cmu.edu/~anind.

3. Intelligibility

One of the biggest challenges to the usability of

context-aware applications is the difficulty of under-

standing why they do what they do. The lack of intel-

ligibility of an application can be a serious issue that

may lead to application failure or abandonment due

to lack of trust [14] in the system. Intelligibility as an

application feature includes supporting users in un-

derstanding, or developing correct mental models of

what a system is doing, providing explanations of

why the system is taking a particular action, and sup-

porting users in predicting how the system might

respond to a particular input. Mental models are a

hypothetical construct defined as a mental represen-

tation of a real or imagined situation. This informa-

tion is essential for helping users form useful mental

models about systems and making systems usable

[15]. Without this information, users may even aban-

don or refuse to adopt a system because they are un-

able to understand how it works, or even whether it is

working. In other related fields, such as intelligent

agents, researchers have established that the two ma-

jor design issues for such systems are accu-

racy/performance and user trust [13]. For example,

the Clippy Microsoft Agent has largely been aban-

doned because it frustrated users by making errone-

ous suggestions with no explanation of why these

suggestions were being made. In response to user

frustration, Amazon.com added a link under a user’s

recommendations: “Why is this recommended for

you?” In human-computer interaction (HCI), feed-

back is a fundamental feature of any desktop applica-

tion, and, in general, HCI researchers and practitio-

ners know how to support intelligibility for this do-

main. However, there are significant challenges when

working with context-aware applications and sup-

porting intelligibility has been largely ignored in this

domain [5].

First, context-aware applications are typically de-

signed in two ways: either as a collection of determi-

nistic if-then rules where a rule is fired when the pre-

specified collection of context has been observed, or

as a machine learning system where context is input

into a learned model and an action is probabilistically

chosen. In the first case, when the collection of rules

is large enough and there is overlap in the rule base,

it can be quite difficult for a user to understand why a

particular rule was fired or what she needs to do in

order to obtain a particular action. In the second case,

when a machine learning system is being used, be-

cause the system may change its behavior over time,

A.K. Dey / Modeling and intelligibility in ambient environments58

its behavior may be quite difficult to understand and

predict. Clippy, spam filters and recommendation

systems are good examples of this latter case. It is

clear that the issues of rules and machine learning

systems apply to more than just context-aware appli-

cations, but they are the norm in context-aware sys-

tems.

Second, and more specific to context-aware appli-

cations, is that they use mostly implicit input to de-

termine what actions to take on behalf of a user. Us-

ers may have little understanding of what the system

considers to be input, unlike in a desktop application

where input is explicitly specified. With the input to

context-aware systems being implicit, understanding

why an application took a particular action or pre-

dicting what action the system will take given par-

ticular user action, can be very difficult [5]. As a

simple example, take a context-aware audio tour

guide that provides an increasing amount of informa-

tion as the user shows more engagement with an ex-

hibit. If the system inferring engagement measures

(and these systems usually do) how much time the

user is in front of the exhibit, it could present infor-

mation to a user even though he may just be having a

conversation with a friend near the exhibit. Without

understanding the model of what the system is sens-

ing and inferring, and how it uses this information,

users can get quite frustrated.

As stated above, intelligibility derives from a

combination of users’ mental models of, explanations

of, and predictions about application behavior. From

the perspective of an application designer, this means

that it is crucial to understand how mental models

develop, what sorts of explanations of a system will

support correct mental model development, and what

feedback will allow users to make correct predic-

tions.

4. Understanding how mental models develop

An initial exploration has been performed about

how users form mental models about complex sys-

tems, within the domain of interruptibility. In a 6-

week pilot study of how non-technical users form

mental models, a context-aware system was deployed

that used user-trained sensor-based statistical models

to provide estimates of an individual’s interruptibility

[19]. These estimates were displayed outside the in-

dividual’s door for coworkers to see (see Fig. 1).

Two separate deployments were conducted, one in

which 6 co-workers only saw the interruptibility es-

timate, and one in which a different set of 6 co-

workers saw the interruptibility estimate along with

up to 3 features that contributed the most to the inter-

ruptibility estimate (e.g., talking detected, typing on

the computer and changes in window focus) (see

Fig. 2). During the deployment, co-workers who in-

teracted with these displays were interviewed, elicit-

ing their mental model of how the system was work-

ing. The interviews focused on soliciting the set of

sensors subjects thought were contributing to the

estimate, the relative importance of sensor inputs,

how these inputs were synthesized into an estimate

and finally, how their experiences in using the system

helped to confirm their understanding of the system.

Subjects reported fewer numbers of sensors being

part of the system as the study progressed. In terms

of correctness of sensors reported, subjects also im-

proved as time went on, with a higher percentage of

sensors reported actually being part of the real sys-

tem. In both cases, however, there was no difference

between those who received feedback about relevant

features and those who did not.

Subjects also reported a wide variety of model

types when describing how the interruptibility

Fig. 1. Door displays outside managers’ offices.

Fig. 2. Door display visualization to support intelligibility.

A.K. Dey / Modeling and intelligibility in ambient environments 59

estimate was arrived at. Two subjects described a

simple set of rules (e.g., if user is on phone, set esti-

mate to highly uninterruptible). One subject believed

that the display was being controlled manually by the

user whose interruptibility was being estimated. Two

subjects described a decision tree-like model in

which the system builds a list of activities from past

history and tests the current situation along a number

of branching conditions to see if it matches an activ-

ity in the list. The final three subjects described a

similar model, with the addition of simple statistics to

determine degrees of interruptibility (e.g., deviation

from mean level of historical sensed activity).

While these three subjects were able to describe a

model that was closest to the actual system, incorpo-

rating history and statistics along with prioritized

sensors, our other five subjects were not. To be un-

derstandable to users, context-aware systems that use

machine learning and estimates of current state must

effectively communicate the key concepts of learning

from history and statistical inference from current

sensor data. Equally clear from our results is that

incorporating feedback about relevant features was of

only moderate use in helping subjects understand the

system’s operation. Similarly, the use of a gradient

scale to represent interruptibility estimates was only

successful in conveying the continuous nature of the

estimate to half of our subjects, and fewer made the

connection between this and statistical patterns.

It is quite surprising that the subjects basically de-

scribed the same model structure throughout the

study. The subjects were expected to frequently mod-

ify their models as they interacted with the system

more over time and observed its behavior. Even

when they had conflicting experiences or clear defi-

ciencies in incorporating known components of the

system, they maintained their earlier model. Moray’s

theory of “cognitive lockup”, where operators main-

tain their beliefs about a system even in the face of

contradictory evidence is intended to be applied to

expert users who have an understanding of the sys-

tem’s normal operating parameters, but it appears

that it applies to relatively novice subjects as well.

An interesting final result was that participants

were able to ascribe basic machine learning concepts

(e.g., decision trees, statistical analysis) to our con-

text-aware system, despite being unfamiliar with the

field. These results are encouraging in that designers

can potentially know what to expect in terms of user

sophistication with respect to machine learning.

5. Toolkit support for intelligibility

While more studies need to be conducted into how

to best support intelligibility in context-aware appli-

cations, the next step is to build support for intelligi-

bility into a toolkit for context-aware applications, To

this end, the Context Toolkit [7] has been augmented

with such capabilities, at least initial ones.

With existing context infrastructures, a simple

smart environment application such as automatically

controlling the lighting in a home based on location

of people would be implemented as follows: The

application logic consists of finding a discoverer,

querying it for relevant people inputs, and subscrib-

ing and maintaining connections to each of those

inputs. When the application receives data from each

input, it must maintain internal state information

keeping track of each person’s location. When a us-

er’s location matched a location of interest, an output

or service would be called to change that location’s

lighting appropriately.

The Context Toolkit was augmented with a new

abstraction, Situation, to simplify the development of

such applications. Now, the application logic consists

of creating a Situation with a description of the in-

formation it is interested in (locations of specific

people) and what the Situation should do when (set

the lighting level based on the occupancy). The ap-

plication logic would consist of a number of context

rules of the following form: when any of users (A, B,

C, D) are in the kitchen and it is nighttime, turn on

the overhead lights to maximum. The Situation han-

dles the remaining logic: discovery, mapping to indi-

vidual sources of context and data, determining when

input is relevant and executing appropriate services.

Developers can easily encapsulate their context-

aware logic using Situations. Situations also provide

the necessary functionality to obtain a real-time exe-

cution trace for an application. They have methods

for exposing the context rules they encode and for

changing the values of parameters.

Situations were extended to include an Introl ob-

ject, to support intelligibility and control. It is usually

invisible, but can be made visible either through the

application user interface or via a keyboard hotkey.

Introl provides information on context rules and their

execution and current context values (as well as lim-

ited information on how they were derived), and the

ability to modify parameters (and therefore applica-

tion logic). While this is likely too “clunky” for most

A.K. Dey / Modeling and intelligibility in ambient environments60

end-users, it does support basic intelligibility and

control for end-users across all Situation-based appli-

cations with no extra effort required by the applica-

tion developer. Building usable intelligibility and

control interfaces is an open challenge [2] that the

toolkit support for interface designers attempts to

address.

To support interface designers, support for Situa-

tions was extended with language specific support for

Visual Basic and Flash, two languages commonly

used by designers. These extensions allow designers

to create custom intelligibility interfaces based on the

information that can be collected from Situation and

Introl objects, and provide a tremendous amount of

flexibility in designing these interfaces, including

replacing the application’s original interface. Fig-

ure 3 shows an example application built in Flash by

a designer: an office activity monitoring application,

in which a user can get more information about a

user’s state by hovering the mouse over the user’s

name.

6. Summary

Intelligibility is a crucial usability consideration in

smart environments. While only a preliminary inves-

tigation has been conducted into how users form

mental models about complex context-aware sys-

tems, it has resulted in some very useful insights

about users’ abilities to reason about complex sys-

tems, and the challenges in conveying how complex

systems work. Additional studies are being planned

to investigate how best to support intelligibility in

context-aware systems. Some initial work has been

conducted on toolkit support for building intelligibil-

ity interfaces. The overall approach is to conduct

studies, explore the space of interaction techniques

for improving intelligibility and then continue build-

ing reusable support for intelligibility into a toolkit.

Through this research, contributions will be made

to the growing interest in context-aware and smart

environment systems. This work will enable and em-

power users to engage with ambient intelligence sys-

tems by making them more understandable. This

work will benefit smart environment researchers

working in interaction design, application design and

infrastructure support, as well as researchers looking

to support intelligibility in complex systems, and

make Ubicomp applications more useful and usable.

References

[1] G.D. Abowd, C.G. Atkeson, J. Hong, S. Long, R. Kooper and

M. Pinkerton. Cyberguide: A mobile context-aware tour

guide. ACM Wireless Networks 3 (1997), 421–433.

[2] M. Assad, D. Carmichael, J. Kay and B. Kummerfield. Per-

sonisAD: Distributed, Active, Scrutable Model Framework

for Context-Aware Services. Proc. Pervasive 2007 (2007),

55–72.

[3] J.E. Bardram. The Java Context Awareness Framework

(JCAF) – A Service Infrastructure and Programming Frame-

work for Context-Aware Applications. Proc. Pervasive 2005

(2005), 98–115.

[4] V. Bellotti and W.K. Edwards. Intelligibility and Account-

ability: Human Considerations in Context-Aware Systems.

Human-Computer Interaction 16(2-4) (2001), 193–212.

[5] S. Davidoff, M.K. Lee, C. Yiu, J. Zimmerman and A. K.

Dey. Principles of smart home control. Proc. Ubicomp 2006

(2006), 19–34.

[6] A.K. Dey and G.D. Abowd. CybreMinder: A Context-Aware

System for Supporting Reminders. Proc. HUC 2000 (2000),

172–186.

[7] A.K. Dey, D. Salber and G.D. Abowd. A conceptual frame-

work and a toolkit for supporting the rapid prototyping of

context-aware applications. Human-Computer Interaction

16(2-4) (2001), 97–166.

[8] S. Elrod, G. Hall, R. Costanza, M. Dixon and J. Des Rivières.

Responsive office environments. Communications of the

ACM 36(7) (1993), 84–85.

[9] M. Lamming and M. Flynn. Forget-me-not: IntimateComput-

ing in Support of Human Memory. Proc. FRIEND21 ’94

(1994), 125–128.

[10] M.L. Lee and A.K. Dey. Lifelogging memory appliance peo-

ple with episodic memory impairment. Proc. Ubicomp 2008

(2008), 44–53.

[11] I.A. Li, A.K. Dey and J. Forlizzi. Monitoring and feedback to

increase awareness of exercise activities. Ubicomp 2005

Workshop on Monitoring, Measuring and Motivating Exer-

cise: Ubiquitous Computing to Support Physical Fitness.

2005.

[12] B. Logan, M. Healey, E.M. Tapia and S. Intille. A long-term

evaluation of sensing modalities for activity recognition.

Proc. Ubicomp 2007 (2007), 483–500.

[13] P. Maes. Agents that reduce Work and Information Overload.

Communications of the ACM 37 (1994), 30–40.

[14] B. Muir. Trust in automation: Part I: Theoretical issues in the

study of trust and human intervention in automated systems.

Ergonomics 37(11) (1994), 1905–1922.

[15] D.A. Norman. The Design of Everyday Things. New York,

Doubleday. 1990.

Fig. 3. Activity Monitoring intelligibility interface.

A.K. Dey / Modeling and intelligibility in ambient environments 61

[16] S.N. Patel, M.S. Reynolds and G.D. Abowd. Detecting hu-

man movement by differential air pressure sensing in HVAC

system ductwork: An exploration in infrastructure mediated

sensing. Proc. Pervasive 2008 (2008), 1–18.

[17] B.N. Schilit, N.I. Adams and R. Want. Context-aware com-

puting applications. 1st International Workshop on Mobile

Computing Systems and Applications (1994), 85–90.

[18] B.N. Schilit. System architecture for context-aware mobile

computing. Ph.D. Dissertation, Columbia University, 1995.

[19] J. Tullio, A.K. Dey, J. Chalecki and J. Fogarty. How it works:

a field study of non-technical users interacting with an intel-

ligent system. Proc. CHI 2007 (2007), 31–40.

[20] S. Vergun, M. Philipose and M. Pavel. A statistical reasoning

system for medication prompting. Proc. Ubicomp 2007

(2007), 1–18.

[21] R. Want, A. Hopper, V. Falcao and J. Gibbons. The active

badge location system. ACM Transactions on Information

Systems 10 (January 1992), 91–102.

[22] M. Weiser. The computer for the 21st century. Scientific

American 265(3) (1991), 94–104.

[23] B.D. Ziebart, A. Maas, A.K. Dey and J.A. Bagnell. Navigate

like a cabbie: Probabilistic reasoning from observed context-

aware behavior. Proc. Ubicomp 2008 (2008), 322–331.

A.K. Dey / Modeling and intelligibility in ambient environments62

