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Preface

The Alzheimer’s Disease-Diabetes Angle:
Inevitable Fate of Aging or Metabolic
Imbalance Limiting Successful Aging
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Modern societies face the increasing burden of age-
related diseases, in particular Alzheimer’s disease (AD)
and type 2 diabetes (T2D). While numerous epidemi-
ological studies have described the incidence of both
diseases in the Western world and extensively defined
common environmental risk factors,only little is known
on the pathomechanisms linking both diseases [1–3].
Thus, it is not yet clear whether both diseases repre-
sent the endpoint of aged, exhausted, and dysfunctional
cells having reached their maximal life expectancy or
whether AD and T2D are the consequences of living in
superabundance including excessive food supply, work
demands, psychosocial stress, and an excessive seden-
tary life style [4–9]. Evidence for the latter is pro-
vided by the fact that high adiposity increases the risk
of AD [10–12] and T2D [10,13] and implies that the
progressive loss of energy balance is one underlying
pathomechanism of both diseases.

Interestingly, mammalian hibernators such as ground
squirrels and hamsters demonstrate comparable and an-
nual recurrent periods of obesity with concomitant in-
sulin resistance and key features of AD such as tau
phosphorylation [14,15]. These pathologies, however,
are reversed by a time-dependent metabolic shift be-
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tween carbohydrate- and fat-based metabolism, a deli-
cate balance of kinases and phosphatases and changes
in gene expression [15–17]. While massive fat depots
serve as the main source of metabolic fuel throughout
the winter [18], phosphorylation of tau during obligate
hibernation seems to be a reversible consequence of hy-
pothermia [19,20]. These changes gradually decrease
over a period of months until the animals emerge from
hibernation each spring [18]. Thus, fat storage and tau
phosphorylation occur predictably on an annual basis,
but subsequent fasting depletes fat during the course of
winter and ensures that each spring the obese hiberna-
tor emerges lean [18]. Another example for a phylo-
genetic conserved adaptive response to energetic stress
is provided by hummingbirds [21], which consume a
high sugar diet and seasonally develop hyperglycemia
and obesity, which is normalized during the breeding
season [21]. Thus, hibernating mammals and hum-
mingbirds provide an extreme example of the utility of
accumulating body resources in nutrient-rich times for
later use during times of fasting.

These observations, however, indicate that mecha-
nisms have to exist that enable cells to re-program their
metabolism and maintain accurate energy balance de-
spite repeated situations of excessive energy surplus.
Fasting periods might also change and/or normalize
gene expression patterns and activate cellular defense
mechanisms that protect cells from being impaired by
subsequent nutrition supply [18]. Noteworthy, cente-
narians seem to be equipped with gene variants that
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allow them to optimize the energy balance and to min-
imize the effects of exposure to environmental stres-
sors [22].

Features of the metabolism in starvation, hiberna-
tion, and various conditions of energy deprivation have
led to the definition of the deprivation syndrome as a
phylogenetically conserved adaptive response to ener-
getic stress, which is characterized by hypometabolism,
oxidative stress, and adjustments of the glucose-fatty
acid cycle [23].

Several pathological features have been identified
as common denominators of AD and T2D including
impaired glucose/energy metabolism, altered insulin-
signaling pathways, mitochondrial dysfunction, oxida-
tive stress, and inflammation. There is also increas-
ing evidence that posttranslational modifications such
as sumoylation and glycation might contribute to gene
expression changes and the loss of cellular function in
situations, in which energy balance cannot be restored.
In this context it is of particular interest that amyloid-
β peptides, causing neurodegeneration and cognitive
decline in AD [24], and advanced glycation end prod-
ucts (AGEs), accumulating in T2D [25,26], are ligands
of the receptor for AGEs (RAGE) [27–31], known to
perpetuate inflammation, to increase oxidative stress
and to mediate downregulation of protective cellular
mechanisms in situations of ligand excess [29]. Thus,
RAGE might play a central role in converting the re-
versible obesity, accompanying insulin resistance and
Alzheimer-like pathologies of natural hibernation into
the pandemic of human obesity, metabolic syndrome,
AD, and T2D.

The identification and functional characterization of
these checkpoints in model organisms and their con-
firmation in prospective clinical studies holds great
promise, that understanding the common pathways of
AD and T2D will provide progress in both fields of
research. This special issue summarizes the current
knowledge on pathways triggered by oxidative stress,
reactive metabolites, inflammation, and RAGE in AD
and T2D and addresses common features of both in
model organisms such as C. elegans, in experimental
rodent models, and from the clinical perspective.
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