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The recent article of Collingwood and Dobson [1] is
an important article that emphasizes the importance of
the characterization and mapping of iron compounds
in the iron-rich brain regions with the aim contributing
to our understanding of the role of pathological accu-
mulations of iron in the regions of the brain affected
by neurodegenerative disease. Nonetheless, below, I
discuss ion and electron microprobe techniques for de-
tecting and quantifying iron, not specifically cited by
the authors, that allow the mapping of total iron (SIMS
and XEDS) at the cellular and sub cellular level and
the characterization and mapping of iron compounds
(EELS) at ultra structural level.

SIMS (Secondary Ion Mass Spectroscopy) imag-
ing technique, allows direct identification of chemi-
cal elements with high sensitivity and specificity and,
as a consequence, elemental distribution can be visu-
alized (chemical mapping) by SIMS imaging. The
physical basis of the method is the following: under
the bombardment of the samples by primary ions, the
monoatomic or polyatomic species that composed the
analyzing object are sputtered. One part of these emit-
ted species is ionized and the SIMS instrument, with
the help of a mass spectrometer, sort and maps the
ejected ions by their m/e ratio. The latest generation of
SIMS instruments, the NanoSIMS-50TM instrument,
operating in scanning mode, is equipped with a paral-
lel detection system that allows the simultaneous ac-
quisition of five elements which insures a perfect co-
localization between simultaneously recorded images.
This instrument is particularly useful to identify ele-

ments at a sub cellular level, because it is possible to
attain resolutions of 50–100 nm with the Cs+ source
and 150–200 nm with the O− source [2]. NanoSIMS
microscopy has been already used with success for the
visualization of the morphological and chemical al-
terations taking place in well-characterized regions in
pathological brain, in particular in the study of iron
distribution in Alzheimer disease tissue [3,4]. Multi-
elemental analysis (nitrogen, phosphorus, sulphur and
iron) were performed on semi-thin or ultra-thin sections
of Transmission Electron Microscopy (TEM) prepara-
tions brain tissue. The possibility of using light mi-
croscopy, TEM, and SIMS on the same semi-thin and
ultra-thin sections allows correlation between structural
and analytical observations at sub-cellular and ultra-
structural level. It has been shown that the iron-rich re-
gion mapped by nanoSIMS in the hippocampus of AD
patients are ferritin and/or hemosiderin rich regions.

XEDS (X-Ray Energy dispersive Spectroscopy) and
EELS (Electron Energy Loss Spectroscopy) are elec-
tron probe nanoanalysis techniques that, associated
with transmission electron microscopes (Convention-
alTEM, ScanningTEM or ConventionalTEM working
in scanning mode, so-called AnalyticalTEM, ATEM),
provide compositional maps of ultra-thin sections with
nanometric resolution (1–10 nm): XEDS by detecting
the element specific X-ray emission under excitation
of incident electrons: EELS by detecting element spe-
cific energy loss of incident electrons. EELS provides
theoretically higher detection sensitivity than EDS due
to the larger number of primary events collected in the
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absence of fluorescence yield and with a larger collec-
tion angle. XEDS and EELS can be performed simul-
taneously by the same instrument [5]. With EELS it
is possible to detect single atoms of calcium and iron
in biological structures [6]. Elemental maps of iron
in ferritin have been obtained by EELS since 1982 [7]
because it is an ideal standard ATEM test specimen [6,
8]. EELS has been used for the analysis of iron and
iron/ferritin in several human pathologies (see [9–12]
for example). Recently, EELS has been combined with
electron tomography to study the 3D distribution of
elements in biological samples [13], particularly iron
in degenerating neurons in mice with abnormal regula-
tion of iron metabolism [14]. ATEM, with high energy
resolution EELS spectra, allows the characterization
of iron compounds by EXAFS and ELNES techniques
(equivalent to XAFS and XANES derived synchrotron
techniques) [15–20].

As we have indicated, in a recent article [4],due to the
difficulty in correlating the synchrotron derived tech-
niques with cell and tissue structure, it might be inter-
esting to perform parallel studies, on the same samples,
with microfocus XRF and multi-element nanoSIMS
imaging; both being techniques suitable for total iron
mapping at the cellular and sub-cellular level over a rel-
atively large area. The study of large areas is necessary
for statistical analysis and for comparison of normal
and pathological tissues.

After obtaining information on the iron-rich regions
and their morphology in normal and pathological brain,
the XFS and XANES techniques, at micron and submi-
cron level, and the EELS techniques, at nanometric lev-
el, can be applied to investigate the mineral iron com-
pound in magnetic crystals and in pathological ferritin
and hemosiderin.

Finally, I would like to remind Collingwood and
Dobson that the hypothesis of a dysfunction of the
pathological ferritin in PSP and AD, textually described
“The formation of magnetite, in which ferric and fer-
rous ions are both present, would indicate that the en-
zymatic oxidation of iron inside ferritin was faulty”
was already stated in our work [21]. Having knowl-
edge of our results, Dobson suggested that the mag-
netite/maghemite crystals found in the brain [22–25]
may originate from a ferritin precursor (cited as per-
sonal communication on page 819 of our work [21]).
See also the comments of Dobson to our article [21]
published in [26].
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