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Abstract. The missing heritability exhibited by late-onset Alzheimer’s disease is unexplained and has been partly attributed
to epistatic interaction. Methods available to explore this are often based on logistic regression and allow for determination
of deviation from an expected outcome as a result of statistical epistasis. Three such methodologies including Synergy Factor
and the PLINK modules, –epistasis and –fast-epistasis, were applied to study an epistatic interaction between interleukin-6
and interleukin-10. The models analyzed consisted of two synergistic interactions (SF ≈ 4.2 and 1.6) and two antagonistic
interactions (SF ≈ 0.9 and 0.6). As with any statistical test, power to detect association is paramount; and most studies will be
underpowered for the task. However, the availability of large sample sizes through genome-wide association studies make it
feasible to examine approaches for determining epistatic interactions. This study documents the sample sizes needed to achieve
a statistically significant outcome from each of the methods examined and discusses the limitations/advantages of the chosen
approaches.
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INTRODUCTION

Studies into complex disorders

Characterizing the genetic basis of many diseases
is proving difficult, despite their relative commonality
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and familial clustering. This information is needed in
order to create or perfect potential screening technolo-
gies and develop effective treatments. This can then
be further exploited in terms of pharmacogenetics to
enable identification of individuals who would ben-
efit most from a tailored drug regime [1]. Complex
diseases are influenced in a variety of ways, by both
genetic and environmental factors. Genetic risk fac-
tors are frequently proving to be of large number and
small effect size creating a cumulative effect, which
contributes to the overall. This is in contrast to clas-
sical Mendelian disorders (such as familial forms of
breast and colon cancer, maturity onset diabetes of the
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young (MODY), and early-onset familial Alzheimer’s
disease) which are caused by known, fully penetrant
genetic factors.

In an attempt to uncover these factors, genome-
wide association studies (GWAS) have examined the
genomes of thousands of individuals to a depth of
several hundred thousand SNPs distributed across the
genome, and succeeded in reproducibly identifying
a number of novel gene candidates. The AlzGene
database is a comprehensive catalogue of published
findings in LOAD [2]. However, the reported effect
sizes are generally small (odds ratios of 1.5 or less) and
therefore cannot explain the overall heritability of these
diseases [3]. Despite the contribution made by GWAS
in identifying new genes in complex disorders, there
is still a sizable component of heritability that remains
to be explained. For example, even with the discov-
ery of new genes in late-onset Alzheimer’s disease
(LOAD) no more than 40–50% of the genetic compo-
nent is accounted for at present. The current hypothesis
is that such disorders are both genetically complex;
no simple mode of inheritance, and heterogeneous;
a result of mutations and polymorphisms in multi-
ple genes that interact together and with non-genetic
factors [4].

Epistasis

Several theories exist as to which factors account for
this missing heritability, and it is likely to be a com-
bination of several factors that will explain it more
completely. One possible explanation is that of epis-
tasis, a concept which has become an increasingly
used generic term to mean any different way in which
one area of the genome can interact with another fac-
tor [5]. In studying epistasis, a distinction between
the usages of the term must be made and their dif-
ferences understood so that appropriate investigations
and methodologies can be applied, and pertinent con-
clusions drawn. This too is considered a limitation of
examining epistasis and is often cited as the reason for
poor reproducibility of findings. These explanations of
epistasis can be roughly categorized into three broad
forms which are summarized here [6]

Compositional epistasis
Of the three, this is the most similar to the original

term coined around 100 years ago by William Bateson
[7] to represent the effects of one allele masking those
of an allele at a different loci.

Functional epistasis
This represents protein-protein interactions as

opposed to strictly genetic ones, and is perhaps the
least suited to be described as epistasis, but often the
most commonly inferred by authors.

Statistical epistasis
Finally we have the form that will be focused on in

this paper. It looks at differences between the observed
and expected odds ratios when we compare the com-
bined odds ratio (OR) of two SNPs with the additive
effect of the two SNPs individually.

Alzheimer’s disease

Late Onset Alzheimer’s Disease (LOAD) is a
neurodegenerative disease most commonly found in
individuals over the age of 65. The disease is charac-
terized by extensive cognitive decline, the deposition
in the brain of extracellular senile plaques, predomi-
nantly composed of amyloid-� (A�) peptide and the
development of intraneuronal neurofibrillary tangles
formed from abnormally phosphorylated tau protein.
Although there is an earlier onset form of the disease
with a dominant Mendelian inheritance, the etiology of
LOAD is more complex, with multiple environmental
and genetic susceptibility factors being implicated.

Prior to the introduction of GWAS, only one
consistently identified susceptibility loci in LOAD,
apolipoprotein E (APOE), in particular the �4 allele
had been identified. Since 2009 and the completion
of several large GWAS, strong evidence for additional
candidate LOAD genes such as PICALM, CLU, CR1
have been identified, thus corroborating the utility
of GWAS [8, 9]. Recent meta-analyses and replica-
tion studies have provided further evidence for these
genetic factors and added a previously suspected AD
candidate, BIN1, to genome-wide significance level,
again contributing to the overall heritability [10–12].
However these findings still do not account for the
entire estimated genetic component. Therefore epis-
tasis represents a potential next step in studies of AD,
and finding a way to accurately and efficiently predict
important interactions is essential [13].

Approaches explored

The software package PLINK (v1.07) [14] is a
bio-informatics toolkit designed for whole-genome
analysis, and includes several packages designed to
look for evidence of epistasis. The –epistasis package
uses linear or logistic regression to provide an odds
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ratio (OR) for the interaction of two SNPs, while the –
fast-epistasis is designed as a screening tool to provide
an approximation to statistical interaction between
pairs of SNPs in a population. Synergy factor (SF) [15],
also based on regression, is a method to identify poten-
tial interactions between pairs of SNPs and to provide
information regarding the degree of that interaction.

In order to examine these methods we generated
synergistic and antagonistic models based on exist-
ing studies. Combarros and colleagues [15] examined
and reproduced a reported interaction between SNPs
in genes for the inflammatory cytokines interleukin-6
(IL-6) and interleukin-10 (IL-10) in LOAD. Using this
interaction and breaking down the tools and methods
employed to achieve this, models were constructed to
represent a range of synergy factors that could then
also be manipulated appropriately for use in PLINK,
a tool set that is being extensively used in the analysis
of GWAS data [14]. Running the different approaches
on the same datasets allows for a direct comparison of
how effectively they handle a range of SF values and
sample sizes, as well as their speed and ease of use.
This in turn allows the optimization of our laboratory
protocols.

MATERIALS AND METHODS

In an attempt to explore the utility of the methods
described above a series of models were generated,
initially based on published examples which were then
extrapolated to include a variety of circumstances.

SNP selection and proxy ascertainment

To test the three approaches, we have uti-
lized the replicated epistatic interaction between the
inflammatory cytokines IL-6 (rs2069837) and IL-10
(rs1800871), for which the reported interaction gave
an SF of 1.63 (95% confidence interval: 1.10–2.41,
p = 0.01) [15].

The genotype information for model generation was
taken from the samples from Mayo Clinic, Florida that
were included in the published GWAS [16]. This geno-
typing was performed on the Illumina HumanHap300
BeadChip. Subject-level genotype data was provided
in PLINK binary format, (.bed, .bim, and .fam).

In order to ensure that full coverage of the gene
region was achieved, the physical location of each SNP
in the GWAS was ascertained using the HapMap
Genome Browser (Phase 1, 2 & 3 - Build 36, Release
Date: May 2010, available at http://hapmap.ncbi.nlm.

nih.gov/cgi-perl/gbrowse/hapmap3r3 B36/), produc-
ing a list that included all SNPs lying within the 20 kb
5’ and 3’ flanking region of the GWAS SNP. This
list was then compared with a list of all those present
in the GWAS. An example command string used in
PLINK is as follows:

> plink –bfile ‘input file’ –chr 1 –from-bp
204993257 –to-bp 205033257 –write-snplist –out
‘output file’

Proxies for all SNPs from HapMap that were not
included in the GWAS were obtained using SNP Anno-
tation and Proxy Search (SNAP) v2.1 [17], available at
http://www.broadinstitute.org/mpg/snap/ldsearch.php

Model generation

As a way to test the efficiency and accuracy of the
three approaches, a range of models had to be designed.
The first model utilized a strongly epistatic interaction
with an SF ≈ 4.2. The second model, based on the Epis-
tasis Project’s attempt to replicate findings between
variants in the inflammatory cytokines interleukin-6
(IL-6) and interleukin-10 (IL-10) [15], resulted in an
SF ≈ 1.6. These two models would represent situations
where the epistasis in the system would be synergistic,
i.e., the two SNPs present together would have a larger
OR than the additive effect of each if they were affect-
ing the system independently. An SF ≈ 4.2 represents
a strong interaction, while an SF ≈ 1.6 is a more mod-
erate example, and closer to what might be expected
in a biological setting.

Two additional models were also tested, the first of
which was an antagonistic model of SF ≈ 0.9, where
possession of one SNP would reduce the effect size
of a second SNP. Finally, an SF ≈ 0.6 represents the
reciprocal of the SF ≈ 1.6 model, and thus provides a
second antagonistic model.

To model a strong SF (4.2), populations were con-
structed to give an appropriate SF. To increase sample
numbers in each model the same population was
duplicated to generate a sample number range of
n = 475–13300 for investigation. Table 1 shows the
stratified counts for each model population.

Synergy factors were calculated using the Excel
spreadsheet SF calculator provided by Cortina-Borja
et al. [15]. As shown in Table 2, genotype counts for
a population are stratified into four groups determined
by 1) possession of the protective allele at both SNPs
(used as the reference group), 2) and 3) possession of at
least one copy of the risk allele at either SNP (0.821 and
1.211) and 4) possession of the risk allele at both SNPs

http://hapmap.ncbi.nlm.nih.gov/cgi-perl/gbrowse/hapmap3r3_B36/
http://hapmap.ncbi.nlm.nih.gov/cgi-perl/gbrowse/hapmap3r3_B36/
http://www.broadinstitute.org/mpg/snap/ldsearch.php
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Table 1
Basic Model population frequencies

SNP1 SNP2 Model

SF = ≈4.2 SF = ≈1.6 SF = ≈0.9 SF = ≈0.6

Controls Cases Controls Cases Controls Cases Controls Cases

– – 150 103 150 103 150 103 148 105
+ – 25 16 22 19 61 30 56 35
– + 92 66 83 75 47 44 51 50
+ + 6 17 8 15 25 15 28 12

In each model n = 475. The + and – symbols relate to the combination of the presence/absence of a minor allele at each SNP.

Table 2
The Synergy Factor Calculator

SNP1 SNP2 Control Case Odds ratio ln(OR) var ln(OR) se ln(OR) lower upper alpha

– – 152 96 Ref SF= 5.097 1.442 18.019 0.050
+ – 27 14 0.821 −0.197 0.125 0.354 se(ln(SF))= 0.644
– + 85 65 1.211 0.191 0.044 0.210 ln(SF)= 1.629
+ + 5 16 5.067 1.623 0.279 0.529 Z= 2.528

p= 0.011

Calculator includes formulas for calculating p-value and 95% confidence interval, constructed in Microsoft Excel 2007
provided by Cortina-Borja et al. [15], supplementary material. This is the specified example showing a strong synergistic
interaction, SF = 5.1 (95% CI 1.442–18.019, p = 0.011). The count of cases and controls is populated by the user.

(5.067). Odds ratios (ORs) are subsequently calculated
for each stratified group. The predicted OR assuming
that there is no interaction between the SNPs is calcu-
lated by multiplying the two ORs for possession of each
SNP (0.821*1.211 = 0.994). The actual combined OR
is that given for possession of the minor allele at both
SNPs (5.067). The SF is calculated as the ratio of actual
combined OR: predicted OR (5.067/0.994 = 5.098).

PLINK: Epistasis

Once appropriate model populations had been gen-
erated, epistasis was calculated for each using the
–epistasis function of PLINK using the following com-
mand line:

> plink –file ‘input filename’ –epistasis –epi1 1 –out
‘output filename’

The use of –epi1 1 ensures that the output generated
is not limited to just interactions with a p value less than
1 × 10−4 (PLINK default cut off) as we are looking for
the point at which interactions become significant.

PLINK: Fast Epistasis

Epistasis was subsequently calculated for the same
populations using the –fast-epistasis function of
PLINK:

> plink –file ‘input filename’ –fast-epistasis –epi1
1 –out ‘output filename’

RESULTS

Proxy

The genotyping chip used for the Mayo dataset
included rs2069837 (IL-6, chr7 :22734552) but not
rs1800871 (IL-10, chr1 :205013257) and therefore a
proxy SNP was required to provide the same genotype
information.

After application of the bioinformatics tool SNAP
Proxy [17], two potential proxy SNPs in strong linkage
disequilibrium (r2 > 0.8) were identified:

rs3024490 - chr1 :205011934 , r2 = 0.951 (1323 bp
3’ rs1800871)
rs1518111 - chr1 :205011268 , r2 = 0.951 (1989 bp
3’ rs1800871)

Since rs3024490 had been genotyped in the Mayo
dataset this SNP was chosen as a suitable proxy for
rs1800871 (IL-10).

Modeling

Table 3 summarizes the minimum number of sam-
ples required to achieve significance using each
method for the modeled datasets. The synergy fac-
tor interaction for the ≈4.2 model (SF ≈ 4.2, 95%
CI = 1.29–13.97, p = 0.018) was corroborated by the
PLINK modules also showing a strong statistical inter-
action in the same direction (OR of interaction = 2.79,
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Table 3
Minimum number of samples required to achieve statistical significance

Model Method Total Synergy Odds Ratio χ 2 (O-E) Odds Ratio for 95% Confidence p Value
Samples Factor of Interaction Difference in Association Interval

≈4.2 Synergy Factor 475 4.237 – – – 1.286–13.968 0.018
–epistasis 475 – 2.788 3.861 – – 0.049
–fast-epistasis 950 – – – 6.993 – 0.008

≈1.6 Synergy Factor 2850 1.650 – – – 1.041–2.615 0.033
–epistasis 13300 – 1.202 4.005 – – 0.045
–fast-epistasis 15200 – – – 4.021 – 0.045

≈0.9 Synergy Factor 33000 0.89 – – – 0.799–0.995 0.04
–epistasis 3800 – 0.734 5.060 – – 0.024
–fast-epistasis 1900 – – – 4.167 – 0.041

≈0.6 Synergy Factor 1900 0.620 – – – 0.389–0.989 0.045
–epistasis 950 – 0.573 3.952 – – 0.047
–fast-epistasis 950 – – – 4.758 – 0.029

The p > 0.05 value for each model (≈4.2, ≈1.6, ≈0.9 and ≈0.6) for assessed methodologies (synergy factor, –epistasis and –fast-epistasis).

p = 0.049). Modeling a SF of 4.2 required the least
number of samples to achieve significance; as can be
seen from Table 3, both synergy factor and –epistasis
required 475 samples and –fast-epistasis, 950 samples.
However for synergy factor testing, sample numbers
greater than 5700 produced a p value too small for
display in Microsoft Excel, and instead displays as
p = 0.00E+00.

All three tests attained a significant p value with
the sample numbers shown for the model of a synergy
factor ≈ 0.6; with both PLINK modules requiring half
the samples than the SF calculator (950 samples versus
1900).

The SF ≈ 1.6 model generally required more
samples to detect an interaction than any other
model. Significant synergy factor was detectable in
a model containing 2850 samples (SF ≈ 1.6, 95%
CI = 1.04–2.62, p = 0.033), although to detect a sim-
ilar level of interaction in PLINK (–epistasis) required
approximately 13300 samples producing an OR of
interaction of 1.20, p = 0.045. The –fast-epistasis mod-
ule failed to achieve a significant interaction within
the sample number range. However by extrapolating it
was determined that a significant p value was obtain-
able with 15200 samples, –fast-epistasis; n = 15200,
p = 0.045.

In the case of the SF ≈ 0.9 model, both –epistasis
and –fast-epistasis achieved significance with 3800
and 1900 samples respectively. Synergy factor required
significantly more samples than were provided within
the boundaries of this investigation, however an
exercise to provide completeness to the models
produced these results: n = 33000, SF ≈ 0.9, 95%
CI = 0.799–0.995, p = 0.04.

As shown in Table 4, significance of the test statistics
increased with greater sample numbers used as well as
a contraction of the 95% confidence interval.

Graphical representation of the modeling assess-
ment (Fig. 1) was obtained by plotting -log p values
against sample numbers to provide a visual compari-
son of each of the three methodologies being explored
for each model.

For the synergistic models (SF > 1, Fig. 1A and 1B)
the SF test achieved each significance level with fewer
sample numbers than the PLINK modules. Conversely
for the antagonistic models (SF < 1, Fig. 1C and 1D)
the PLINK modules required fewer sample numbers to
achieve significance than synergy factor assessment.

DISCUSSION

The generation of model datasets has provided a
platform from which to explore statistical epistatic
interactions, although this study cannot be seen to be
exhaustive.

The overall ethos of this modeling is an interac-
tion between risk factors (OR > 1) for LOAD. This fact
directs the interpretation of the synergy factor. In this
instance, where a SF > 1 is obtained the model is syn-
ergistic; conversely a SF < 1 is termed antagonistic. In
the case of protective alleles the reverse is true. Here we
have assessed a strongly synergistic model (SF ≈ 4.2)
that easily achieved significance within the sample
numbers explored by the defined methods. A limita-
tion of the synergy factor method can be observed in
that the spreadsheet was unable to display a p value less
than 2.22 × 10−16 with sample numbers > 5700; possi-
bly as a result of an inherent limitation of the Microsoft
Excel program, requiring the user to obtain the true
p-value from an external source using significance
tables.

The strongly antagonistic model (SF ≈ 0.6) did not
appear to be limited, though further exploration of a
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Table 4
95% Confidence Intervals and corresponding p values for each of the four models generated when testing using synergy factor

Sample
Numbers

≈4.2 ≈1.6 ≈0.9 ≈0.6

95% CI P Value 95% CI P Value 95% CI P Value 95% CI p Value

475 1.2885–13.9683 0.018 0.5337–5.0995 0.385 0.3593–2.2287 0.811 0.2441–1.5760 0.315
950 1.8231–9.8495 0.001 0.7428–3.6642 0.219 0.4694–1.7060 0.736 0.3208–1.1994 0.156
1900 2.3339–7.6935 < 0.0001 0.9384–2.9006 0.082 0.5670–1.4122 0.633 0.3891–0.9887 0.045
2850 2.6039–6.8960 < 0.0001 1.0408–2.6153 0.033 0.6165–1.2988 0.559 0.4239–0.9076 0.014
3800 2.7794–6.4604 < 0.0001 1.1070–2.4587 0.014 0.6481–1.2356 0.500 0.4461–0.8625 0.005
4750 2.9060–6.1791 < 0.0001 1.1547–2.3573 0.006 0.6705–1.1942 0.451 0.4619–0.8330 0.002
5700 3.0031–5.9793 < 0.0001 1.1911–2.2851 0.003 0.6876–1.1645 0.408 0.4739–0.8119 0.001
6650 3.0031–5.9793 < 0.0001 1.2203–2.2306 0.001 0.7012–1.1420 0.372 0.4834–0.7958 < 0.0001
7600 3.1448–5.7097 < 0.0001 1.2443–2.1875 0.001 0.7123–1.1242 0.340 0.4913–0.7831 < 0.0001
8550 3.1989–5.6132 < 0.0001 1.2645–2.1525 < 0.0001 0.7217–1.1096 0.311 0.4979–0.7727 < 0.0001
9500 3.2454–5.5328 < 0.0001 1.2819–2.1234 < 0.0001 0.7297–1.0974 0.286 0.5035–0.7641 < 0.0001
10450 3.2860–5.4645 < 0.0001 1.2970–2.0986 < 0.0001 0.7366–1.0870 0.263 0.5084–0.7567 < 0.0001
11400 3.3217–5.4057 < 0.0001 1.3104–2.0772 < 0.0001 0.7428–1.0781 0.242 0.5128–0.7503 < 0.0001
12350 3.3536–5.3543 < 0.0001 1.3223–2.0585 < 0.0001 0.7482–1.0702 0.224 0.5166–0.7447 < 0.0001
13300 3.3823–5.3089 < 0.0001 1.3329–2.0420 < 0.0001 0.7531–1.0633 0.207 0.5201–0.7398 < 0.0001
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Fig. 1. Graphical representation of the performance of each method. Sample numbers (x-axis) plotted against -log p values (y-axis). In each case
the significance threshold is reported as -log 1.30 (p = 0.05) represented by the horizontal dotted line. A) Model SF ≈ 4.2; B) Model SF ≈ 1.6;
C) Model SF ≈ 0.9; D) Model SF ≈ 0.6.
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model that is the inverse of SF ≈ 4.2 (≈0.24), and thus
even more strongly antagonistic may similarly reveal
an issue with p value generation.

Based on the models described here, as shown in
Table 5, large datasets (>12350) would be required
to obtain a suitably significant statistical interaction
(p < 0.05). The requirement in this study for sample
numbers over and above those initially explored to
attain significance in both the ≈1.6 and ≈0.9 model is
an indication of the limitation of these types of inves-
tigation. It is not beyond the realms of possibility that
to detect subtle interactions between SNPs with mod-
est effect sizes, in the order of OR < 1.2, large sample
sets will be needed. Interactions not involving APOE
in LOAD are likely to fall into this category [13].

An anomaly observed in this modeling, which can
clearly be seen in the graphs in Fig. 1, is that in
synergistic models the synergy factor test is more sen-
sitive, requiring comparatively less sample numbers to
achieve significance than PLINK testing. The opposite,
in antagonistic models, occurs where PLINK is more
sensitive than synergy factor. Further exploration of
protective factor interaction (where synergy = SF < 1
and antagonism = SF > 1), risk versus protective fac-
tors and more complex interactions (3 + or inclusion
of environmental factors) would be needed to enable a
more complete explanatory hypothesis to be derived. It
is well known that the APOE �2 allele is protective and
�4 confers risk in AD [18]. Also interaction between
the inflammatory cytokines IL6 (risk) and IL10 (pro-
tective) has also been recently reported [15].

Synergy Factor is based on logistic regression which
freely enables the inclusion of covariates in the cal-
culation of odds ratio (OR) statistics. In this way we
can assess the deviation from an expected outcome
in case-control data between factors existing together
or independently. Details on the use of synergy fac-
tor, limitations and application have been discussed
previously [15]. One limitation of the method is the
fact that it cannot be easily used for investigations of
whole genome datasets; it is more suitable for exam-
ining a finite number of suspected interactions due to
the required manual user input.

The –epistasis module within PLINK is similarly
based on application of logistic regression algorithms
for the generation of the OR of Interaction for allele
dosage calculations. Conversely –fast-epistasis is con-
sidered as a screening tool by the authors of PLINK
[14] since the resultant statistic is an approximation to
a statistical interaction.

PLINK is used extensively in the search for genetic
risk factors and is not as limited as the labor intensive

SF calculator. When using GWAS data, we propose
the use of –fast-epistasis as a suitable screening tool to
identify the top 100 GWAS ‘hits’ for further examina-
tion. We recommend this screening to be followed by
the application of either –epistasis or the synergy fac-
tor calculator to then focus on potential interactions,
for confirmation and replication in further sample sets.

Another limitation of these methods is in the number
of interactions that can be simultaneously analyzed.
Both –epistasis and –fast-epistasis in PLINK are
designed to examine pair-wise combinations of SNPs
only [14]. Synergy factor is slightly more versatile and
to include a third interacting factor would require the
user to perform two sequential SF calculations, i.e.,
SNP x SNP, after initial stratification based on a pre-
vious SNP. This method may then be hampered by
insufficient power in smaller datasets [15].

With sufficient computer facilities both association
analysis and determination of statistical epistatic inter-
action could technically be performed in parallel on
GWAS datasets. We show here that sample numbers
typically used in GWAS ( 5000–10000) are sufficiently
large to detect even modest epistatic interactions.

There is much to be explored in the investigation
of the genetic architecture of complex diseases such
as LOAD - particularly regarding rare variation. This
may provide a plethora of previously unconsidered
potential epistatic interactions and biological pathways
that further bolster evidence found for association -
i.e., factors may be associated with disease because
of the potential for epistatic interaction. This may in
turn provide a parallel direction of further study into
pharmacogenetics and enable the pinpointing of indi-
viduals for a range of different treatments. Epistasis
has already been implicated in antiepileptic drug resis-
tance from a pharmacogenetic perspective [19], and
while this study highlights limitations we feel this is
a point that needs to be considered in complex disor-
ders, such as LOAD, and further enhances the utility
in determining evidence for epistatic interaction.

We are only looking at statistical interactions; there-
fore attempting to discuss the interactions from a
biological perspective is beyond the remit of this study.
However, by effectively ‘screening’ for interactions
we can then use this information to identify poten-
tial gene-gene interactions and make economical use
of laboratory and investigator time which may help
to direct studies towards potentially important bio-
logical pathways. The presence of a true interaction
being observed in these model datasets, however, can-
not be commented on from these results. Larger sample
collections and extensive functional studies would be
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Table 5
Complete set of p values obtained from the different models and methodologies

Sample Size 475 950 1900 2850 3800 4750 5700 6650 7600 8550 9500 10450 11400 12350 13300

SF = 4.2 1.770E-02 7.920E-04 2.080E-06 6.180E-09 1.940E-11 6.240E-14 2.220E-16 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
–epistasis = 4.2 4.943E-02 5.457E-03 8.504E-05 1.487E-06 2.737E-08 5.183E-10 9.999E-12 1.954E-13 3.857E-15 7.669E-17 1.534E-18 3.082E-20 6.218E-22 1.259E-23 2.555E-25
–fast-epistasis = 4.2 6.150E-02 8.812E-03 1.842E-04 4.647E-06 1.233E-07 3.367E-09 9.366E-11 2.640E-12 7.513E-14 2.154E-15 6.212E-17 1.800E-18 5.237E-20 1.529E-21 4.475E-23
SF = 1.6 3.845E-01 2.188E-01 8.200E-02 3.320E-02 1.390E-02 5.964E-03 2.594E-03 1.140E-03 5.050E-04 2.250E-04 1.010E-04 4.530E-05 2.050E-05 9.260E-06 4.200E-06
–epistasis = 1.6 7.053E-01 5.928E-01 4.494E-01 3.543E-01 2.848E-01 2.317E-01 1.902E-01 1.571E-01 1.303E-01 1.086E-01 9.078E-02 7.608E-02 6.392E-02 5.381E-02 4.537E-02
–fast-epistasis = 1.6 7.230E-01 6.162E-01 4.784E-01 3.853E-01 3.161E-01 2.623E-01 2.195E-01 1.847E-01 1.562E-01 1.326E-01 1.129E-01 9.640E-02 8.247E-02 7.070E-02 6.070E-02
SF = 0.9 8.114E-01 7.358E-01 6.332E-01 5.589E-01 4.997E-01 4.505E-01 4.085E-01 3.720E-01 3.398E-01 3.114E-01 2.859E-01 2.630E-01 2.424E-01 2.237E-01 2.067E-01
–epistasis = 0.9 4.265E-01 2.607E-01 1.117E-01 5.141E-02 2.449E-02 1.191E-02 5.871E-03 2.924E-03 1.467E-03 7.407E-04 3.758E-04 1.914E-04 9.779E-05 5.012E-05 2.575E-05
–fast-epistasis = 0.9 3.074E-01 1.489E-01 4.122E-02 1.242E-02 3.892E-03 1.249E-03 4.069E-04 1.341E-04 4.457E-05 1.491E-05 5.013E-06 1.693E-06 5.740E-07 1.952E-07 6.653E-08
SF = 0.6 3.155E-01 1.557E-01 4.468E-02 1.394E-02 4.522E-03 1.502E-03 5.060E-04 1.730E-04 5.940E-05 2.050E-05 7.150E-06 2.500E-06 8.750E-07 3.080E-07 1.090E-07
–epistasis = 0.6 1.598E-01 4.681E-02 4.931E-03 5.746E-04 7.007E-05 8.775E-06 1.118E-06 1.442E-07 1.877E-08 2.461E-09 3.244E-10 4.296E-11 5.710E-12 7.616E-13 1.019E-13
–fast-epistasis = 0.6 1.230E-01 2.916E-02 2.036E-03 1.580E-04 1.286E-05 1.075E-06 9.152E-08 7.890E-09 6.866E-10 6.018E-11 5.305E-12 4.699E-13 4.179E-14 3.728E-15 3.335E-16
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required to fully explore the existence of any interac-
tion.
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