Erratum

Copper in Alzheimer’s Disease: A Meta-Analysis of Serum, Plasma, and Cerebrospinal Fluid Studies

Mariacarla Ventrigliaa, Serena Bucossib, Valentina Panettac and Rosanna Squittia,∗

aDepartment of Neurology, “Campus Biomedico” University, Rome, Italy
bDepartment of Neuroscience, AFaR – Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
cMedical Statistics and Information Technology, AFaR – Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
dL’altrastatistica srl-Consultancy and Training-Biostatistics office, Rome, Italy

Abstract. This contribution reviews and corrects data from our previous meta-analysis, which appeared in the Journal of Alzheimer’s Disease in 2011 concerning the role of copper in Alzheimer’s disease. We repeated the meta-analysis after excluding four of the five studies from our laboratory to avoid possible bias in the result. In addition, we included two studies on serum copper levels in Alzheimer’s disease not previously considered. The results indicate higher levels of copper in Alzheimer’s disease patients than in controls, confirming our previous conclusion.

Keywords: Alzheimer’s disease, copper, meta-analysis, serum

We read with great interest the study appeared in the Journal of Alzheimer’s Disease by Mueller and colleagues [1] on abnormalities of copper and iron homeostasis predicting cognitive decline in mild cognitive impairment. When discussing their results, the authors commented on the meta-analysis by Bucossi and co-workers [2]. The authors raised two concerns about the results of the meta-analysis that deserve attention and could certainly improve the quality of the meta-analysis already published. Specifically, they questioned the outcome of the meta-analysis, ascribing the result on serum studies to a bias originating from the fact that a bulk of the studies were carried out in the same (i.e., our) laboratory. However, in the published meta-analysis, in order to check for a possible bias that could have affected the results, we repeated the meta-analysis after excluding four of the five studies from our laboratory [3–6]. After this exclusion, the meta-analysis confirmed a higher copper level in AD patients compared to healthy controls (reported in Results, studies on copper and plasma, last paragraph) [2].

As to their second concern, Mueller and colleagues correctly note that two studies [7, 8] were not included in the meta-analysis. We thank the authors for bringing these two studies to our attention, even though the study of Molaschi and co-workers [7] actually does not support our inclusion on the basis of the inclusion-exclusion criteria used in the published meta-analysis. We performed the current meta-analyses following the inclusion-exclusion criteria precisely and

ISSN 1387-2677/12/$27.50 © 2012 – IOS Press and the authors. All rights reserved
following procedures detailed in our previous meta-analysis [2]. To reply to both concerns, we have run two additional meta-analyses, both including the studies by Molaschi and co-workers [7] and by Shore and colleagues [8]. Figure 1 shows the results when just one study from our laboratory [9] is included in the meta-analysis. The results indicate that serum copper levels were significantly higher in AD patients than in healthy controls. Figure 2 shows the results when the two studies mentioned above are included in the meta-analysis together with the same studies taken into account in the already published meta-analysis [2]. Again, the results indicate higher levels of copper in AD patients than in controls.

It is imperative to carefully consider meta-analyses or reviews that claim to objectively evaluate data collected over a long period of time as Mueller and co-workers [1] suggested in this discussed case and Schrag and colleagues [10] have previously pointed out. We have taken this opportunity to revise and correct our previous incomplete data but also to strengthen our conclusion.

ACKNOWLEDGMENTS
This work was supported by the following grants: 1) European Community’s Seventh Framework Programme Project MEGMRI (n. 200859). 2) FISM – Fondazione Italiana Sclerosi Multipla – Cod.2010/R/38 ‘Fatigue Relief in Multiple Sclerosis by Neuromodulation: a transcranial Direct Current Stimulation (tDCS) Intervention. [FaMuSNe]; 3) Italian Ministry of Health Cod. GR-2008-1138642 ‘Promoting recovery from Stroke: Individually enriched therapeutic intervention in Acute phase’ [ProSIA] 3) Italian Health Department: ‘Profilo...
Fig. 2. Standardized mean difference (SMD) computed from the studies on Cu serum levels (µmol/L) [3–9, 11–22]. SMDs between patients and controls are represented by squares, whose sizes are proportional to the sample size of the relative study. The whiskers represent the 95% confidence interval (CI). The diamond represents the pooled estimate based on the random effects model, with the centre representing the point estimate and the width the associated 95% CI. Heterogeneity Chi-squared = 75.22 (d.f. = 18), p < 0.000. I-squared (variation in SMD attributable to heterogeneity) = 76.1%. Estimate of between-study variance Tau-squared = 0.1710; Test of SMD = 0: z = 3.61, p = 0.000.

Biologico e Genetico della Disfunzione dei Metalli nella Malattia di Alzheimer e nel ‘Mild Cognitive Impairment’” [RF 2006 conv. 58].

REFERENCES

