Supplementary Data

Potential Utility of Soluble p3-Alcadeinα Plasma Levels as a Biomarker for Sporadic Alzheimer’s Disease

Kenji Kamogawa\textsuperscript{a}, Katsuhiko Kohara\textsuperscript{a, c, *}, Yasuharu Tabara\textsuperscript{b, c, d}, Rie Takita\textsuperscript{a}, Tetsuro Maki\textsuperscript{a, e}, Tomoko Komoto\textsuperscript{a}, Saori Hata\textsuperscript{a} and Toshiharu Suzuki\textsuperscript{d}
\textsuperscript{a}Department of Geriatric Medicine, Ehime University Graduate School of Medicine, Ehime, Japan
\textsuperscript{b}Department of Basic Medical Research and Education, Ehime University Graduate School of Medicine, Ehime, Japan
\textsuperscript{c}Proteo-Medicine Research Center, Ehime University Graduate School of Medicine, Ehime, Japan
\textsuperscript{d}Department of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan

Accepted 13 April 2012
Supplementary Figure 1. Schematic diagram of amyloid-β precursor protein (AβPP) and Alcadein (Alc) metabolisms. Alc is cleaved successively by α-secretase followed by γ-secretase, resulting in the release of p3-Alc. Since p3-Alc is not aggregated like amyloid-β (Aβ), p3-Alc is detectable in human cerebrospinal fluid (CSF) and blood [1, 2].

Supplementary Figure 2. Schematic diagram of p3-Alcadein fragments following γ-secretase cleavage. p3-Alcadein35 (p3-Alc35), a peptide that includes the sequence from Ala817 to Thr852 of Alcadein1, is a major molecule of p3-Alc γ-secretase cleavage. Functional alteration of the enzyme can increase minor molecules [1, 3].
REFERENCES

