High Resolution Imaging of the Medial Temporal Lobe in Alzheimer’s Disease and Dementia with Lewy Bodies

Michael J. Firbanka,∗, Andrew M. Blamireb, Andrew Teodorczuka, Emma Tepera, Emma J. Burtona, Dipayan Mitrac and John T. O’Briena

aInstitute for Ageing and Health, Newcastle University, Newcastle, UK
bNewcastle MR Centre, Newcastle University, Newcastle, UK
cDepartment of Neuroradiology, Newcastle General Hospital, Newcastle, UK

Handling Associate Editor: Marco Bozzali

Accepted 13 May 2010

Abstract. We used high resolution (0.3 mm in-plane) coronal 3T magnetic resonance (MR) imaging of the medial temporal lobe in 16 subjects with Alzheimer’s disease (AD), 16 with dementia with Lewy bodies (DLB), and 16 similarly aged healthy subjects. On the anterior section of the hippocampus body, regions of interest were manually drawn blind to diagnosis on the CA1, CA2, and CA3/4 subregions, and the width of the subiculum and entorhinal cortex was measured. Controlling for intracranial volume, age, and years of education, we found the subiculum thickness was significantly reduced in AD (2.03 ± 0.29 mm) compared to both control (2.37 ± 0.28 mm, $p = 0.008$) and DLB (2.35 ± 0.24 mm, $p = 0.001$) subjects. The area of CA1 was likewise reduced in AD compared to controls and DLB. In the hippocampus images, a hypointense line is visible between CA1 and CA3/4. This line was significantly less distinct in AD, suggesting disease related changes to this region. Future studies should investigate whether subiculum thickness or the hypointense line could be a diagnostic feature to help discriminate AD from DLB.

Keywords: Alzheimer’s disease, dementia with Lewy bodies, hippocampus, MRI, subiculum

INTRODUCTION

Alzheimer’s disease (AD) is characterized by extensive tissue loss in the medial temporal lobe region, especially in the hippocampus and entorhinal cortex. However, the hippocampus has a complex anatomical structure, and is not uniformly affected in disease. A number of MRI studies using T1 weighted imaging, and approximately isotropic 1 mm3 voxels, have shown that, along with the entorhinal cortex, atrophy in AD is largely confined to the CA1 and subiculum regions of the hippocampus [1,2], consistent with the major site of pathology observed at autopsy [3]. However, these studies have not directly visualized subfields but relied on inferring the location of the subregions from the known anatomy of the hippocampus surface. Using a high in plane resolution coronal T2 weighted sequence at 4T, Mueller and colleagues have shown it is possible to differentiate the hippocampal subregions directly in both control [4] and AD [5].

Previous MR imaging studies in dementia with Lewy bodies (DLB) have shown that the degree of hippocampal atrophy is less in DLB than in AD [6–8]. Using shape analysis on hippocampi manually traced from...
T1 weighted images, a study [9] also found less atrophy in DLB compared to AD. The distribution of atrophy was somewhat different, affecting more anterior regions in DLB and posterior regions in AD, consistent with more CA2 and CA3 atrophy in DLB. Kenny and colleagues [10] measured the entorhinal cortex using a region of interest on T1 weighted images and found comparable atrophy in AD and DLB. Neuropathological studies have found Lewy bodies neurites preferentially in the CA2 and CA3 region [11,12], though Harding [13] found no difference between control and DLB in any hippocampal subregion volume.

The purpose of this study was to investigate atrophy of the subfields of the anterior part of the body of the hippocampus, using high resolution coronal imaging of the medial temporal lobe. We hypothesised that there would be more atrophy of the CA1 and subiculum in AD, with more atrophy of the CA2 or CA3/4 region in DLB and that these changes may be helpful for differentiating AD from DLB.

MATERIALS AND METHODS

Subjects

We recruited 16 people with AD and 16 with DLB from clinical Old Age Psychiatry, Geriatric Medicine and Neurology Services. Sixteen healthy subjects of similar age were also recruited.

All subjects were aged over 60 and did not have contra-indications for MRI. Subjects with dementia had mild to moderate severity (MMSE > 10). All AD subjects fulfilled criteria for probable AD according to NINCDS/ADRDA [14]. DLB cases similarly met criteria for probable DLB according to the consensus criteria [15] (i.e., they met two or more of the core features of fluctuating cognition, visual hallucinations, and parkinsonism). Nine of the DLB subjects had a 123I-FP-CIT SPECT scan, all of whom demonstrated reduced dopamine transporter uptake in the basal ganglia. All diagnoses were made by consensus between two experienced clinicians, a method we have previously validated against autopsy diagnosis [16]. Diagnoses were made independent of MRI scanning. Routine clinical workup for dementia included detailed physical, neurological, and neuropsychiatric examinations, including screening blood tests and CT scan. Presence of diabetes and hypertension were determined through a combination of medical records, interview with subject, and examining medications. Additional assessments performed were of cognition (Cambridge Cognitive Examination (CAMCOG)) [17], mood (Cornell depression scale) [18], neuropsychiatric features (Neuropsychiatric inventory (NPI)) [19], clinical fluctuation (Clinical Assessment of Fluctuation scale) [20], memory (Rey auditory verbal learning test [21]), and motor features of parkinsonism (UPDRS subsection III) [22].

Exclusion criteria included severe concurrent illness (apart from dementia for patients), space occupying lesions on imaging, history of stroke, and contraindications to MRI. In addition, controls had no history of psychiatric illnesses.

The study was approved by the local ethics committee, and all subjects gave signed informed consent for participation.

MRI acquisition

Subjects were scanned on a 3T MRI system (Intera Achieva scanner; Philips, Eindhoven, the Netherlands). Images acquired included a T1 weighted volumetric sequence covering the whole brain (MPRAGE, sagittal acquisition, slice thickness 1.2 mm, voxel size 1.15 × 1.15 mm; TR = 9.6 ms; TE 4.6 ms; flip angle = 8°; SENSE factor = 2).

We used a high resolution T2 weighted turbo spin echo coronal imaging sequence based on previous work at 4T [4]. Prior to commencing the study, we attempted to optimize the high resolution sequence using a range of TR (2500–5000 ms) and TE (19–80 ms) on a 42 year old volunteer. On the first 13 subjects we used the following sequence: turbo factor 15; 24 slices; slice thickness 2 mm, field of view 210x167; pixel resolution 0.41 × 0.52 mm; TR 2568 ms; TE 19 ms; flip angle 90°. This scan was repeated to collect 2 datasets – acquisition time = 2*2:50.

After the first 13 subjects (5 Control, 7 AD, 1 DLB), one of the high resolution acquisitions was replaced (see results for explanation of reasons) by 3 acquisitions of a sequence with the following parameters altered (12 slices; pixel resolution 0.27 × 0.35 mm; TR 3852ms; 3 acquisitions – acquisition time = 3*2:07). The number of acquisitions was increased to maintain SNR in the face of smaller voxels. The first 13 subjects were not rescanned with the new sequence. Data were acquired using multiple acquisitions to allow correction of patient motion prior to averaging to increase signal to noise ratio. This approach was found to maintain highest resolution in pilot studies compared with direct averaging by the scanner. The coronal images were positioned for each subject so they were angled per-
Fig. 1. Close up of hippocampi from one subject in the high resolution T2 weighted coronal sequence. (The left hippocampus has been flipped left-right so that the hippocampus has the same relative orientation). Bottom image shows the regions drawn CA1 (red) CA3/4 (blue), and CA2 (green). The thickness measurement of entorhinal cortex and subiculum is shown as a yellow line. (For reference to color, see the online version of the image). R = right, L = left.

We used the FLIRT image registration tool [23] (part of FSL: http://www.fmrib.ox.ac.uk/fsl/) to register all the high resolution images from each subject together, and interpolate with linear interpolation to 0.27×0.27 mm resolution. A higher signal to noise ratio image was then created by summing together all the registered high resolution images. For the initial 13 subjects for whom two datasets were collected, these datasets were averaged together. For the subsequent subjects for whom four datasets were collected, an image was produced by averaging all four images (three images with 0.27×0.35 mm resolution and one with 0.41×0.52 mm) together. This was found by visual inspection to optimize contrast to noise.

Regions of interest (ROI) were manually drawn on coronal T2 weighted images of the hippocampus sub-regions CA1, CA2, and CA3/4 according to the method of Mueller [4] starting on the slice on which the head of the hippocampus was no longer visible, and the 2 slices posterior to that. This method uses the hypointense line visible on the coronal T2 weighted images in the hippocampus to determine the boundary between CA1 and CA3/4 (Fig. 1). All regions were drawn with the temporal lobe presented with its medial aspect on the right of the screen. Figure 1 depicts the regions. The external boundary of CA1 was drawn starting with a line perpendicular to the subiculum cortex surface where it meets the CA3/4 region, and following the boundary of the hippocampus round to the CA2 region. The hypointense line was used to differentiate CA3/4 from CA1, and from the inferior portion of CA2. The fimbria was excluded. The medial border of CA2 was positioned halfway laterally across the hippocampus, measured from the superficial hippocampal sulcus. CA2 was then drawn as a square angled according to the superior surface of the hippocampus, whose height was determined by the distance between the hypointense line and the superior surface. We calculated the area of each ROI and then averaged val-
Table 1
Reliability measures of hippocampal area/thickness, performed on 6 subjects (12 medial temporal lobes). Final column is agreement between the image with resolution 0.41 × 0.52 mm and the average of four images (3 with resolution 0.27 × 0.36 mm and 1 with 0.41 × 0.52 mm), and these data are from the 4/6 of the subjects who had both sequences. Percent difference is absolute difference in area as percentage of average area, and percent overlap is area in common as a percentage of average area. Values are mean (95% confidence interval).

<table>
<thead>
<tr>
<th>Structure</th>
<th>Within observer comparison</th>
<th>Between observer comparison</th>
<th>Initial versus final sequence comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Percent Difference</td>
<td>Percent Overlap</td>
<td>ICC</td>
</tr>
<tr>
<td>CA1</td>
<td>7.7 (5–10)</td>
<td>90 (88–91)</td>
<td>0.98</td>
</tr>
<tr>
<td>CA2</td>
<td>24 (15–32)</td>
<td>68 (62–75)</td>
<td>0.62</td>
</tr>
<tr>
<td>CA3/4</td>
<td>7.3 (3–11)</td>
<td>90 (88–91)</td>
<td>0.95</td>
</tr>
<tr>
<td>Thicknesses:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entorhinal</td>
<td>13.2 (7–20)</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>Subiculum</td>
<td>8.0 (4–12)</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>CA2</td>
<td>7.0 (4–10)</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>Clarity</td>
<td>0.97</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ICC = intraclass correlation coefficient.
each hippocampus was assigned a score (1 to 5) according to how clearly the hippocampus internal structure was depicted throughout the 3 slices examined. On this scale, 5 = line clearly visualized throughout, 4 = most of the line clearly visualized, 3 = line semi clearly defined, 2 = line mostly not clearly defined, but recognizable, 1 = line not visualized at all (see Fig. 2 for example of each category). This was done at the same time as the region of interest drawing by the same investigator, again blinded to diagnosis. Reliability of the rating scale was assessed on the same cases as the hippocampus regions, and results are also presented in Table 1.

We also obtained on all subjects a T1 weighted whole brain scan. We processed this scan to segment into grey and white matter and cerebrospinal fluid using SPM 5 (http://www.fil.ion.ucl.ac.uk/spm/) from which the total intracranial volume (ICV) was determined by the sum of these three components. This was then used to control for differences in head size between individuals. We also used a previously validated automated segmentation technique [26] to determine the volume of left and right hippocampi from the T1 weighted image. This procedure uses the grey matter segmentation from SPM5, along with a standard hippocampus template to segment the hippocampus. The SPM grey/white matter and hippocampus segmentions were visually checked for any gross errors.

Statistics

We tested all variables for normality using the Kolmogorov Smirnov test. All apart from education, UPDRS, and Rey scores were normally distributed. The Levene test was then used to compare homogeneity of variance and, apart from MMSE, CAMCOG and Fluctuation all had equal variances across groups. Education was dichotomized at 11 years (i.e., those who left school aged 16). Fisher’s exact test was used to compare gender and post-16 education. We used ANOVA to compare normally distributed demographic factors and the Kruskal-Wallis test for the non-normally distributed variable between groups, followed by post hoc tests using Mann-Whitney, with a Bonferroni correction (p = 0.05/3 = 0.016) for multiple comparisons.

Since education varied between groups, it was included as a covariate in the analysis of the imaging data. Differences in hippocampal area between groups were examined with a three group ANCOVA with covariates of age, ICV, and the binary variable of post-16 education, followed by Tukey post-hoc tests. To test the discriminant power, we used discriminant analysis with cross validation (leave one out). Wilks’ Lambda test was used to assess the significance of the discriminant model. We investigated the relationship between memory function (Rey delayed recall and Rey...
acknowledged that in those subjects with atrophied hippocampi, due to motion. However, early on in the study, we noted memory function that is characteristic of DLB delayed recall score, the latter indicative of better pre-
scores were higher in DLB subjects as was the Rey dementia. As would be expected, the UPDRS and NPI
groups and there was no difference between AD and subjects. Intracranial volumes did not differ between groups and there was no difference between AD and DLB subjects in MMSE, CAMCOG, or duration of dementia.

Subject and image characteristics

Demographic data is summarized in Table 2. There were no difference between groups in age or sex, presence of hypertension, or diabetes, but the DLB subjects had fewer years of education than both control and AD subjects. Intracranial volumes did not differ between groups and there was no difference between AD and DLB groups in MMSE, CAMCOG, or duration of dementia. As would be expected, the UPDRS and NPI scores were higher in DLB subjects as was the Rey delayed recall score, the latter indicative of better preserved memory function that is characteristic of DLB subjects.

Images were generally of good quality, with only one high resolution MR (from a DLB subject) not usable due to motion. However, early on in the study, we noticed that in those subjects with atrophied hippocampi, the hypointense band which divides CA1 from CA3/4 was not consistently visible. To try to improve visibility of substructures, after the first 13 subjects (5 Control, 7 AD, 1 DLB), we added a sequence with increased coronal resolution (from 24 coronal slices with resolu-
Fig. 4. Graph of average of left and right hippocampus visual clarity rating vs average hippocampus area. Data acquired with the two different T2 weighted imaging protocols are shown (1st seq – resolution of 0.41 × 0.52 mm; 2nd seq – resolution of 0.27 × 0.35 mm).

Fig. 5. Graph of average hippocampus area vs. Rey delayed memory score in the three groups.

Hippocampus measurements

Table 3 summarises the hippocampal measurements on the three groups in the 6mm thick anterior portion of the hippocampus body that we examined. Controlling for age, ICV, and post-16 education, we found the subiculum thickness was significantly reduced in AD compared to both control and DLB (p < 0.01). The area of CA1 was also reduced in AD relative to both control and DLB. Entorhinal cortex thickness was reduced in AD compared to controls, with DLB not being significantly different to either group. There was, however, no difference between any of the groups in CA2 or CA3/4. Table 3 also shows values from the automated segmentation of the whole hippocampus from the T1 weighted image. Both the AD and DLB groups had significantly smaller hippocampi than the control group, and there was no difference between AD and DLB in hippocampal volume.

Visual rating

As mentioned above, we noticed that the definition of the hippocampus subregions was less clear in some scans, suggesting structural changes potentially relating to the underlying disease process. We therefore visually rated the clearness of the scan on a 1–5 scale for the three slices on which the hippocampus regions were drawn. Typical scan data illustrating hippocampi with each of the 5 scores are shown in Fig. 2. Figure 4 shows the relationship to hippocampal size and diagnostic group. In a general linear model, predictors of the visual rating were diagnosis (F = 7.7; p = 0.002), hippocampus area (F = 11.9; p = 0.001), but not intracranial volume (p = 0.4) or imaging sequence (0.4 × 0.5 mm versus 0.27 × 0.35mm: F = 2.8; p = 0.1).

Removing the 3 subjects (2 AD, 1 DLB) with the worst hippocampus clearness rating did not alter the significance of any of the findings.

Predictive diagnostic ability

To investigate the potential discriminating power of the hippocampal measurement, we performed a linear regression to find the best predictors, with group (AD versus DLB) as the dependent variable, age, ICV, and education as fixed covariates, and all of the hippocampal measurements added to the model in a stepwise fashion. This produced a model (F = 12.3; p < 0.001) in which subiculum thickness (p = 0.005), visual clearness (p = 0.001), and hippocampus volume (p = 0.024) independently predicted group member-
Comparison of hippocampal measurements in the three groups. Values quoted are the average of the left and right side measurements made on three adjacent image slices. The hippocampus volume is from automated segmentation of the T1 weighted MPRAGE sequence. ANCOVA differences between AD/control/ DLB controlling for age, intracranial volume and post 16 education. All values are mean (SD) [95% Confidence interval]

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>AD</th>
<th>DLB</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA1 area mm^2</td>
<td>26.7 (3.1) [25-28]</td>
<td>22.6 (3.9) [21-25]^ab</td>
<td>23.8 (3.0) [22-25]</td>
</tr>
<tr>
<td>CA2 area mm^2</td>
<td>1.53 (0.31) [1.36-1.70]</td>
<td>1.45 (0.33) [1.27-1.62]</td>
<td>1.53 (0.38) [1.33-1.75]</td>
</tr>
<tr>
<td>CA2 thickness mm</td>
<td>1.36 (0.15) [1.28-1.43]</td>
<td>1.30 (0.19) [1.20-1.40]</td>
<td>1.32 (0.19) [1.21-1.42]</td>
</tr>
<tr>
<td>CA3/4 area mm^2</td>
<td>17.2 (2.2) [16.1-18.4]</td>
<td>15.5 (3.0) [13.9-17.1]</td>
<td>16.0 (2.4) [14.7-17.3]</td>
</tr>
<tr>
<td>Entorhinal thickness mm</td>
<td>2.25 (0.18) [2.16-2.35]</td>
<td>1.87 (0.24) [1.74-2.00]^a</td>
<td>1.96 (0.27) [1.81-2.11]</td>
</tr>
<tr>
<td>Subiculum thickness mm</td>
<td>2.37 (0.28) [2.22-2.52]</td>
<td>2.03 (0.29) [1.87-2.18]^b,ab</td>
<td>2.35 (0.24) [2.22-2.48]</td>
</tr>
<tr>
<td>Hippocampus area mm^2</td>
<td>45.4 (5.2) [43-48]</td>
<td>39.5 (6.5) [36-43]^p</td>
<td>41.3 (4.8) [39-44]</td>
</tr>
<tr>
<td>Subfield visual clarity</td>
<td>4.0 (0.9) [3.6-4.6]</td>
<td>2.4 (0.8) [1.9-2.8]^b,ab</td>
<td>3.3 (1.1) [2.7-3.9]</td>
</tr>
<tr>
<td>Hippocampus volume mm^3</td>
<td>2878 (333) [2700-3055]</td>
<td>2163 (551) [1870-2457]^a</td>
<td>2078 (616) [1737-2419]^c</td>
</tr>
</tbody>
</table>

Post hoc p < 0.05 (a) AD vs. Control; (b) AD vs. DLB; (c) DLB vs. Control; Post hoc comparisons (Tukey): CA1 area: Control > AD p = 0.007; AD < DLB p = 0.043; Subiculum thickness: Control > AD p = 0.002; AD < DLB p = 0.002; Entorhinal thickness: Control > AD p < 0.001; Hippocampus area: Control > AD p = 0.003; Subfield clarity: Control > AD p < 0.001; AD < DLB p < 0.001; Hippocampus volume: Control > AD p < 0.001; Control > DLB p = 0.01.

DISCUSSION

The main finding of the study was that on high field strength hippocampal MR imaging, in DLB, the subiculum, and CA1 areas in the anterior portion of the hippocampal body were significantly less atrophied than in AD. The entorhinal cortex was smaller in AD, with DLB being intermediate between control and AD, while there was no difference in the CA2 and CA3/4 regions. These data add to previous studies in AD and DLB which assessed overall hippocampal atrophy [6–8] and further support the hypothesis that the medial temporal lobe is differentially affected in the two dementias.

Adachi, using high resolution coronal diffusion imaging of the hippocampus, also observed CA1 and
subiculum atrophy in AD, with no CA3/4 atrophy compared to control subjects [27]. Using a comparable coronal sequence to the one in this study at 4T, Mueller et al. [5] found CA1, CA2, entorhinal cortex, and subiculum reduced in AD compared with controls, while the CA3/4 area was only reduced in those with the apolipoprotein E (ApoE) ε4 allele. Burggren [25], in (asymptomatic) ApoE ε4 carriers using a similar imaging sequence, found only differences in entorhinal cortex and subiculum, not CA1, CA2, or CA3/4. They also found that thickness measurements were more reliable than area. We did not have information on ApoE ε4 status of our subjects, and hence could not investigate its relationship to hippocampus atrophy.

The majority of studies using T1 weighted imaging and subregions inferred from the hippocampus surface have also found CA1 and subiculum, but not CA2 or CA3/4 atrophy relative to controls. [1,2,28] The study of Sabattoli [9] with such a 1 mm³ resolution T1 weighted sequence, found atrophy in DLB versus AD mostly confined to the head of the hippocampus, whereas the regions of greater atrophy in AD were largely in the tail, but also CA1 and subiculum of the hippocampal body. It is possible that our lack of significant difference in CA2 was due to the increased variability in measuring this structure, due to its small size, and difficulty discerning its boundaries within the hippocampus. However, in an attempt to increase reliability, we measured both area and thickness of the structure, and in neither case was there any indication of a significant difference between the groups. The high variability of the CA2 region both between raters, and within rater on the two different sequences used does limit the interpretation of our finding of no difference in CA2 between groups. Unfortunately, we did not discover any means of reliably identifying CA2 medial and lateral borders. The entorhinal cortex measurement also had greater intra-rater variability, which may have made it more difficult to find differences between DLB and AD or control groups. We used the thickness rather than area of the subiculum and entorhinal cortex rather than area due to large variations in the length of these structures. Although this gave a more precise measurement, it does mean that we were not sensitive to changes in the overall shapes.

The CA1 region was differentiated from the CA3/4 region by determining the location of a hypointense line on the image. This line is likely to represent fibers in the hippocampal layers of stratum moleculare, stratum lacunosum, and stratum radiatum [29,30]. We found that the visibility of this line in the anterior portion of the hippocampus body varied considerably between cases, and was less clear in AD subjects and those with smaller hippocampi. This variable visibility either represents changes in the MR relaxation properties of these layers, or loss of the underlying tissue itself. In either case it potentially represents disease related changes in the internal structure of the hippocampus. A study by Kantarci [31] used diffusion weighted imaging and found that increased diffusivity in the hippocampus of MCI subjects predicted conversion to AD, indicating early loss or damage to neuronal bodies in the hippocampus. Hippocampal atrophy has been found to relate to changes in WM of the cingulate which connects the hippocampus to the posterior cingulate [32, 33], suggesting that breakdown of the white matter in and connecting the hippocampus is associated with atrophy, a notion supported by our findings.

We saw correlations in the DLB group between memory function and CA1 and overall hippocampus area, suggesting that hippocampal atrophy (possibly due to concomitant AD pathology) is related to worsening short term memory, as would be expected. We did not see any correlations in the AD group, probably due to floor effects; the maximum score on the Rey delayed test was 3/15 in the AD group (Fig. 5). Due to the relatively small numbers in each group, these results should be considered tentative.

We found reasonable predictive ability of the subiculum thickness to distinguish AD from DLB, with 71% of cases correctly classified. In this study, it was better than any other hippocampal measurement, including overall area or volume. In the revised international consensus criteria for clinical diagnosis of DLB [15], a visual rating of overall hippocampal atrophy can be used as a supportive feature for diagnosis. Possibly subiculum thickness could provide additional diagnostic information and further studies on larger numbers of subjects should investigate whether subiculum thickness provides a more specific diagnostic discriminator. This is important, as another putative specific marker for AD, atrophy of the entorhinal cortex, did not differentiate between AD and DLB, similar to findings from a previous study using more standard 1.5T imaging [10]. Previous studies have found similar levels for discriminating AD from DLB on hippocampus volume. Data from Whitwell et al. [7] suggest a diagnostic accuracy of 65%, while Barber et al. [34] had an accuracy of 74% for DLB versus AD. However in our study, the hippocampus area and volume by themselves did not distinguish between AD and DLB, suggesting that the
subiculum and visual rating might provide additional diagnostic information that is complementary to measurement of overall hippocampus atrophy. Scans using the dopamine transporter tracer FP-CIT have been shown in a large multicenter study to have a very good (85%) accuracy for distinguishing DLB from non-DLB dementia [35]. However, MRI has the advantage that information can also be acquired in the same scanning session about other pathologies (i.e., vascular).

Strengths of the study include high resolution hippocampus imaging and careful ROI measurements. The cohort was well defined, with all dementia subjects fulfilling criteria for either probable AD or probable DLB, using a clinical diagnostic method we have previously validated against postmortem findings and utilizing dopaminergic imaging in 9 DLB subjects. Weaknesses are that only a 6 mm portion of the hippocampus body was examined, and (as noted by Mueller et al. [5]) the boundaries of CA2 are somewhat arbitrary. We used two different imaging protocols, as we tried to improve the image resolution during the study, and the initial 13 subjects were not rescanned. Although this is a potential confounder, we obtained good agreement between the area and thickness measurements made on the two sequences, and controlling for the type of sequence used in the analysis did not alter the results. Detection of hippocampal substructures requires sufficient in-plane resolution and image contrast between individual structures. Although our sequences were based largely on the study of Mueller et al. [4] which was performed at higher field (4 Tesla), we conducted preliminary investigations varying sequence parameters (TR and TE) and did not obtain any significant improvement in contrast.

We positioned the coronal scans in this study relative to the corpus callosum, rather than angling them according to the hippocampus. This has the advantage of being an easy method to reproduce in clinical practice, rather than the difficult task of determining a plane perpendicular to both hippocampi (whose axis varies medio-laterally and between left and right). However, it also means that the image plane was not strictly perpendicular to the hippocampi, which will cause small errors in distance measurement varying with the cosine of the angle. We measured the angulation of the hippocampus from the manually drawn regions, and found good alignment, with an 11 degree difference between image perpendicular and hippocampus axis in the control group. The variability in the area/distance measurement will be governed by the SD of the angulation which was 7–10 degrees. For a 10 degree difference between the image plane perpendicular and hippocampus axis, there will be a 1.5% difference in distance measurement. This is much smaller than the SD in all measurements (Table 3) and suggests that variation in alignment is a minor source of error in the study.

An important limitation of the study was that the measurement of subiculum and entorhinal cortex was not validated by an established technique. Following Mueller et al., our working definition for the medial boundary of CA1 was to use the superficial hippocampal sulcus. While this is a consistent and easily identified boundary, it does mean that the CA1 region will include some of the subiculum, and hence our CA1 findings will be slightly influenced by any subiculum changes.

We did not have autopsy confirmation of the diagnoses in the subjects, however we used a consensus clinical diagnosis, which we have previously shown to have good accuracy against autopsy [16]. In addition, all 9 of our DLB subjects who had dopamine transporter imaging had abnormal scans consistent with DLB as the diagnosis. It is quite possible that the DLB subjects had some degree of concomitant AD pathology, which contributed to the hippocampus atrophy. A CT image was used as part of the clinical diagnosis, and this does have the potential to bias the sample towards AD having greater hippocampal atrophy. We do not feel this was a major issue, since the hippocampus volume did not differ between the AD and DLB groups. For the hippocampus volume measurement, we used an automated technique. This is not as accurate as the gold standard of manually tracing (though much quicker) and may give incorrect results in subjects with abnormalities/severe atrophy. However, we have previously shown good reliability with this method in a dementia population [26] and feel the results should be representative.

Our data were collected close to the current limit of in-plane spatial resolution achievable at 3 Tesla and as a result have relatively low signal to noise. Further improvements in resolution could be made at the expense of much longer data collection times, but these are likely to be inappropriate in these patient groups and suffer from image degradation due to subject movement. Ultra-high field strength MRI (7 Tesla and above) can offer significant improvements in resolution (between 0.5 mm isotropic resolution) and, provided subject movement can be minimized, will provide opportunities to further investigate the changes in substructures which we have observed.

The fact that we observed less clear definition of hippocampal structures in AD was interesting in that it in-
dicated internal breakdown of the hippocampus. How-
ever, it also will have limited the accuracy of delimiting
the subregions. Moreover, the analysis did not change
on excluding those with the least clear hippocampi.
The subiculum thickness measurement was relatively
clear on all subjects as its upper surface was the ventri-
cle, and lower surface, the temporal lobe white matter,
and it showed good intra-rater reliability (ICC was 0.8).
If replicated in a larger study, the subiculum thickness
could be a simply measured useful additional diagno-
tic feature of AD versus DLB.

ACKNOWLEDGMENTS

We are grateful for funding from the Alzheimer’s
Research Trust. This work was supported by the UK
NIHR Biomedical Research Centre for Ageing and
Age-related disease award to the Newcastle upon
Tyne Hospitals NHS Foundation Trust. We also thank
the North East DeNDRoN (Dementia and Neurode-
generative Diseases Research Network) team for help
with subject recruitment, and Philip English for useful
discussions on MR sequence parameters.

Authors’ disclosures available online (http://www.j-

REFERENCES

mapping of hippocampal atrophy progression fromMCI to AD
and over normal aging as assessed using voxel-based mor-
phometry. Neuropsychologia 46, 1721-1731.

Thompson PM (2006) In vivo neuropathology of the hip-
ncampus formation in AD: A radial mapping MR-based

and sector-specific neuronal loss in hippocampus during

subfields and age-related changes with high resolution MRI at
4T. Neurobiol Aging 28, 719-726.

MW (2008) Selective effect of Apo e4 on CA3 and dentate
in normal aging and Alzheimer’s disease using high resolution

Temporal lobe atrophy on MRI in Parkinson disease with de-
mentia: a comparison with Alzheimer disease and dementia
with Lewy bodies. Neurology 64, 861-865.

Smith GE, Knopman DS, Petersen RC, Benarroch EE, Josephs
KA, Jack CR (2007) Focal atrophy in dementia with Lewy
bodies on MRI: a distinct pattern from Alzheimer’s disease.
Brain 130, 708-719.

O’Brien JT (1999) Medial temporal lobe atrophy on MRI in
dementia with Lewy bodies. Neurology 52, 1153-1158.

[9] Sabattot F, Boccardi M, Galluzzi S, Treves A, Thompson PM,
Frissoni GB (2008) Hippocampal shape differences in dementia

netic resonance imaging study of entorhinal cortex volume
in dementia with Lewy bodies. Dement Geriatr Cogn Disord 26,
218-225.

Relationship in the formation process between neurofibrillary
tangles and Lewy bodies in the hippocampus of dementia with

[12] Dickson DW, Ruan D, Crystal H, Mark MH, Davies P, Kress Y,
Yen SH (1991) Hippocampal degeneration differentiates dif-
fuse Lewy body disease (DLBD) from Alzheimer’s disease –
light and electron microscopic immunocytochemistry of CA2-
3 neurites specific to DLBD. Neurology 41, 1402-1409.

ocampal neuron loss in dementia with Lewy bodies. Ann
Neurrol 51, 125-128.

[14] McKhain IG, Dickson DW, Lowe J, Emre M, O’Brien JT, Feld-
man H, Cummings J, Duda JE, Lippa C, Perry EK, Aarsland
D, Arau H, Ballard CG, Boeve B, Burn DJ, Costa D, Del Ser T,
Duhos B, Galasko D, Gauthier S, Goetz CG, Gomez-Tortosa
E, Halliday G, Hansen LA, Hardy J, Iwatsubo T, Kalaria RN,
A, Litvan I, Londos E, Lopez OL, Minoshima S, Mizuno Y,
Molina JA, Mukaetova-Ladinska EB, Pasquer F, Perry RH,
Schulz JB, Trojanowski JQ, Yamada M (2005) Diagnosis and
management of dementia with Lewy bodies: Third report of
the DLB consortium. Neurology 65, 1863-1872.

man H, Cummings J, Duda JE, Lippa C, Perry EK, Aarsland
D, Arau H, Ballard CG, Boeve B, Burn DJ, Costa D, Del Ser T,
Duhos B, Galasko D, Gauthier S, Goetz CG, Gomez-Tortosa
E, Halliday G, Hansen LA, Hardy J, Iwatsubo T, Kalaria RN,
A, Litvan I, Londos E, Lopez OL, Minoshima S, Mizuno Y,
Molina JA, Mukaetova-Ladinska EB, Pasquer F, Perry RH,
Schulz JB, Trojanowski JQ, Yamada M (2005) Diagnosis and
management of dementia with Lewy bodies: Third report of
the DLB consortium. Neurology 65, 1863-1872.

Neill D, Lowery K, Jaros E, Barber R, Thompson P, Swann
A, Fairbairn AF, Perry EK (2000) Prospective validation of
Consensus criteria for the diagnosis of dementia with Lewy
bodies. Neurology 54, 1050-1058.

[17] Roth M, Tym E, Mountjoy CQ, Huppert FA, Hendrie H, Verma
S, Goddard R (1986) CAMDEX – A Standardised instrument
for the diagnosis of mental disorder in the elderly with special
reference to the early detection of dementia. Br J Psychiatry
149, 698-709.

[18] Alcxopoulos GS, Abrams RC, Young RC, Shamoian CA
(1988) Cornell scale for depression in dementia. Biol Psychi-
atriy 23, 271-284.

[19] Cummings JL, Mega M, Gray K, Rosenberg-Thompson S,
Carus DA, Gornbein J (1994) The neuropsychiatric inventory:
comprehensive assessment of psychopathology in dementia.
Neurology 44, 2308-2314.

fluctuation and the one day fluctuation assessment scale. Br J
Psychiatry 177, 252-256.

