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Abstract. Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the two most common neurodegenerative disorders. Why
some individuals develop one disease rather than the other is not clear. Association studies with a case-control design are the
time-honored approach to identifying risk factors. Extensive association studies have been carried out in both diseases creating
a large knowledge database, however, reproducible risk factors remain rare. This general lack of knowledge of pathogenesis
prevents us from reducing the worldwide burden of these diseases. Case-control studies are reductionist paradigms that assume,
for maximum power, that the two populations being compared are exclusive and homogenous. The common occurrence of
incidental AD and PD-type pathology combined with ‘intermediate phenotypes’ such as dementia with Lewy bodies suggest
that aging itself, AD, and PD are part of a complex continuum characterized by variable amounts of amyloid-�, tau, and
�-synuclein pathology. This heterogeneity may be a contributor to the lack of reproducibility in association studies to date.
Here, we speculate on alternative experimental approaches to the case-control paradigm and consider how the association-study
literature for AD and PD might be re-interpreted in terms of a disease spectrum.
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INTRODUCTION

An ever-increasing world population, with a grow-
ing proportion of elderly, poses an immense challenge
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from the rising socio-economical burden of neurode-
generative disease. An epidemic seems unavoidable
unless therapies can be found to prevent, delay, or
reverse these conditions. The two most common neu-
rodegenerative disorders are Alzheimer’s disease (AD)
and Parkinson’s disease (PD), both of which are the
subject of major research efforts, consistent with their
social and economic importance. Monogenic forms
of these diseases are known and their identification
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has been invaluable for elucidating aspects of the
pathogenic mechanisms. However, such forms are rare,
and the majority of PD and AD cases occur spo-
radically, without familial or geographical clustering.
These common forms are referred to as “idiopathic”
or literally, of unknown pathogenesis. In the absence
of known causative factors, it is widely assumed that
the majority of sporadic cases are caused by a com-
plex interaction between common genetic variants and
environmental factors on a background of aging [1, 2].

Risk factors are often assessed by association stud-
ies, in a case-control setting. In more recent years,
technological advances have greatly enhanced the
breadth of the questions that can be asked with global
analyses such as genome wide association and tran-
scriptomic studies applied to both diseases. However,
in general, these genome-scale platforms have only
confirmed known risk factors and not identified the
novel targets needed to reduce the burden of these
diseases [3].

The underlying premise for this review is a con-
sideration of the potential reasons behind this lack of
success. Moreover, it is to discuss whether the com-
bined research knowledge within AD and PD could be
harnessed to gain greater research traction for either
disease. Importantly it builds on the previous work of
colleagues who have considered AD and PD patholo-
gies within a wider neurodegenerative spectrum [4–6].

PART I: EXCLUSIVITY AND
HOMOGENEITY

The case-control study is a reductionist paradigm
that assumes the two populations under considera-
tion are exclusive and homogenous. However, a lack
of homogeneity is recognized in both AD and PD.
In PD, for example, there is a common division
between tremor-dominant and bradykinetic (PIGD)
sub-phenotypes [7], and these subtypes have different
patterns of pathology [8, 9]. This suggests that different
pathophysiological mechanisms are operating [8], an
important consideration for the design of association
studies. However such variation is often (pragmati-
cally) dismissed to maximize statistical power. Less
appreciated is the possible lack of exclusivity between
cases and the “unaffected controls” used in the com-
parison groups.

AD phenotype

AD manifests clinically as a loss of cognitive func-
tions including memory, language, visuoconstructive,

and executive function. AD is the most common neu-
rodegenerative disease, with a mean age at disease
onset during the eighth decade. AD accounts for
approximately 60% of dementia cases [10, 11] and
affects approximately 1% of the population in Western
countries [10, 12, 13].

The neuropathology of AD is characterized by two
pathognomonic entities: the intraneuronal neurofibril-
lary tangle (NFT) and the extracellular neuritic plaque.
NFTs are chiefly composed of fibrillar forms of a
hyperphosphorylated protein called microtubule asso-
ciated protein tau (MAPT or tau), while plaques are
predominantly composed of fibrillated short peptides
collectively termed amyloid-� (A�). A staging scheme
for the neuropathological progression of AD based on
the density and distribution of NFTs has been proposed
by Braak and Braak (the ‘Braak staging scheme’) [14]
and this has been incorporated into current diagnos-
tic criteria [15]. For most individuals, there is a good
correlation between Braak stage (i.e., the spread of
NFT pathology from the medial temporal lobe, through
the temporal and frontal neocortices, and into the pri-
mary cortices) and the probability of dementia [14,
16]. However in the hippocampus neuronal loss may
actually exceed NFT formation [17].

Neuritic plaques (‘plaques’) are an important part
of the diagnostic criteria for AD, but the extracellular
amyloid load does not correlate as well with dura-
tion and severity of AD as the NFT count [18, 19].
Nevertheless, the major working hypothesis for AD
pathogenesis, the A� hypothesis, suggests that extra-
cellular A� precipitates a cascade of events resulting
in the formation of NFTs and neuronal loss [20].

PD phenotype

PD is clinically characterized by the presence of two
or more cardinal signs: tremor, postural instability, and
bradykinesia. The mean age at disease onset is during
the seventh decade of life [21]. The prevalence of PD
in European, North American, and Australian popu-
lations is around one third of AD, with estimates of
0.3–0.4% of the population [22, 23]. The characteristic
motor signs of PD result from the loss of dopaminergic
neurons in the substantia nigra pars compacta (SNc)
located in the midbrain [24, 25]. It has long been con-
sidered that at diagnosis PD patients have lost more
than 50% of their SNc dopaminergic neurons [26].
However, a recent review suggests this figure is more
likely to be 30% with the additional loss of 50–60% of
the terminal axons of these cells [27].
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Pathology in PD also affects the olfactory pathway,
including the amygdala, the spinal cord, and dorsal
cranial nuclei of the medulla [28–32]. However, rel-
ative to the gross atrophy seen in AD, atrophy of the
terminal PD brain is minimal (see [33]). PD is char-
acterized by a pathognomonic entity, the Lewy body
(LB), an intraneuronal inclusion composed of multi-
ple proteins including fibrillar forms of �-synuclein
[34]. LB pathology also incorporates the accumula-
tion of insoluble �-synuclein immunopositive protein
in cell processes, called Lewy neurites. Current stag-
ing of PD is based on �-synuclein immunoreactivity,
although there is not a strong correlation between LB
density and neuronal loss [35].

Normal aging

Association studies set out to identify differences
between groups of individuals with a clinical pheno-
type (e.g., AD or PD) and those who do not express
this phenotype (the control group). In so doing it is
hoped to inform the related question as to why “cases”
develop the AD-type or LB-associated pathologies that
lead to the clinical phenotype, while the majority of the
aged population do not. However, the existence of inci-
dental pathology and disease prodromes in clinically
unaffected individuals has major implications for the
interpretation of most case-control findings.

Aging is associated with cerebral atrophy due to
decreases in both grey and white matter, white mat-
ter hyperintensities (WMH) [36], and cognitive decline
[37]. Our work shows that white matter loss is more
extensive than grey matter loss [38, 39]. Consistent
with our findings and contrary to popular belief, the
total number of neurons in the human adult brain does
not change greatly with aging [40–43]. However, there
are areas of the brain that show greater decline in neu-
ron numbers with age, such as the SNc [44]. In the case
of the SNc, the pattern of neuronal loss is distinct from
and less extensive than that seen in PD [44].

In contrast to neuronal loss, diagnostic entities
such as LBs, NFTs, and plaques are common in the
postmortem brain tissue of neurologically normal indi-
viduals. An accurate quantification of the frequency
of these pathological entities is difficult to make as
today brain postmortem examinations of control indi-
viduals is often under the auspices of specific research
programs and may not be representative of the entire
population. Estimates suggest that senile plaques are
seen in as many as 30% of all brains examined; here
the plaques are almost exclusively of the diffuse type,
a likely predecessor to the neuritic plaques common

in AD [45, 46]. A similar percentage of cognitively
normal individuals have tau-positive neuritic pathol-
ogy [47–50], although tau pathology confined to just
the entorhinal-perirhinal cortex appears to be seen in
most, if not all, aged brains [51–53]. Studies vary
considerably as to the proportion of neurologically
normal persons harboring LBs at the time of their
death (8–31%), but they are less common than plaques
[54–57]. The common occurrence of incidental AD
and PD-type pathology may be an important factor in
the small effect sizes and lack of reproducibility in
association studies to date.

A clinical threshold and the oldest old

The most obvious explanation for the relatively high
prevalence of asymptomatic neuropathological pheno-
types is threshold effects. That is pathology, in the
absence of lethal co-morbidities, would continue to
accumulate until it reached the threshold for onset of
clinical disease [58, 59]. However, there is increasing
evidence that the association between increasing AD
pathology and severity of dementia does not hold in the
oldest old (usually defined as >90 years) [60]. There is
considerable overlap in the density of AD pathology
in the oldest old patients with and without demen-
tia [61–63], whereas brain atrophy and neuronal loss
are strongly associated with dementia at all ages [64].
In addition, there is an increased frequency of mixed
pathology, and in particular AD with cerebrovascular
disease, in the oldest old with dementia [65–67], sug-
gesting that AD pathology per se is not a good marker
for neurodegeneration in these individuals.

Similarly, �-synuclein positive structures were
found in 35% of centenarians and were not related to
cognitive status [68]. The LB pathology was, however,
mainly Lewy neurites with few or no LBs. The fre-
quency of LB pathology was related to senile plaque
density but interestingly, given the potential interac-
tions between �-synuclein and tau discussed below,
not to NFT staging. The distribution pattern of LB
pathology was actually similar to that seen in PD but
the pigmented neurons in the SN were relatively well
preserved.

Therefore, in the oldest old, additional factors appear
to modify the impact of neuropathology [64]. One
idea is that the oldest old rely more on compensatory
mechanisms to offset the effects of neurodegenerative
pathologies, thus avoiding the tipping point of any par-
ticular disease threshold [69]. Here Liao et al. regard
compensation to result from a more facile use of alter-
native brain circuits instead of local synaptic plasticity
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or direct interactions at a molecular level. How well
the findings from these ‘special’ individuals can be
extrapolated to moderately aged individuals remains
to be seen, but it raises the possibility that factors that
‘drive’ pathology are less important than those that
confer susceptibility or resistance [70].

The case-case paradigm

Given the common occurrence of incidental
pathology among aged but neurologically normal indi-
viduals, we pose the following question: Would greater
progress be made by directly comparing AD and PD
cases in association studies? For example, would
the knowledge of AD specific risk factors improve
our knowledge of why other individuals develop PD?
Could case-case comparisons of AD and PD be more
informative than parallel case-control studies? At the
outset such an approach might seem illogical given the
distinctive clinical and pathological features of these
diseases. However, these two proteinopathies share age
as their leading risk factor and are the first and sec-
ond most common late-onset neurological conditions.
In contrast to case-control studies, individuals can be
almost definitively classified on a clinical basis as hav-
ing either AD or PD. By applying the same premises of
exclusivity and homogeneity, the case-case paradigm
would be most effective if incidental or mixed pathol-
ogy was generally absent from the brains of sufferers
of either disease.

Lewy body pathology in AD cases

Unfortunately for our proposed case-case paradigm,
it appears that up to 50% of autopsy-proven AD cases
show some LB pathology [71, 72]. Notably, this high
proportion might actually reflect the sampling bias of
research cohorts, as Schneider and colleagues were
able to show in a community-based cohort of older
persons that only 12% of non-demented, 13% of mild
cognitively impaired and 24% of AD cases had Lewy
bodies [73]. In a further study, Uchikado and col-
leagues reported that 43% of their AD cases had
�-synuclein-positive neuronal lesions that resembled
LBs but they could divide these cases into those with
typical Lewy body disease (diffuse distribution includ-
ing neocortex) and those (24% of all cases) where
LBs were confined to the amygdala [74]. The authors
suggested that these groups represent two different
subtypes of AD. This finding also highlights the fact
there are various forms of �-synucleinopathies, LBs

themselves are only one specific form. In the remain-
der of this review we will use the term “�-synuclein
pathology” to represent all forms of synucleinopathy
including, but not restricted to, LBs. Other AD stud-
ies have also reported �-synuclein pathology confined
to the amygdala and have come to the conclusion that
�-synuclein pathology is common in AD without signs
of parkinsonism [72]. The susceptibility of the amyg-
dala to �-synuclein pathology is predictably unknown,
but nigra-amygdala connections are known to be
important for the enhancement of attention in asso-
ciative learning that is modulated by the cholinergic
system [75].

AD pathology in PD cases

The proportion of non-demented PD cases showing
typical AD pathology is difficult to assess from the
literature. Estimates of the number of cases that also
meet diagnostic criteria for AD are as low as 3% [76].
However it appears that approximately 50% of non-
demented PD patients may have some Alzheimer’s
type pathology [77, 78]. Furthermore in studies that
have included demented PD patients, the degree of
cognitive decline significantly correlated with AD
pathology [76]. The occurrence of AD pathology in
the context of PD is further complicated by the pres-
ence of a spectrum of clinical entities characterized
by both dementia and parkinsonism. These are largely
categorized in the clinic on the basis of primary symp-
tom presentation and the temporal nature of these
symptoms. Two common clinical designations on this
spectrum are Dementia with Lewy bodies (DLB) and
Parkinson’s disease dementia (PDD).

Dementia with Lewy bodies

Dementia with Lewy bodies (DLB) can have a clini-
cal presentation very similar to AD [79, 80], including
a similar age at disease onset. DLB probably accounts
for 15% of total dementia cases making it almost as
common as PD itself [10, 81]. DLB cases also incor-
porate different mixes of the characteristic AD and
�-synuclein pathology [82, 83] with neocortical A�
deposition being particularly prominent [84].

PD with dementia

It is commonly quoted that approximately 30% of
PD cases develop dementia [85, 86] although recent
data from the longitudinal Sydney Multicentre Study
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of PD suggests that dementia in PD may actually be
inevitable given sufficient longevity [87]. A diagnosis
of PDD is made if dementia does not occur within a
year of a clinical diagnosis of PD, if it does then the
alternative diagnosis of DLB is made [80].

Mixed pathology and cognitive decline?

In both DLB and PDD there remains debate over
both the regional and pathological basis for cognitive
decline. In DLB, both subcortical [88] and cortical
�-synuclein pathology [89] have been suggested to
be the main determinant. It should be noted that LBs
do not correlate well with the degree of neuronal loss
in the cortex of DLB patients and small �-synuclein
aggregates in presynaptic terminals may be the major
�-synuclein pathology [90]. These aggregates result
in axonal degeneration [91] and therefore emulate the
findings in PD [27]. However, others suggest that AD
pathology is more important, particularly when the A�
load can be similar to that seen in AD [92].

The situation is even less clear in PDD, although
classically �-synuclein pathology has been regarded
as the primary pathologic substrate for dementia [93].
In reality, the neuropathology of PDD patients is
heterogeneous with variable amounts of A�, tau,
�-synuclein and other pathological proteins [94]; thus a
specific clinopathological classification may be purely
academic.

An alternative and increasingly popular view is
that these pathologies combine synergistically to
cause neurodegeneration [94, 95]. In vivo interactions
between tau and �-synuclein are seen in double trans-
genic mice [96] and are supported by genetic studies
[97]. In non-demented PD cases, Uchikado et al. found
that the amygdala LB density correlated with the den-
sity of NFTs, but not plaques. However other studies
have suggested the A� was more likely to promote the
deposition of �-synuclein than tau [98, 99]. Certainly
the latter two studies would appear to reflect the situ-
ation in most DLB cases. Recently a triple transgenic
animal model demonstrated the synergistic effects of
tau, �-synuclein and A� pathologies in accelerating
neurodegeneration and cognitive decline [100]. Inter-
estingly a decrease in �-synuclein solubility preceded
the changes in tau solubility.

In summary AD, PD, DLB, PDD, and aging itself
appear to be part of a complex continuum character-
ized by variable amounts of A�, tau, and �-synuclein
pathology. Under these circumstances, our proposed
AD-PD case-case design is unlikely to confer any
significant advantage over the classic case-control

paradigm. The way forward for determining risk fac-
tors in late-onset neurodegenerative diseases is not
entirely clear but it is obviously important to try
and work the idea of a disease continuum into our
approaches. In the next part we re-examine aspects
of the AD-PD association study literature with this in
mind.

PART II: RISK FACTORS FOR
A DEMENTIA-PD SPECTRUM

Disease pathogenesis is a dynamic interplay
between a causative factor(s) and the host (tissue).
The development of disease will be a combination of
the exposure dosage and the resistance of the indi-
vidual to that exposure. Late-onset neurodegenerative
diseases, with their long disease trajectories, make it
difficult to retrospectively determine factors that ini-
tiate or result from the drivers of the disease process.
Thus it is unclear whether the associated neuropatho-
logical entities are representative of mechanisms that
require attenuation or bolstering.

The occurrence of these A�, tau, and �-synuclein
pathologies in aged brains is far more common than the
clinical neurodegenerative diseases themselves. This
implies that most aged individuals have been exposed
to factors that promote or ‘drive’ the development of
AD or PD, but very few actually succumb to this dis-
ease process by the time of their death. These findings
confer limitations on case-control studies to find the
factors that ‘drive’ the disease, because many of these
factors may also be operating in the “control” group.
Nevertheless, the correlation between pathological
load and clinical decline in most (young-old) individ-
uals suggests that these entities are themselves delete-
rious or closely associated with what is driving the dis-
ease process. This lends itself to studies that substitute
disease status with pathological load as a continuous
variable. This experimental design is obviously limited
to postmortem cases. In contrast, the putative factors
that protect brain tissue against, or compensate for,
these pathologies may show greater disparity between
cases and controls than the pathology-promoting fac-
tors. However, the caveat here is that real protective
factors may remain hitherto unexplored because can-
didate factors to date have been largely chosen based
on our knowledge of neuropathology and genetics.

In the previous section we described how mixtures
of AD and PD pathology are common in both the aged
brain and even more so in the brains of those clinically
diagnosed with either disease. This could represent
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individuals unfortunate enough to have risk factors for
both diseases but it also appears that the presence of
either pathology increases the risk of the other develop-
ing. We suggested that the clinical syndromes were part
of a complex (non-linear) continuum of overlapping
pathologies.

Here we attempt to re-interpret aspects of the exten-
sive AD and PD association study literature. The effect
sizes of the risk factors discussed here are summarized
in Table 1. By considering these diseases as part of an
AD-PD spectrum. The intermediate phenotypes such
as DLB and PDD can be used to test hypotheses for
putative pathology-specific factors. For example, DLB
brains contain similar A� loads to AD and therefore
we might expect risk factors driving A� pathology to
be similar in effect size when compared with controls.
Furthermore, the tau load for PDD patients is generally

less than in AD brains, and therefore one might expect
that their exposure to a tau pathology-driving factor to
be intermediate between an AD cohort and neurologi-
cally normal controls. Expanding on this idea further,
the effect size for a factor precipitating tau pathol-
ogy in a pure tauopathy such as (tau-positive) frontal
temporal dementia (FTD) should equal or exceed that
for an AD cohort but be similar to controls for A�
pathology-inducing factors (given that the appropriate
experiments have been carried out).

This represents a very cursory and selective ex-
ploration of the association study literature with
considerable reliance on the online sites Alzforum
(http://www.alzforum.org/) [101] and PDgene (http://
www.pdgene.org/) [102] and their meta-analyses.
Where meta-analyses are unavailable we have sub-
jectively included the most representative study.

Table 1
Quantification of risk factors for the Dementia-PD spectrum

Factor Effect size (RR, OR, or HR)a

FTD AD DLB PDD PD

Gender M = F[109] 1.20 (0.93–1.56)
F/M [103]

> M (pure LB
disease) [93] or
equal [107]

M = F [108] 1.49 (1.24–1.95)
M/F [106]

Low education FTD > AD [109] 1.80 (1.43–2.27)
[115]

DLB = AD [123] High Ed. 0.93
(0.90–0.96) [122]

2.0 (1.1–3.6) [118]

Head injury 3.3 (1.3–8.1)
[127]

1.58 (1.21–2.06)
[252]

ILBD 1.44
(0.16–13.2)
[59]b

0.9 (0.4–2.2) [121] 4.3 (1.2–15.2) [126]

Pesticide n/a 1.62 (0.64–4.11)
[253]

n/a PDD > PD [254]c 1.85 (1.31–2.60) [177]

Smoking n/a 1.45 (1.16–1.80)
[162]

DLB vs. AD – no
effect [255]

PDD vs. PD – no effect
[256]

0.70 (0.63–0.78) [149]

Coffee n/a 0.73 (0.58–0.92)
[257]d

n/a n/a 0.75 (0.64–0.86) [147]

Diabetes yes/no n/a 1.51 (1.31–1.73)e n/a 0.8 (0.3–2.3) [121] 1.04 (0.74–1.46) [141]f

Family history of
disease (FHx)

20–40%
[258, 259]

2.3 (1.5–3.4) [183]
49% Hx of
dementia [260]

67% FHx of
dementia [260]

FHx of PD but not
dementia [185]

2.2 (1.2–4.0) [183];
15–25% [261]

NACP Rep 1
(SNCA) 263 : 261

n/a No effect [262,
263]

n/a n/a 1.25 (1.11–1.41)g

CYP2D6 *4 vs. WT No effect [264] 1.08 (0.88–1.32)h 0.61 (0.20–1.85)
[265]

No effect [266] 1.13 (1.02–1.27)g *4 (B)
vs. other

ApoE �4 vs. �3 1.14 (0.87–1.49)
[209]

3.68 (3.31–4.11)h DLB = AD [212];
DLB > PDD
[267]

1.6 (1.0–2.5) [214] 1.01 (0.91–1.13)g

MAPT H2 vs. H1 0.69 (0.43–1.10)
[225]

1.0 (0.94–1.07)h n/a PDD v. PD H1/H1
−12.1 (1.26 –117.4)
[97]

0.77 (0.71–0.84)g

Reported significant differences in bold type for relative (RR), odds (OR) or hazard ratios (HR).
a Utilizing either meta-analysis, collaborative study or largest case-control series. Values are relative to unaffected controls unless stated
otherwise; b Incidental Lewy body disease (ILBD); not DLB due to insufficient numbers; c Interaction between CYP2D6 × pesticide for risk
of PD+dementia (PDD) compared to PD; d Pooled estimate but heterogeneity across methodologies of the 4 contributing studies; e Weuve
J, McQueen MB, Blacker D. The AlzRisk Database, available at: http://www.alzrisk.org/*; f Vascular risk factors such as diabetes decreased
in medicated patients [144, 145]; g Cumulative meta-analysis. The PDGene Database, available at: http://www.pdgene.org/; h The Alzgene
database [101].

http://www.alzforum.org/
http://www.pdgene.org/
http://www.pdgene.org/
http://www.alzrisk.org/
http://www.pdgene.org/
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Gender

The majority of research points to a higher preva-
lence of AD in females, but at least one large study
found no difference [103]. It was originally thought
that longevity per se could account for the higher
female prevalence but the effect remains after adjust-
ment for age and education [104]. One hypothesis is
that AD pathology is more likely to manifest clinically
as dementia in women than in men [105]. However this
may contradict findings in the oldest old and those of
Ruitenberg et al. who found that the incidence of AD
increased in women over 90 years of age.

The opposite gender effect is seen in PD with a mod-
erate relative risk effect in men (1.5 fold) [106]. The
lack of gender differences in the intermediate pheno-
types of DLB [107] and PDD [108] seem consistent
with the contrasting effects in AD and PD if gender dif-
ferences are associated with the pathology as opposed
to resisting its effects. Similarly the lack of effect in
FTD patients [109] could suggest that the female gen-
der augments A� rather tau pathology in AD [110,
111]. In terms of biological plausibility, higher lev-
els of oligomeric A�1-42 and insoluble A� have been
found in the brain tissue of women [112] as well as in
female mutant A�PP transgenic mice [113, 114].

Education

The prevalence of AD is inversely associated with
years of education [115], but increased education is
also directed related to the amount of AD pathology
and cerebral hypoperfusion on imaging studies [69,
116]. This apparent paradox, where a factor appears
to augment and resist pathology simultaneously, has
been explained by education imparting a cognitive
reserve that delays the onset of clinical symptoms
[117]. It is worthwhile emphasizing that this postulated
protective mechanism is acting mechanistically and
spatially remote from the pathology itself. Therefore
such an effect would not be detectable by sampling of
the affected region and the increasingly commonplace
assay by the genome-scale platforms.

In contrast, higher levels of education appear to
be a risk factor for PD [118]. The hypothesis that
increased education protects against cognitive decline
is supported by comparisons between PDD and non-
demented PD patients [119–122]. It is also consistent
with the equivalent education levels between AD and
DLB patients [123], as the global severity of dementia
is very similar between DLB and AD patients [123].

Head injury

Dementia pugilistica is a progressive memory dis-
order common in ex-boxers associated with AD-like
brain pathology. Traumatic brain injury is also impli-
cated in the development of AD [124, 125] and PD
[126], but in seems likely to only account for only a
few cases of both diseases. The relatively high risk of
head trauma in FTD [127] suggests that head trauma
may modify the risk of AD via a tau-driven mechanism,
although less than half FTD are tau-positive, and data
are not stratified for tau-positive versus tau-negative
FTD.

High levels of cleaved tau are observed in the cere-
brospinal fluid (CSF) and serum of patients with acute
brain injury [128]. The cleavage of tau is being increas-
ingly seen as a pivotal step in NFT formation and
neurodegeneration in AD [129–131]. In fact tau cleav-
age events may even be the link between A� and tau in
the pathogenesis of AD according to recent work in a
tau transgenic mouse model [132]. Interestingly acute
brain trauma has also been associated with increases
in A�PP and A� [133, 134] and �-synuclein [57, 135].
This suggests that the aberrant expression of all the
proteins of interest could be general responses to brain
trauma rather than disease specific [136]. This fits well
with the development of mixed pathologies but does
not explain the initial susceptibility of certain cell pop-
ulations or the primary pathology that develops within
them.

Cardiovascular disease risk factors

Cardiovascular risk factors have been of particu-
lar interest in AD given the dual role of ApoE �4
variant in AD and systemic dyslipidemia [137, 138].
Perhaps surprisingly then, given the impact of ApoE �4
on AD risk, it is only concurrent diabetes that is
replicable across multiple independent studies (http://
www.alzforum.org). This may reflect defective insulin
signaling [139], a factor that appears to result in the
abnormal phosphorylation of tau [140].

In contrast, no cardiovascular risk factors, including
diabetes or ApoE �4 status, appear to be associated
with PD [141–143]. The lack of association with PD
may be confounded by the sympathetic modulation of
the cardiovascular system by PD medications [144,
145] and systemic manifestations of PD. In terms
of intermediate phenotypes diabetes does not appear
to influence the development of dementia among PD
patients [121]. The artificial induction of diabetes mel-
litus in a tau transgenic model of FTD was shown to

http://www.alzforum.org
http://www.alzforum.org
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cause a massive deposition of hyperphosphorylated,
insoluble tau [146]. If diabetes is acting via tau pathol-
ogy one might expect an association between diabetes
and FTD, although we are not aware of any studies to
date that support this idea.

Smoking

Cigarette smoking is one of the few environmen-
tal exposures that has been consistently shown to be
associated with a reduced risk of PD [147–151]. It
also seems that this effect depends more on smok-
ing duration than on intensity [152]. Nicotine, through
direct effects on receptors, or indirect effects such as
inhibition of monoamine oxidase activity or induction
of P450 enzymes, is the main suspect [153]. Work
by ourselves, and others, has shown that both pas-
sive smoking and other forms of tobacco provide the
same protective effect [154, 155], adding weight to a
direct role of tobacco-related constituents in the asso-
ciation. Furthermore the protective effect of smoking
may rely on interactions with xenobiotic metabolism
genes [156, 157] similar to pesticide exposure dis-
cussed below. Other researchers have extended these
gene × environmental interactions to include variants
of genes involved in dopamine signaling [157] and the
SNCA gene [158, 159]. SNCA encodes �-synuclein and
is one of the few genes whose common variants are
reproducibly shown to be risk factors in sporadic forms
of PD [160]. The positive interactions with smoking
[158, 159] and pesticides [159], hints at the mechanis-
tic drivers of �-synuclein dysfunction.

In what appears to be a clear contrast with PD, smok-
ing is a risk factor for AD [161–165], although other
studies suggest that the effect is limited to ApoE �4 car-
riers [166, 167]. The independent effects of smoking
and ApoE genotype on cardiovascular disease (CVD)
risk provide an obvious interactive mechanism for AD
development, but as discussed above, diabetes seems
to be the only CVD factor with a robust association
with AD. Smoking is positively associated with type
2 diabetes but whether this is causal remains to be
determined [168]. However, irrespective of the role
of smoking, ApoE �4 (discussed below) and diabetes
combine to enhance the risk of AD [169].

Heavy smoking has been shown to reduce the risk
of �-synuclein pathology in a community-based study
with the greatest reductions being seen in the SN
[165]. So in comparison to education in AD, smoking
appears to act directly to reduce the pathological load.
A deduction from this work is that �-synuclein pathol-
ogy is either deleterious itself or a reliable barometer
of the disease process in PD. As an aside, there was no

concurrent increase in AD pathology in other regions
suggesting that the smoking effect in AD is not medi-
ated by exacerbating A� or tau pathology [170].

Pesticides

The interest in pesticides and PD pathogenesis stems
from the chemical similarities of common pesticides
like paraquat, to the Demerol derivative, 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) [171].
Accidental MPTP intoxication causes an acute form
of parkinsonism [172, 173]. Like its toxic metabo-
lite, MPP+ [174], the herbicide paraquat can also
induce parkinsonism in animal models [175]. Surpris-
ingly paraquat does not appear to act as a substrate
for the dopamine transporter, nor does it effectively
inhibit mitochondrial complex I [176]. Studies investi-
gating pesticide exposure in PD have produced variable
results, but a meta-analysis suggests that it is a mod-
erate risk factor [177]. Evidence from our laboratory
suggests that the true risk associated with pesticides
may well be higher but is effectively masked by hetero-
geneity of xenobiotic metabolism gene variants within
the case and control groups [178].

In contrast, there appears to be no pesticide effect
with AD or the intermediate phenotypes consistent
with the proposed selective effect on SNc dopamin-
ergic neurons [176, 179]. Nevertheless one needs to be
cautious in emphasizing mitochondrial dysfunction as
being PD-specific because one recent paper describes
the synergistically deleterious effects of tau and A�
on murine respiratory complex 1 and IV respectively
[180].

Family history

In looking at family history as a risk factor we
might appear to be asking the nonsensical question
of how much of the etiology of a sporadic disease
(no familial clustering) can be attributed to genetics?
PD was always regarded as the archetypal non-genetic
disease but the discovery of monogenic forms of the
disease combined with the re-evaluation of twin studies
has some researchers now suggesting that the spo-
radic PD is entirely genetic [181]. This suggestion
is further supported by recent evaluations of com-
mon genetic variability in genome-wide association
studies (GWAS), which have apportioned up to 25%
of the population attributable risk in PD to small-
effect sized common genetic variants [182]. Family
history as a risk factor appears to be similar between
PD (OR = 2.2 (95% CI = 1.2–4.0)) and AD (OR = 2.3
(95% CI = 1.5–3.4)) [183]. In terms of common genetic
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risk factors, there are conflicting studies supporting an
increased risk of dementia in PD relatives [184–186].
A family history of dementia is however a risk factor
for DLB [187] and four-fold greater in magnitude than
for PDD or PD [185, 187]. In contrast a family history
of PD is similar for PD, PDD, and DLB patients [185].

Monogenic forms of AD and PD are proof that these
diseases, or at least phenocopies of them, can be totally
genetic in nature. Autosomal dominant forms of AD
are caused by mutations in the presenilin 1 (PS1) gene
and more rarely in the PS2 and AβPP genes [188].
Autosomal dominant forms of PD are caused by muta-
tions in SNCA and the genes that encode the proteins,
leucine-rich region Kinase 2 (LRRK2) and Ubiquitin
C-terminal hydrolase-1 (UCHL-1) while autosomal-
recessive forms are caused by mutations in genes for
parkin (PARK2), DJ-1 (PARK7) and PTEN-induced
putative kinase 1 (PINK1). More recently mutations
have also been found in the genes encoding HtrA ser-
ine peptidase 2 (HTRA2), lysosomal ATPase type 13A2
(ATP13A2) and Glucocerebrosidase (GBA) [189]. GBA
mutations have also been linked to DLB and may
be a specific driver for �-synuclein pathology [190].
Most of these mutations result in early disease onsets
although LRRK2 mutations are a notable exception
in PD.

An obvious question seems to be how common vari-
ants of these genes might modify the risk for sporadic
disease [191]. Monogenic disease gene variants have
not been detected in GWASs of AD, but PD GWASs
suggest that SNCA [182, 192, 193] and LRRK2 [182,
192] variants are risk factors. However, both have very
modest effect sizes, particularly when compared to the
ApoE �4 variant in AD [194, 195]. It has been sug-
gested that ApoE �4, by itself, could account for as
much as 50% of attributable risk in sporadic AD [196].

ApoE

GWASs in AD have universally detected the ApoE
�4 risk effect [197–204]. However despite the effect
size it is still far from clear how ApoE �4 increases
the risk of AD. An important observation may be that
plaques are more frequent in ApoE �4 allele carriers
[205], but there is no difference in NFT load between
the different ApoE genotypes [206]. A mechanistic
link with A� pathology is certainly supported by
animal studies [207, 208] and seems consistent with
the lack of ApoE �4 effect in PD and FTD [209],
while female gender could also to play an important
interrelated role [112].

The frequency of ApoE �4 in DLB patients is similar
to AD [210–212] with a lessened, but nevertheless sig-

nificant, risk effect on the development of dementia
in PD [213–215]. Neuropathological [84] and neu-
roimaging studies [216] studies both support increased
A� loads in DLB compared with PDD. A caveat here
is that Drzezga et al. and a second imaging study failed
to show a link between ApoE genotype and brain atro-
phy in AD patients despite the association with A�
loads [205, 217]. This suggested to Vemuri and col-
leagues that neurodegeneration in AD may be mediated
by tau pathology and sequential to amyloidosis [217],
a course of events first suggested by the ‘amyloid cas-
cade’ hypothesis [218].

MAPT

Until recently microtubule-associated protein tau
(MAPT or tau) had largely played second fiddle to
A� in efforts to unravel the pathogenesis of AD. The
presence of tau-based inclusions across so many neu-
rodegenerative diseases hints at a general mechanism
of neurodegeneration but the protein itself remains
an enigma. No mutations in the MAPT gene, have
been described in AD or PD patients, but they are
responsible for an inherited variant of frontotemporal
dementia with parkinsonism (FTDP-17) [219]. A 900-
kb inversion polymorphism around the tau gene has
led to two distinct lineages in the human population,
H1 and H2 [220]. Surprisingly the variant H2 allele
does not affect risk for the most common tauopathy,
AD, but is protective in PD (Table 1). The common
H1 extended tau haplotype is also associated with pro-
gressive supranuclear palsy, one of the parkinsonian
syndromes characterized by tau deposition [221].

Associations between single nucleotide polymor-
phisms (SNPs) marking this haplotype and PD have
been confirmed in two large GWASs of Caucasian pop-
ulations [182, 193] but not, as expected, in a Japanese
GWAS where the H2 haplotype is largely absent [192].
The modifying effect of tau in PD may be mediated via
the putative interactions with �-synuclein as described
above. Interestingly patients harboring either SNCA
(A53 T) [222] or LRRK2 (G2019S) mutations [223]
can feature tau rather than �-synuclein-predominant
pathology.

No studies have looked at whether the H1 allele has
an effect on DLB risk, but the H1/H1 genotype is a pre-
dictor of PDD [97, 224]. This effect combined with the
protective trend of the H2 allele in FTD [225] suggests
that increased tau expression [226] drives dementia
either independently, or through an interaction with
�-synuclein pathology. The A� load in AD and DLB
may be sufficient through direct [97] or indirect means
[217] to precipitate tau aberrant expression or post-
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translational modification in the absence of genetic
predispositions.

However, if common variants of tau can drive
dementia, then what is happening in the >50% of tau-
negative cases of FTD? Some familial, and the majority
of sporadic FTLD patients without tau, have deposits
of the TAR DNA binding protein 43 (TDP-43) [227].
Interestingly, TDP-43 pathology is also commonly
found in DLB and AD cases suggesting a general role
in neurodegeneration [228–231]. In contrast, studies
in PD suggest that TDP-43 pathology is either absence
[232], or very uncommon [231] (Fig. 1). TDP-43 is
transposed to the cytoplasm under pathological condi-
tions, but the link between tau and TDP-43 pathology
is still unclear despite their indistinguishable end stage
degeneration in FTD.

In principle, the AD-PD risk factor literature does
seem to support the idea of a neurodegenerative dis-
ease spectrum. We suggest that the risk factors for A�,
tau, and �-synuclein pathologies occur commonly and
often together. How they might combine to form the
myriad of individual disease phenotypes is speculative
but we have summarized our ideas in diagrammatic
form to facilitate further discussion of this area (Fig. 1).
Looking at the Fig. 1, the aging influence in neu-
rodegeneration has been stylistically represented by an
hourglass. Aging results in cellular deterioration but it
is not entirely a haphazard process. Stochastic damage
is a driving force but the rates of damage accumulation
and decline relies on regulation by pathways that have
been conserved during evolution [233, 234]. Further-
more postulated aging mechanisms such as decreased

Fig. 1. A schematic of how risk factors might produce the dementia-PD spectrum. Using an hourglass analogy for ageing, this schematic
summarizes how risk factors might contribute to neurodegeneration across the dementia-PD spectrum. Risk factors, both deleterious and
protective, combine to produce the three pathological ‘drivers’: Amyloid-�, tau, and �-synuclein pathology represented by the yellow, red,
and blue dendritic clusters respectively. The risk factor scale ranges from largely protective ‘white’ (e.g., coffee), through differential ‘grey’
effects (e.g., smoking) to largely deleterious ‘black’ (e.g., head injury). Dendro-dendritic synapses represent putative competing or excluding
risk factors. Other factors will have their effects by acting directly on cellular resistance or via compensatory mechanisms (grey dendrites). The
perikaryon represents the temporal and spatial ‘mix’ of factors in a typical aged human brain (80 years). Axons lead to the final phenotypes with
protective or compensatory mechanisms (grey axons) continuing to minimize the impact of pathology and the clinical manifestations of disease
(via axo-axonal synapses).
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ability to manage oxidative stress [235] and proteotox-
icity [235–237] are remarkably similar to the working
hypotheses for AD and PD. Interestingly ApoE �4
confers a four-fold decrease in longevity compared to
�2 in persons over 85 years [238] although this may
reflect reduced morbidity from cardiovascular disease
rather than increased neurodegenerative disease bur-
den [239]. Nevertheless it is not a simple process to
delineate ‘cause’ and ‘effect’ issues between aging and
neurodegeneration.

The other aspect of these late-onset diseases is
the time component itself. This allows the possibil-
ity that chronic exposure to very subtle risk factors
could be sufficient for disease; a challenging sce-
nario for association studies. The time component
also increases the likelihood that multiple rounds of
compensatory or protective host responses will mask
primary pathogenic clues from postmortem detection.
Such secondary or incidental findings can misdirect the
subsequent research focus or result in therapeutics that
will prove palliative at best. Lastly, the time compo-
nent is difficult to accelerate accurately in cell culture
or laboratory animal models aimed at recapitulating
the disease history.

The base of the hourglass encloses a reservoir of
these known, putative, or as yet, unknown risk factors.
We envisage that subsets of these factors, both delete-
rious and protective interact to create ‘drivers’ for the
three pathologies. We have used yellow, red and blue
‘dendrites’ to designate the A�, tau, and �-synuclein
pathologies, respectively (color available in online ver-
sion only; otherwise left to right respectively). In con-
trast to drivers of ‘pathology’ other factors will modify
risk by enhancing or attenuating cellular protection or
compensatory mechanisms (grey ‘dendrites’). In par-
ticular we are referring to the effects of female gender
and education on creating a ‘cognitive reserve’ that acts
to postpone clinical manifestations of dementia.

The neuronal cell body is a mixer for the impact
of individual ‘drivers’ against the general resolve of
the human brain to maintain homeostasis or employ
compensatory mechanisms in response to injury. This
maintenance of homeostasis is what we have termed
cellular resistance while compensation is likely to be
‘multiscalar’, potentially operating on all levels from
a molecular basis, through enhanced local plasticity to
the use of alternative circuitry [240].

Finally, ‘axons’ from the cell body carry the blend
of A�, tau, and �-synuclein pathologies towards the
final neuropathological and clinical phenotypes. The
axo-axonal synapses (grey) reinforce the idea that
some individuals enjoy a heightened resistance to, or

an inherent ability or compensate for, these patholo-
gies. The top of the hourglass shows the dementia-PD
phenotypes displayed according to their estimated
prevalence. We suggest that approximately 75% of
aged individuals die with some neuropathology but
less than 10% are clinically affected. Notwithstanding
dosage effects this suggests that nearly all individuals
are exposed factors that drive these ‘pathologies’.

PART III: THE FUTURE DIRECTION
OF ASSOCIATION STUDIES

The original hypothesis of this essay was to exam-
ine whether knowledge of disease-specific risk factors
for AD could assist in focusing efforts into under-
standing the pathogenesis of sporadic forms of PD,
or and vice versa. ‘Intermediate’ diseases and inci-
dental pathology suggested that there is actually a
dementia-PD spectrum involving various combina-
tions of A�, tau, �-synuclein, and probably TDP-43
pathology, in a non-linear pattern. Although not alto-
gether explained by a threshold effect, the amount and
extent of pathology generally reflects the degree of
neurological dysfunction. Given this continuum, we
thought that our hypothesis might be better pursued in
terms of factors that appeared to promote or attenuate
A�, tau, or �-synuclein pathology across the various
phenotypes. In the case of smoking in PD, this certainly
seemed to be the case [165], but other known risk fac-
tors appeared to be acting in a compensatory capacity
that was physically remote from pathology itself.

In the introduction we also suggested that using AD
controls for PD, or vice versa, may be a more effective
strategy to finding risk factors than the classic case-
control paradigm. This approach seems particularly apt
given the prevalence of incidental pathology in unaf-
fected controls. However the commonality of mixed
pathology amongst AD and PD cases suggests that the
utility of AD-PD case comparisons may be just as lim-
ited, or effective, as the classic-case control paradigm.

Single disease entities are far easier to explore in
experimental paradigms but here they are not entirely
accurate. The risk factors for A�, tau, and �-synuclein
pathologies often occur together across the AD-PD
spectrum and show strong interrelations [94, 95]. Per-
haps thinking in terms of a neurodegenerative disease
continuum may be one way to advance our scien-
tific investigation of these diseases. For example, one
could study pathologically confirmed cases and con-
sider the “load” of specific pathologies as continuous
dependent variables in relation to particular indepen-
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dent risk factors. Excitingly, the continuing progress
of neuroimaging initiatives allowing a more accurate
quantification of pathological (A�) load and regional
atrophy creates the possibility that the research findings
could actually benefit the patients involved [241].

Similarly, potential treatments in various stages of
preclinical or clinical trials are largely aimed at the
attenuation of pathology. The best known example is
A� immunotherapy that, despite setbacks in human
clinical trials, still holds considerable promise [242].
Similarly, strategies aimed at reducing NFTs [243] and
�-synuclein pathology [244] or their formation [245,
246] are also being developed.

The reduction of pathology is not the only treat-
ment option. It appears equally prudent, to identify and
subsequently augment neuronal survival mechanisms.
In the absence of pathology-attenuating therapeutics
these will still reduce the burden of disease by extend-
ing the quality of life and reducing the need for
high-dependence care. In addition, it is important to
consider the role of inflammation in the overall disease
processes as inflammatory correlates such as activated
microglia are seen to a variable extent in all diseases
across the AD-PD spectrum [247]. However, a greater
exploration of this area, and particularly the research
effort into finding effective modulators of neuroin-
flammation, falls outside the scope of this review (see
[248]).

Whatever the treatment rationale, success is likely to
hinge on the concurrent discovery of pre-clinical mark-
ers to identify at-risk individuals. This will facilitate
the utilization of a therapeutic window where neuronal
numbers remain consistent with adequate functional-
ity. Luckily the discovery of a rational therapeutic tar-
get and preclinical marker may be mutually inclusive
tasks. They both require investigation of early disease
paradigms to find the primary pathogenic mechanisms.
In this respect, the advent of patient derived stem cell
models looks very promising for the in vitro modeling
of disease history on differentiable susceptible genetic
backgrounds [249]. Similarly, presymptomatic stages
of animal models and the prospective studies of pro-
dromal conditions and asymptomatic mutation carriers
[250] could be employed.

It is an exciting time to be involved in disease
research with genome-scale technologies enabling
thousands of parameters to be tested simultaneously.
These multidimensional platforms, in combination
with improving annotational algorithms, are moving us
steadily towards a systems biology approach to health,
or as recently described, ‘network medicine’ [251].
However these powerful approaches still rely on the

relevance of the question being asked and the context
it is being asked in. Case-control studies are reduc-
tionist paradigms that assume, for maximum power,
that the two populations being compared are exclu-
sive and homogenous. We, and others [94, 95], suggest
that AD and PD are neither exclusive nor homoge-
nous entities but rather part of a complex continuum
characterized by variable amounts of A�, tau, and
�-synuclein pathology. This heterogeneity may be an
important factor in the lack of reproducibility in case-
control studies to date. The consideration of incidental
and mixed pathologies will make experimental design
and interpretation more challenging but it should also
lead to greater clarity from our studies of late-onset
neurodegenerative diseases such as AD and PD.
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