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Commentary

The Importance of Being Connected
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In the 17 years since the original report linking the �4
allele of the apolipoprotein E (APOE) gene [1] with
late-onset Alzheimer’s disease (LOAD), considerable
effort has been expended to elucidate the role that
APOE plays in LOAD risk and age of disease onset.
LOAD is a genetically complex and heterogeneous
disorder. The disease has a strong heritability that is
estimated to reach nearly 80% [2], yet only a few genes
that account for a proportion of the observed genetic
variability have been definitively associated with the
disease [3]. The only firmly established genetic risk
factor for sporadic AD, and the risk factor with the
largest effect size, is the �4 allele of APOE [4]. Car-
riage of an APOE �4 allele significantly increases the
lifetime risk for AD, with the level of risk increasing
as the �4 allele dose increases [4, 5], and is associated
with lower age of disease onset [4, 6–9]. The APOE
gene occurs in an extended linkage region on chromo-
some 19 that provides an extraordinary genome wide
association signal with LOAD. This association signal
is generally attributed to the �4 allele of APOE, but
other polymorphisms in adjacent genes and the APOE
promoter may also contribute to disease pathogene-
sis. In this commentary, we consider the findings of
Lescai et al. [10] in the context of an extensive phyloge-
netic analysis of the TOMM40-APOE region recently
reported by our group [11, 12].

In this issue, Lescai and colleagues identify a hap-
lotype, comprised of a specific allele of an APOE
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promoter SNP (rs405509 or −219T) and the two SNPs
that determine the APOE �4 genotype (rs429358-
rs7412 CC) that increases the risk for LOAD when
the alleles are present in cis on the same chromosome
[10]. Additionally, they show that this haplotype is
significantly associated with younger age at diagno-
sis when compared to haplotypes that contain the G
form of the −219 SNP and the APOE �4 allele, which
suggests a link to earlier disease onset. Notably, the
authors stress the importance of the occurrence of the
associated alleles in cis, or in phase, in their analyses
[10]. Prior studies, where the phase of the alleles on
the chromosome was not determined or was estimated
by inference, had limited power to measure complex
interactions of specific alleles at multiple polymorphic
sites in the genomic interval of chromosome 19 that
includes APOE and several other genes.

Phylogenetic analyses are widely employed in
medicine to explore the evolutionary relationships
between, and the emergence of mutations in, human
pathogens, but these analyses are less commonly used
to identify disease-associated variation in the human
genome [13–16]. The branching tree representations
of variations in gene sequences, like that in Fig. 1,
illustrate the relationships among the sequences or the
different evolutionary lineages of the chromosomes in
the sampled population. In the special case of a region
of high linkage disequilibrium (LD), or low recom-
bination, mutations stay connected during evolution.
This pattern of co-inheritance can provide a view of
the order (or timing) for each mutation in a region of
interest. The phylogeny illustrated in Fig. 1 is con-
structed of DNA sequences from the APOE LD region
(50,092,405–50,101,584, NCBI version 36) on chro-
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Clade B

Long 523 (19-23 T) 
linked to εε4

Very long 523 (30-36 T)
linked to ε3

Short 523 (14-16 T)
linked to ε3

Long 523 (26-30 T) linked to ε4

AD/Control = 1.7
rs8106922 = G
rs405509 (-219) = G

Clade A
AD/Control = 2.7
rs8106922 = A
rs405509 (-219) = T or G

0.0001

Fig. 1. The annotated phylogenetic tree shows the mapping of rs10524523 polyT lengths and TOMM40 rs8106922 and APOE rs405509 (−219)
SNPs. The case/control ratio for the two major clades is reported. For major clade B, which is associated with lower risk of LOAD and contains
haplotypes linked to APOE �3, rs10524523 lengths are uniformly short (mean = 15.9, SEM = 0.4, n = 63). In contrast, the polyT alleles in clade
A are much longer: the average length of alleles connected to APOE �4 is 27.2 (SEM = 0.29, n = 55, ‘long’) and the average length of polyT
alleles connected to APOE �3 is 31.57 (SEM = 0.48, n = 90, ‘very long’). There is strong bootstrap support (973/1000) for the first major branch
and moderate bootstrap support for the branches within clade A (247/1000 and 776/1000, respectively). The tree is obtained from a cohort of
105 patients (210 haplotypes) (Arizona cohort) [11].

mosome 19 from LOAD patients and controls. This
genomic region includes the three APOE promoter
polymorphisms (−219, −491 and −427) discussed by
Lescai et al. [10]. Events such as mutation and recom-
bination in an ancestral sequence, represented by a
node in the tree, introduce diversity in each chromo-
some and the resultant lineages subsequently inherit
the outcomes of these events. If an inherited mutation
causes a phenotype, such as disease susceptibility, the
phenotype will tend to be enriched in a lineage that
arises from the genetic event [17]. Each of the leaves
of the tree, as shown on the right of the Fig. 1, is com-
posed of clusters of the most similar sequences from
the sampled chromosomes. In Fig. 1, distinct lengths
of a variable–length, deoxythymidine homopolymer
(polyT), rs10524523 or 523, located in intron 6 of the
TOMM40 gene differentiate the leaves on this phy-
logeny. If a phylogeny is developed from a genomic
region that is associated with disease, then each cluster
of related haplotypes on the tree can be tested for asso-
ciation with a phenotype of interest, and the variants
that distinguish each cluster can be further analyzed.

The phylogeny shown in Fig. 1 was originally
published in our recent paper entitled, “A TOMM40
variable length polymorphism predicts the age of late-

onset Alzheimer’s disease” [12]. The major findings of
this analysis of LOAD were in Caucasians: 1) APOE �4
was, almost without exception, linked to a long polyT
repeat at rs10524523; 2) The �3 allele of APOE was
linked to either a short (<20 T residues) polyT or a
very long (>30 T residues) polyT repeat; and 3) The
‘long’ (L) or ‘very long’ (VL) polyT alleles, which
refer to homopolymer lengths greater than 20 and 30 T
residues respectively, were associated with earlier age
of disease onset in APOE �3/4 patients (∼7 years dif-
ference) and with higher disease risk. That is, linkage
to a short or very long poly-T for an APOE �3 carrier
resulted in later or earlier onset of LOAD, respectively,
regardless of risk imparted by APOE �4 [11]. This
finding has now been extended to other APOE geno-
types, including APOE �3/3 patients, where it has been
demonstrated that those who are homozygous for the
longer alleles have disease onset an average of 9 years
earlier than those who carry one short polyT [18].

We mapped the three APOE promoter polymor-
phisms (−219, −491 and −427), discussed by Lescai
et al. [10] to the data for the three clinical cohorts in
our 2009 publication. The three SNPs in the APOE pro-
moter tend to be in linkage with specific polyT lengths.
In Caucasians, the strongest linkages are between
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−219 G and short polyTs and −219 T and long or very
long polyTs. The phylogeny in Fig. 1 is further anno-
tated here with the alleles of the −219 promoter SNPs.
The two major conclusions of this mapping are: 1) The
T allele of −219 always maps to clade A. This clade is
associated with a higher risk for LOAD and an earlier
age of onset for LOAD relative to clade B; and 2) the
T allele of −219 always co-occurs with either a long
523 allele linked to APOE �4 or a very long 523 allele
linked to APOE �3. The association between the two
alleles of −219 and distinct lengths of 523 potentially
extends the findings of Lescai et al. [10] from individu-
als possessing the APOE �4 allele to �3 carriers as well.

The rs8106922 SNP in intron 6 of the TOMM40 gene
remains the one variant within the 10 kilobase genomic
region that best separates clades A and B in the con-
sensus phylogenetic tree constructed for the APOE
LD region. In the 105 subject cohort from the Ari-
zona Alzheimer’s Disease Research Center (ADCC,
[12]), the G allele of rs8106922 is linked to the G allele
of −219 for 100% of all haplotypes. For 82% of the
clade A haplotypes, the A allele of rs8106922 is linked
to the T allele of −219. The remainder of clade A hap-
lotypes have the A allele of rs8106922 linked to −219
G. The alleles of this TOMM40 SNP are therefore more
characteristic of the two major clades. The correspon-
dence between the indicated alleles of these two SNPs
is statistically significant (p < 0.0001) by Fisher’s exact
test. Although rs8106922 distinguishes the two major
clades better, −219 and several other SNPs in this
region are also highly significant in terms of differen-
tiating the clades. Interestingly, a meta-analysis of five
LOAD case-control studies indicates that rs8106922 is
significantly associated with disease risk, with a study-
wide allelic odds ratio of 2.7 [19]. Several other SNPs
in TOMM40 are highly significantly associated with
LOAD, some with allelic odds ratios in the 2.8–3.0
range, which provides further evidence for a role for
this gene in LOAD [20–23].

The APOE promoter SNP, −219, described by
Lescai et al. [10], is not significantly associated with
age of LOAD onset in the APOE �3/4 cohort that we
analyzed for age of onset in 2009 (p > 0.51). How-
ever, we do identify a trend that is in accord with their
findings: we calculate that the age of LOAD onset
for individuals who have the TT −219 genotype is
earlier (70.1 ± 1.8, n = 15) than the age of onset for
the GT genotype (73.1 ± 1.7, n = 12) or GG genotype
(72.0 ± 3.0, n = 7) in our cohort. In contrast, the 523-
polyT genotype is a better age of onset classifier and is
more statistically significant. That is, for APOE �3/4
patients who developed LOAD after age 60, the indi-

viduals with long polyT repeats linked to APOE �3
developed LOAD an average of 7 years earlier than
individuals with shorter poly-T repeats linked to APOE
�3 (70.5 years ± 1.2 versus 77.6 years ± 2.1, p = 0.02,
n = 34) [12].

TOMM40 and APOE are in LD on chromosome 19,
with the 3′ and 5′ ends, respectively, of the genes, sep-
arated by only ∼2 kilobases [7, 24]. The proximity of
the genes and the LD within the region may obscure
disease risk associated with variants other than APOE
�4. As noted by Lescai et al. [10], the amount of ApoE
protein in cerebral spinal fluid of non-demented indi-
viduals and in postmortem brain of LOAD patients is
associated with SNPs within TOMM40 and not with
APOE SNPs, suggesting that an APOE-regulatory ele-
ment may reside in TOMM40 [25, 26].

In addition to the genetics, there are other data indi-
cating that Tom40, the protein encoded by TOMM40,
is directly involved in LOAD pathogenesis. Tom40 is
the transmembrane channel subunit of the Translo-
case of the Outer Mitochondrial Membrane (TOM)
complex. Almost all proteins involved in mitochon-
drial structure and function are encoded by nuclear
genes and are translocated into mitochondria through
this pore. Because >98% of the 1100 to 1500 known
mitochondrial proteins [27] are nuclear encoded and
enter mitochondria through Tom40 [28], this pro-
tein plays a critical role in mitochondrial physiology
and biogenesis and therefore overall cellular health
and functioning. A role for Tom40 in mitochondrial
pathogenesis, proposed to be a precipitating event in
Alzheimer’s disease, is indicated by the finding of
amyloid-� protein precursor (A�PP) lodged in the
TOM channel in LOAD brain samples. This blockage
results in mitochondrial dysfunction due to obstruction
of the transport of nuclear-encoded cytochrome c oxi-
dase (COX) subunits into the mitochondrion [29, 30].
Decreased COX activity gives rise to increased gen-
eration of reactive oxygen species and reduced ATP
production. A�PP-induced mitochondrial toxicity is
observed in samples from LOAD patients and not in
samples from normal, age-matched controls, and the
extent of bound A�PP is positively correlated with
disease severity. Tom40 also mediates the passage of
A� peptide, a fragment of A�PP, from the cytosol
into mitochondria, where it induces mitotoxicity by
inhibiting COX [31, 32]. There is, therefore, genetic
and cell biological evidence that TOMM40 contributes
to LOAD risk or pathogenesis.

In summary, Lescai and colleagues [10] present
important data on the role of SNPs in the APOE pro-
moter and their possible interaction with variants of the
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APOE gene. Moreover, the report makes a compelling
case for considering the cis arrangement of alternative
alleles in analyses of disease phenotypes, as different
allelic combinations may engender different biology.
Analyzing the APOE promoter SNPs in the context of
the molecular evolution of the extended LD interval
shows the linkage between specific APOE promoter
alleles and the APOE �3-very long 523 haplotype that
is associated with LOAD risk and earlier disease onset,
in addition to the interaction of the promoter alleles
with APOE �4 that Lescai et al. describe. The data pre-
sented by Lescai et al. [10], and in this Commentary,
provide additional support for rs10524523 as a pre-
dictive marker for disease onset. This genetic marker
provides a viable strategy for enrichment of clinical
trials to test therapies that may alleviate or offset mito-
chondrial dysfunction and thereby delay the onset of
LOAD.
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