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Abstract. The subcellular localization of presenilin-1 (PS1) and presenilin-2 (PS2), two proteins that, when mutated, cause
familial Alzheimer’s disease (AD), is controversial. We have discovered that mitochondria-associated membranes (MAM) –
a specialized subcompartment of the endoplasmic reticulum (ER) involved in lipid metabolism and calcium homeostasis that
physically connects ER to mitochondria – is the predominant subcellular location for PS1 and PS2, and for γ-secretase activity.
We hypothesize that presenilins play a role in maintaining MAM function, and that not only altered amyloid-β levels and
hyperphosphorylated tau, but also many other features of AD (e.g., altered phospholipid and cholesterol metabolism, aberrant
calcium homeostasis, and abnormal mitochondrial dynamics) result from compromised MAM function. The localization of
presenilins and γ-secretase in MAM may help reconcile disparate ideas regarding the pathogenesis of AD, under a unifying
hypothesis that could explain many features of both sporadic and familial AD, thereby taking AD research in a new and fruitful
direction.
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ALZHEIMER’S DISEASE

Alzheimer’s disease (AD), the most common late
onset neurodegenerative dementing disorder, is charac-
terized by progressive neuronal loss, especially in the
hippocampus and cortex [1]. The two main histopatho-
logical hallmarks of AD are the accumulation of extra-
cellular neuritic plaques, containing amyloid-β (Aβ),
and of neurofibrillary tangles, consisting mainly of hy-
perphosphorylatedforms of the microtubule-associated
protein tau [1]. Most AD patients are sporadic (SAD),
but three genes have been associated with the famil-
ial form (FAD): amyloid-β protein precursor (AβPP),
presenilin-1 (PS1), and presenilin-2 (PS2). Clinically,
FAD is similar to SAD but has earlier onset.
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Presenilins are components of the γ-secretase com-
plex (also containing APH1, nicastrin, and PEN2) that,
together with β-secretase, processes AβPP to produce
Aβ [1]. In the mainstream view, both SAD and FAD
arise when AβPP is processed to Aβ, which accu-
mulates in extracellular plaques. Aβ is toxic to cells
and the resulting stress promotes tau hyperphosphory-
lation, leading to the tangles. The overall process has
been called the “amyloid cascade” hypothesis [2,3].
This hypothesis reconciles findings from different ap-
proaches to the disease and has served as the basis for
many key experiments in vivo and in vitro. However,
certain questions that are central to understanding the
pathogenesis of AD and the processing of Aβ remain
unsolved.

The first question concerns features of AD that are
not obviously linked to plaque or tangle formation.
While plaques and tangles are hallmarks of the dis-
ease, other apparently unrelated laboratory abnormali-
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ties are routinely detected in patients, including elevat-
ed cholesterol [4], altered fatty acid [5,6], glucose [7,
8], and phospholipid [9] metabolism, aberrant calcium
homeostasis [10], and mitochondrial dysfunction [11].
These features of AD have received far less attention
because of the lack of direct links to the amyloid cas-
cade, and have engendered numerous competing hy-
potheses to explain the pathogenesis of AD. These in-
clude tau hyperphosphorylation [12], altered lipid [13],
cholesterol [14], and glucose metabolism [15,16], aber-
rant calcium homeostasis [17], glutamate excitotoxic-
ity [18], inflammation [18,19], ER stress and the un-
folded protein response (UPR) [20–23], and mitochon-
drial dysfunction and oxidative stress [24]. It remains
to be determined to what degree these phenomena are
causally interlinked, and whether they may be direct
outcomes of defects in AβPP processing.

The second issue is commonly referred to as the
“spatial paradox” [25]: whereas PS1 is believed to be
located mainly in the ER [26] and Golgi [26,27] as
a component of an intracellular γ-secretase [28], pro-
cessing of AβPP to release extracellular Aβ is believed
to occur at or near the plasma membrane (PM) [29].
Thus, there is an apparent physical disconnect between
the intracellular location of presenilins and γ-secretase
activity on the one hand and the presumed site of Aβ
synthesis on the other.

One potential solution to the spatial paradox would
be to revise our current opinion on the subcellular dis-
tributions of presenilins. Indeed, although many be-
lieve that presenilins are located in the ER and/or Gol-
gi, in truth, the subcellular localization of PS1 and PS2
has been the subject of controversy, with localizations
reported in other compartments, including the nuclear
envelope [30], endosomes [31], lysosomes [32], mito-
chondria [33], and the plasma membrane [28], where
it is especially enriched at intercellular contacts known
as adherens junctions [34].

Our understanding of the pathogenesis of AD, and
by extension, our efforts to develop therapies for this
devastating disorder, is highly dependent on a precise
localization of this key proteolytic event and potential
therapeutic target.

MITOCHONDRIA-ASSOCIATED
MEMBRANES

Mitochondria-associated ER membranes (MAM) is
a specialized subcompartment of the ER that connects
this organelle to mitochondria, both biochemically and

physically [35–38]. It plays a critical role in calcium
homeostasis, as well as in various housekeeping func-
tions, such as phospholipid, glucose, sphingolipid, gan-
glioside, cholesterol, and fatty acid metabolism [38],
as well as in calcium homeostasis and signaling [38]
and in apoptosis [39]. This physical connection has
been proposed to be mediated by phosphofurin acidic
cluster sorting protein 2 (PACS2) [39] and mitofusin 2
(MFN2) [40].

MAM is distinct from “bulk” ER in its composition
and behavior. For example, MAM is enriched in neutral
lipids and cholesterol [41,42], which, upon subcellular
fractionation, allows it to be separated from bulk ER
as a low-density fraction [43]. In fact, MAM has been
described as a detergent-resistant microdomain of the
ER having the properties of intracellular lipid rafts [42,
44].

A POTENTIAL ROLE FOR MAM IN THE
PATHOGENESIS OF AD

We recently reported a novel subcellular localization
for presenilins in MAM [45], and discuss here a mech-
anism that could link this localization to the known
metabolic changes in AD. Furthermore, based on sev-
eral lines of evidence, we propose that defects in MAM
function play a key role in the pathogenesis of both the
sporadic and familial forms of AD.

PS1 and PS2 are enriched in the MAM

As alluded to above,PS1 has been localized to almost
every membranous compartment of the cell, including
ER [26,30,46–48], the Golgi apparatus [26,27,46,49],
endosomes [31,50], lysosomes [32], the nuclear enve-
lope [30], mitochondria [33,51], and the plasma mem-
brane [28,52–55], including adherens junctions [34,
56].

Using a combination of biochemical, immunocyto-
chemical, and functional assays, we have shown that,
apart from its presence in the plasma membrane, PS1
and PS2 are actually highly enriched in only one other
compartment of the cell, namely MAM [45]. More-
over, besides identifying MAM as the main subcellular
compartment for the presenilins, we also found that γ-
secretase activity associated with AβPP processing is
essentially confined to the MAM [45]. Thus, our iden-
tification of AβPP together with high levels of both
presenilins and γ-secretase activity in the same subcel-
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lular compartment (i.e., MAM) could help resolve the
spatial paradox.

Our results were somewhat surprising, because in
the 15 years since mutations in PS1 [57] and PS2 [58,
59] were identified, many laboratories, using both mor-
phological and biochemical approaches, localized the
presenilins to numerous subcellular compartments, but
never specifically to MAM.

As we noted in our initial report [45], we believe
that the discrepancy between our results and those of
others was due mainly to the use of appropriate mark-
ers that could identify MAM unambiguously. Further-
more, given the lipid raft-like nature of MAM, it is
not surprising that standard techniques used to isolate
membranous organelles would unavoidably result in
co-purification of MAM along with bulk ER, Golgi, en-
dosomes, and mitochondria [49,60–63]. We also note
that both AβPP [64] and Aβ [65,66] have been detect-
ed in mitochondria, but because of the contamination
of most mitochondrial preparations with MAM, these
polypeptides could also be MAM-associated proteins
that were inadvertently assigned to mitochondria [67].

Moreover, the fact that MAM is a detergent-resistant
membrane (DRM) microdomain [44] means that im-
munocytochemical techniques that rely on the use of
detergents for permeabilization will only reveal epi-
topes that are not embedded in DRMs, as exemplified
by the difficulty in identifying plasma membrane lipid
raft proteins [68,69], where the use of detergents as
permeabilization agents is limited [70–73].

In the case of the presenilins, we have found that the
use of detergents, such as Triton X-100 (TX100), to
permeabilize cells prior to the application of antibodies
against PS1 or PS2 yields a dramatically different result
as compared to that obtained following the use of or-
ganic solvents, such as methanol (MeOH), for cell per-
meabilization (Fig. 1). If TX100 is used for permeabi-
lization, the anti-PS1 signal is spread diffusely among
essentially all membranous compartments of the cell
(Fig. 1A). However, when MeOH is used, the signal
co-localizes predominantly with the MitoTracker Red
signal, especially in the perinuclear region, where most
of the ER resides (Fig. 1B). We confirmed these re-
sults by performing a triple staining in human fibrob-
lasts permeabilized with MeOH, labeling mitochondria
with MitoTracker Red (red) and immunostaining with
anti-PS1 (green) and with anti-KDEL (blue) as an ER
marker (Fig. 1C).

Our finding that presenilins and γ-secretase activity
are enriched in MAM [45] is consistent with reports
that PS1 and other γ-secretase components [31,74], as
well as γ-secretase activity itself [75–80], are present
in DRMs and/or lipid rafts.

Altered MAM function in AD

The presence of presenilins, γ-secretase activity, and
AβPP in MAM is consistent with the amyloid cascade
hypothesis. Nevertheless, we believe that the accumu-
lation of plaques and tangles in AD, which are clear-
ly detrimental, are merely features of the disease (and
probably exacerbate its course and progression), but are
not its underlying cause. Rather, we propose that the
fundamental pathogenetic cause of AD is the alteration
of MAM function, which could explain many of the
disparate features of the disease noted above, including,
but not limited to, the formation of plaques and tan-
gles. Three aspects of MAM function are particularly
noteworthy (Fig. 2A).

The role of MAM in lipid metabolism

More than fifteen proteins involved in fatty acid,
phospholipid, glycolipid, and triglyceride metabolism
are enriched in the MAM [38,45]. The role of MAM
as a compartment connecting ER with mitochondria
is illustrated very nicely by a major cellular path-
way for the synthesis of phosphatidylethanolamine (Pt-
dEtn). PtdEtn can be synthesized de novo in the ER
from free ethanolamine via the Kennedy pathway [81],
but most PtdEtn is made in a collaborative effort be-
tween MAM and mitochondria (see Fig. 2A): phos-
phatidylserine (PtdSer) is synthesized in the MAM via
the serine-exchange enzyme phosphatidylserine syn-
thase 2 (PTDSS2); PtdSer is then translocated to the
mitochondria [82], where it is decarboxylated to Pt-
dEtn by phosphatidylserine decarboxylase (PISD); fi-
nally PtdEtn is transferred back to the MAM, where it is
methylated by phosphatidylethanolamine methyltrans-
ferase (PEMT) to generate phosphatidylcholine (Ptd-
Cho) [83].

The kinetics of trafficking of PtdSer from MAM to
mitochondria is a recognized measure of MAM func-
tion [84]. Using such an approach, we recently detect-
ed a significant difference in PtdSer and PtdEtn synthe-
sis in PS-mutant versus control cells (data not shown).
This result is consistent with the reported aberrations
in phospholipid profiles in AD patients [9,85]. Intrigu-
ingly, significant changes in PtdEtn and PtdCho levels
have also been found in the brains of SAD patients [86],
implying that a defect in this known MAM function
could play a role not only in the familial, but also in the
sporadic, form of the disease.

Remarkably, phospholipids, and especially PtdEtn,
play a role in tau phosphorylation [87]. Thus, it is
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Fig. 1. Immunolocalization of PS1 in human fibroblasts. A) Fixation with paraformaldehyde (PF) and permeabilization with TX100. Note poor
co-localization of the two signals (the orange staining in the merge panel is the non-specific overlap of the MitoTracker Red [MT Red] stain with
the diffuse anti-PS1 stain). B) Fixation with PF and permeabilization with MeOH. Note the co-localization of PS1 and MT Red in the perinuclear
region (yellow arrowhead) but not in more distal regions (red arrowhead). Images captured by confocal microscopy (100x). C) Co-localization of
MT Red, anti-PS1, and anti-KDEL, following MeOH fixation. Note that PS1 and MT Red “co-localize” (i.e., yellow signal), but only in regions
where both ER and mitochondria are present (arrowhead marked “a”), whereas yellow signals are barely detectable in regions that contain ER
but no mitochondria (arrowhead marked “b”) or mitochondria but no ER (arrowhead marked “c”). This result confirms that the yellow areas do
not represent a true co-localization of ER and mitochondria, but rather a region below the level of confocal resolution where the two organelles
are in apposition and make contact (i.e., MAM) (see also Fig. 3 in [45]).

possible that altered MAM function in AD patient cells
could help explain the accumulation of tangles contain-
ing hyperphosphorylated forms of tau [88].

The role of MAM in cholesterol metabolism

MAM is not only a lipid raft-like domain rich in
cholesterol, but it also contains a key enzyme of choles-
terol metabolism, namely, acyl-CoA:cholesterol acyl-
transferase (ACAT) [89], which catalyzes the conver-
sion of free cholesterol to cholesteryl esters [90]. There
are two ACAT isoforms in mammals – ACAT1 (gene
SOAT1) and ACAT2 (gene SOAT2) – but ACAT1 is the

predominant isoform in humans (and is the main func-
tioning isoform in mouse brain [91]), whereas ACAT2
is expressed mainly in the intestine [90]. ACAT1 af-
fects cholesterol homeostasis by controlling the dynam-
ic equilibrium between membrane-bound free choles-
terol and cholesteryl esters stored in cytoplasmic lipid
droplets [14].

The relationship of MAM-localized ACAT1 to AD
is intriguing, for at least three reasons. First, ACAT1
affects AβPP processing [91–93] and is required for
the generation of Aβ [14,94,95]. Second, there may
be a positive feedback loop between MAM content and
ACAT1 activity, because elevated cholesterol stimu-
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Fig. 2. Working model for the pathogenesis of AD due to abnormalities in MAM function. A) Illustrated are the three MAM functions discussed
in the text: phospholipid transport and biosynthesis (pathway at left); calcium homeostasis (center); and cholesterol metabolism (right). Note
that presenilins have been associated with IP3 receptors (IP3R), which in turn associate with the sigma-1 receptor (SIG1R); both are involved in
Ca2+ signaling. B) Altered MAM function (resulting, for example, from mutations in PS1) affect the indicated pathway (light blue ovals), each
of which can have one or more effects (pink ovals) that result in the features of AD (bold). The model as shown is somewhat simplified, as the
various MAM functions can actually affect each other (double-headed arrows). UPR, unfolded protein response.

lates an increase in low density ER vesicles (presum-
ably MAM) containing ACAT1 [96]. Finally, MAM is
also enriched in microsomal triacyglycerol transfer pro-
tein large subunit (MTTP) [89] that, together with pro-
tein disulfide isomerase (PDI) [97], catalyzes the trans-
port of cholesteryl esters, phospholipids, and triglyc-
erides between phospholipid surfaces, and which is re-
quired for the secretion of plasma lipoproteins [97].

Importantly, patients with AD have elevated circu-
lating cholesterol [4,98], and ACAT1 is elevated in the
blood [99] and in fibroblasts [100] from AD patients,
but the reason for these observations is currently un-
clear. We suggest that altered communication between
the MAM and mitochondria in AD results in increased

ACAT1 activity, thereby affecting circulating choles-
terol levels and Aβ production.

The role of MAM in calcium signaling

Given that the ER is the cell’s main source, and
that the mitochondrion is the cell’s main sink, of cal-
cium [101], it is perhaps not surprising that MAM, the
compartment connecting these two organelles, plays a
key role in calcium trafficking [38]. Proteins involved
in Ca2+ trafficking have been shown to be enriched in
the MAM, including inositol-1,4,5-trisphosphate (IP3)
receptors [102,103], ryanodine receptors [104,105],
the sigma-1 opioid receptor [106], and perhaps even
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calnexin [107], emphasizing the intimate relationship
between ER and mitochondria in regulating calcium
homeostasis [108]. Conversely, Ca2+ regulates the ap-
position of ER and mitochondria via autocrine motility
factor receptor (AMFR) [109], an apparently MAM-
enriched protein [110,111].

A defect in calcium signaling due to altered MAM
function could explain the well-known disturbances in
calcium homeostasis in AD [17,112,113], including
enhanced IP3-mediated release of Ca2+ in fibroblasts
from patients with SAD [114] and with FAD due to
mutations in PS1 and PS2 [114–117], as well as in
PS-mutant mouse cells [118].

Since MAM plays a role in calcium buffering [37],
mutations in PS1 that alter MAM function could cause
the defects in calcium homeostasis observed in AD
patients. Consistent with this, presenilins are required
for Ca2+ influx into cells through “store-operated”
Ca2+ (SOC) channels located in the plasma membrane
(“capacitative calcium entry” [CCE]), which require
microdomains containing both an active sarcoplas-
mic/endoplasmic reticulum calcium ATPase (SER-
CA) – a protein associated with PS1 [119,120] – and
neighboring mitochondria [121]. In cells with FAD-
linked mutations, ER [Ca2+] was increased [117,122]
and CCE was inhibited [122–124], with downstream
effects on AβPP processing and Aβ production [123–
125].

Perhaps the most compelling evidence for a role of
MAM in calcium dysregulation in AD is the finding
that both PS1 and PS2 interact directly with IP3 re-
ceptors (IP3R), and that FAD-linked mutations in both
proteins not only enhance IP3R gating dramatically to
increase intracellular Ca2+ but also stimulate Aβ pro-
duction [126,127].

Among calcium’s many functions is its role as a
key regulator of mitochondrial movement along mi-
crotubules in response to changes in the local Ca2+

gradient [128]. Mitochondria with normal membrane
potential tend to move towards the periphery, whereas
loss of membrane potential and of ATP synthesis re-
sult in increased retrograde transport towards the cell
body [129]. Two cargo adaptor proteins, Miro and Mil-
ton, are implicated in the specific linkage of mitochon-
dria to microtubules (via kinesin-1) [130]. Disruption
of both Miro [131] and Milton [132] function causes re-
distribution of mitochondria from terminals to the cell
body. Importantly, Miro binds Ca2+ and, when mu-
tated, causes aggregation of mitochondria in the per-
inuclear region [131]. Thus, Miro has the potential to
be an important regulator of mitochondrial motility, in

essence operating as a sensor of local concentrations of
Ca2+ and ATP: in the Ca2+-unbound state, Miro binds
Milton and mitochondria are attached to microtubules,
whereas in the Ca2+-bound state, Miro cannot bind
Milton and mitochondria are uncoupled from micro-
tubules [128,133,134]. Remarkably, only Ca 2+ mobi-
lized via the IP3 receptors (or, in muscle, the ryanodine
receptors) could effect this result [128].

Since mitochondria need to be positioned strategical-
ly at sites where metabolic demand is high [135,136],
a problem in calcium-mediated mitochondrial move-
ment along axons in AD could have highly deleterious
effects on neuronal function in general and on synaptic
transmission in particular. We have observed aberrant
mitochondrial dynamics in fibroblasts from FAD pa-
tients (data not shown), and altered mitochondrial dy-
namics has also been observed in cells from patients
with SAD, including defects in mitochondrial distribu-
tion, transport, and morphology [11,137–139]. It re-
mains to be seen whether these changes are related to
altered MAM function.

A WORKING MODEL FOR MAM-MEDIATED
PATHOGENESIS OF AD

We think that the enrichment of presenilins in MAM
is important conceptually to our understanding of AD,
for at least three reasons. First, MAM is a true subcom-
partment with specific functions, not merely a topolog-
ical elaboration of the ER. Second, MAM is a known
key control point for cholesterol, glucose, lipid, and
calcium metabolism [83], all of which functions are
deranged in AD; we think that this is more than mere
coincidence. Third, MAM connects ER to mitochon-
dria, implying that mitochondriamay play a much more
important role in AD than had previously been sus-
pected, as dysfunctional MAM could explain the aber-
rant mitochondrial dynamics and function found in the
disease.

Accordingly, we propose a working model in which
altered MAM function plays a fundamental role in the
pathogenesis of AD, and provides a unifying hypothe-
sis that could explain many of the seemingly-unrelated
features of the disease (Fig. 2B). Specifically, we pro-
pose that altered MAM function could explain the el-
evated ratio of Aβ42/Aβ40 (via changes in the content
of cholesterol), the hyperphosphorylation of tau (via
changes in phospholipid metabolism), and the aberrant
mitochondrial dynamics, with retention of large num-
bers of [fragmented] mitochondria in the perinuclear
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region (via abnormal Ca2+ transport between ER and
mitochondria).

Although we describe here a relatively simple one-
to-one relationship between individual MAM functions
and individual aspects of AD pathology, the reality is
likely to be far more complicated, as various MAM
components probably interact with, and affect, each
other. For example, changes in [Ca2+] almost certain-
ly affect the activity of other MAM (and mitochondri-
al) proteins that are calcium-sensitive (e.g., PTDSS2,
which is both Ca2+- and ATP-sensitive [67,140]), with
downstream effects not only on mitochondrial dynam-
ics, but also on Aβ production and apoptosis [141].
Similarly, altered cholesterol metabolism affects not
only Aβ production, but may also change the topology
of the MAM membrane [142], a cholesterol-rich DRM,
thereby affecting not just AβPP cleavage (e.g., by in-
fluencing the orientation of AβPP in the membrane
and hence the position at which it is cleaved by the
γ-secretase [142]), but also the amounts, activities, and
interactions among other membrane-embedded MAM
proteins.

Importantly, while aberrant MAM function can ul-
timately result in the deposition of Aβ in plaques and
of hyperphosphorylated tau in tangles [88], we believe
that these “canonical” features of AD are not the pri-
mary cause of the disease [3,143]. Rather, we propose
that they are consequences of pre-existing metabolic
disturbances in MAM. Put another way, we believe that
it is overall MAM dysfunction, and not plaques or tan-
gles per se, that are important in triggering the onset of
the disease.

Notably, all of the metabolic and morphological phe-
notypes noted above have been found in both FAD and
SAD, including, most recently, perinuclear mitochon-
dria in SAD [11]. Thus, the “MAM hypothesis” offers
a potentially coherent and unified explanation of many
of the features of both the familial and sporadic forms
of the disease. It also opens the door to new ways of
thinking about treatment that are complementary to ap-
proaches focused directly on plaques and tangles. In
fact, a strategy designed to “fix” the MAM may prove to
be a more tractable therapeutic approach. In addition,
we believe that it may be possible to exploit aberrant
MAM function as a useful marker for the development
of a diagnostic tool for AD.

While the MAM hypothesis will require modifica-
tion in some of its particulars, we believe that the find-
ing that presenilins are physically and functionally as-
sociated with MAM, and that AD patients display a
number of defects associated with MAM function, is
sufficiently compelling to warrant further investigation.
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