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ABSTRACT: The two most striking features of
Alzheimer disease are (i) the multitude of
abnormalities affecting essentially every system and
(ii) the strict age dependence.  Recent work suggests
that both features are linked to increased oxidative
stress that damages lipids, proteins and nucleic acids
and results in redox-active metal accumulations,
mitochondrial damage and formation of advanced
glycation endproducts.  Interestingly, β-protein
precursor, amyloid-β, presenilins, and apolipoprotein
E have all been linked to reactive oxygen species
production or apoptosis, a process intimately
associated with oxidative stress.  In therapeutics, the
commonality between a number of efficacious agents
appears to be oxidative stress reduction.  Therefore,
we contend that oxidative stress is the element that
links the multitude of changes in Alzheimer disease
and that a reduction of oxidative stress will have a
dramatic effect on reducing the incidence or
progression of Alzheimer disease.

INTRODUCTION

A number of reports have established damage
from reactive oxygen species (ROS) not only in
the lesions of Alzheimer disease but also in
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neuronal populations affected in the disease
(86,102–110).  Now, studies are being focused on
the relationship between oxidative stress and
other factors that have been established by
genetic or epidemiological studies that play an
important role in Alzheimer disease.
Specifically, we want to determine whether
oxidative stress is a central process in
neurodegeneration in Alzheimer disease or
instead a result of the disease process (Figure 1).

The distinction of whether damage from
oxidative stress occurs before neuronal
destruction is essential to whether therapeutic
reduction of oxidative stress will be efficacious.

Here we present evidence that oxidative
damage is one of the earliest cytopathological
markers of neuronal dysfunction in Alzheimer
disease and, moreover, impinges on all proposed
pathogenic risk factors and mechanisms
implicated in Alzheimer disease.

Alzheimer Disease Involves a Multitude of
Abnormalities

The pathological presentation of Alzheimer
disease, the leading cause of senile dementia,
involves regionalized neuronal death and an
accumulation of intraneuronal and extracellular

Fig. 1. A central issue is whether oxidative stress is an
early event in Alzheimer disease (A) or instead, is a
result of degenerative process (B).
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lesions termed neurofibrillary tangles and senile
plaques, respectively (reviewed in (111)). Several
independent hypotheses have been proposed to
link the pathological lesions and neuronal
cytopathology with, among others,
apolipoprotein E genotype (17,84),
hyperphosphorylation of cytoskeletal proteins
(119), and amyloid-β metabolism (92).
However, not one of these theories alone is
sufficient to explain the diversity of biochemical
and pathological abnormalities found in
Alzheimer disease that involves a multitude of
cellular and biochemical changes.  Furthermore,
attempts to mimic the disease by a perturbation
of one of these elements using cell or animal
models, including transgenic animals, do not
result in the same spectrum of pathological
alterations.  The most striking case is that while
amyloid-β plaques are deposited in some
transgenic rodent models overexpressing β-
protein precursor, there is no neuronal loss
(44,45) — a seminal feature of Alzheimer
disease.

Oxidative Theory of Aging

What many theories have failed to incorporate is
that Alzheimer disease is a disease of aging (49)
(Figure 2).  Importantly, this holds true even in
individuals with a genetic predisposition, i.e.,
those individuals with an autosomal dominant
inheritance of Alzheimer disease or in individuals
with Down’s syndrome who develop the
pathology of Alzheimer disease.  Therefore, age
is a clear contributor in 100% of Alzheimer
disease cases, whatever the genetic background.
The free radical theory of aging (36)
hypothesizes that the aging process is associated
with (i) an increase in the adventitious production
of oxygen-derived radicals, i.e., reactive oxygen
species (ROS), together with (ii) a concurrent
decrease in the ability to defend against such
ROS, that together lead to the accumulation of
oxidatively-modified macromolecules.  We
suggest that the decrease in ROS buffering
capacity may also lead to a compromised ability
to deal with abnormal sources of ROS such as

those associated with genetic predisposition
and/or disease status.

Sources of Reactive Oxygen Species

ROS production occurs as a ubiquitous
byproduct of both oxidative phosphorylation and
the myriad of oxidases necessary to support
aerobic metabolism.  In Alzheimer disease, in
addition to this background level of ROS, there
are a number of additional contributory sources
that are thought to play an important role in the
disease process:  1. Iron, in a redox-active state,
is increased in neurofibrillary tangles as well as
in amyloid-β deposits (28,110).  Iron catalyzes
the formation of !OH from H2O2 as well as the
formation of advanced glycation end products.
Furthermore, aluminum, which also accumulates
in neurofibrillary tangle-containing neurons (28),
stimulates iron-induced lipid peroxidation (69).
2. Activated microglia, such as those that
surround most senile plaques (20), are a source of
NO and O2

− (16) which can react to form
peroxynitrite, leaving nitrotyrosine as an
identifiable marker (29,109).  3. Amyloid-β itself
has been directly implicated in ROS formation
through peptidyl radicals (10,39,87).  4.
Advanced glycation end products in the presence
of transition metals (see above) can undergo
redox cycling with consequent ROS production
(3,126,127).  Additionally, advanced glycation
end products and amyloid-β activate specific
receptors, such as the receptor for advanced

Fig. 2. Alzheimer disease, genetic as well as sporadic,
always has a strict age related incidence.
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glycation end products (RAGE) and the class A
scavenger-receptor, to increase ROS production
(23,128).  5. Abnormalities in the mitochondrial
genome (18,22) or deficiencies in key metabolic
enzymes  (8,96,71,94,112) suggest that metabolic
abnormalities affecting mitochondria may be the
major and possible initiating source of ROS in
AD.

Oxidative Damage and Response

An exact determination of the contribution of
each source of oxidative stress is complicated, if
for no other reason than that most sources have
positive feedback.  Nonetheless, the overall result
is damage including advanced glycation end
products (53,102,123,126), nitration (29,109),
lipid peroxidation adduction products (63,86) as
well as carbonyl-modified neurofilament protein
and free carbonyls (99,105,107) with the
involvement extending beyond the lesions to
neurons not displaying obvious degenerative
change.

Oxidative crosslinking makes proteins not only
insoluble (reviewed in 104,108) but also resistant
to proteolytic removal (21) by competitively
inhibiting the proteosome (24).  Therefore,
oxidative crosslinking may be significant in the
accumulation of ubiquitin conjugates in
neurofibrillary tangles (65,72) in the face of
numerous proteolytic activities, which are highly
active against abnormal proteins (101).  Indeed, it
may not be coincidental that fibrillary inclusions
found in neurodegenerative diseases other than
Alzheimer disease are also extensively
ubiquinated, e.g., Lewy/Pick bodies and
Rosenthal fibers (25,55) and are also oxidatively
modified (12–14).

The cytopathological significance of oxidative
damage is seen by the upregulation of the
antioxidant enzyme heme oxygenase-1 in
neurons with NFT (78,89,103).  Furthermore, in
quantitative immunocytochemical studies of
cases of Alzheimer disease, there is a complete
overlap between heme oxygenase-1 and Alz50,
an early marker of τ abnormalities, indicating
that cytoskeletal abnormalities are associated

with increased oxidative stress or vice versa
(Smith and Perry, unpublished observation).

Phosphorylation

The mechanisms by which normal soluble
cytoskeletal elements, such as τ and
neurofilaments, are transformed into insoluble
paired helical filaments is an important issue
(91,108).  Insolubility has been linked to the most
well known posttranslational change of τ-
abnormal phosphorylation (27,31) and a number
of specific kinases and phosphates have been
implicated (reviewed in (119)). However, while
increased phosphorylation decreases microtubule
stability, a salient feature of the pathology of
Alzheimer disease (1,2,43,73,75,76), NFT
insolubility is not mediated by phosphorylation
(108).  Indeed, in vitro phosphorylation of normal
τ or complete dephosphorylation of NFT has no
effect on their solubility (27,31,33,108).  Instead,
recent studies suggest τ phosphorylation as found
in Alzheimer disease may be part of a novel
process similar to that seen during mitosis
(74,79) suggesting that neurons affected in the
disease might be abortively entering the cell
cycle (60,61,122).

Phosphorylation is intimately tied to oxidative
stress by the mitogen activated phosphorylation
(MAP) pathway (34) as well as through
activation of transcription factor NFκB (90).
While there is controversy concerning the kinases
involved in the phosphorylation of τ in
Alzheimer disease, the MAP kinase pathway is
implicated (41,52,120).  In studies with
antibodies specific to activated MAP kinase, we
found activity in all pyramidal hippocampal
neurons in cases of Alzheimer disease but none
in young controls.  In aged controls, active MAP
kinase is found not only in the few Alz50- or
phosphorylated τ (AT8)-positive neurons but also
in many apparently normal neurons.  Preliminary
studies show many of the same neurons showing
active MAP kinase show increased nitration.
Therefore, abnormal phosphorylation of proteins
in Alzheimer disease may be a consequence of
oxidative stress.  Moreover, it is perhaps not
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Fig. 3. All of the known factors implicated in Alzheimer disease are directly linked to oxidative stress.

surprising that, while all pyramidal neurons of
the hippocampus show increased free carbonyls
(107), lipid peroxide adduction (86) and
nitrotyrosine (109), only a subset of neurons
displaying overt degeneration also show
increased phosphorylation (32,113).  Heme
oxygenase-1, an inducible antioxidant enzyme,
also shows the same pattern of involvement since
it accumulates concurrent with phosphorylated τ
(Smith and Perry, unpublished data).

Amyloid-β

The influences of amyloid-β and other genetic
factors on Alzheimer disease may be through
their effect on oxidative stress (Figure 3). A
number of mechanisms have been invoked for the
neurotoxicity of amyloid-β (129), reviewed in
(46,87), including membrane depolarization (11),
increased sensitivity to excitotoxins (51), and
alterations in calcium homeostasis (56).
However, the leading hypothesis is that neuronal
damage by amyloid-β is mediated by free
radicals and, as such, can be attenuated using
antioxidants such as vitamin E (4,5) or catalase
(54,130).  Indeed, amyloid-β is reported to
spontaneously generate peptidyl radicals
(10,30,37,77).  Further, mutations in β-precursor
protein are associated with increased DNA
fragmentation, possibly involving oxidative

mechanisms (see below).  Critically addressing
whether amyloid-β initiates oxidative damage in
Alzheimer disease requires careful study of the
relationship of amyloid-β deposition and
increased oxidative damage.  In this regard, it
will be extremely interesting to determine the
oxidative status of the recently reported
transgenic rodent models of amyloid-β deposition
(26,40).  Preliminary findings from our
laboratory, in collaboration with Karen Hsiao and
Miguel Pappolla, that indicate the full spectrum
of oxidative changes of Alzheimer disease are
found in neurons of transgenic mice with
amyloid-β deposits (111).

Genetic Factors

Presenilins 1 and 2 (92,93) are genetic factors
where the biological mechanism, although not
established, may also involve oxidative damage.
Increased presenilin 2 expression increases DNA
fragmentation and apoptotic changes (124), both
important consequences of oxidative damage.
Apolipoprotein E, in brains and cerebrospinal
fluid, is found adducted with the highly reactive
lipid peroxidation product, hydroxynonenal (64).
Furthermore, apolipoprotein E is a strong
chelator of copper and iron, important redox-
active transition metals (62).  Finally, interaction
of apolipoprotein E with amyloid-β only occurs
in the presence of oxygen (116).
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Apoptosis

In programmed cell death, i.e., apoptosis, cells
are digested within their own membrane by
proteases and nucleases as well as by increased
ROS.  However, without the full range of
morphological changes, it is unclear whether
DNA fragmentation is apoptotic or is, instead,
mediated solely by oxidative stress (7).  The
relative contribution of oxidative stress- and
apoptosis-related DNA fragmentation in AD is
unresolved.  Yet bearing on this issue, the
relative infrequency of apoptosis defined by
morphology (19,117) and the broad findings of
fragmentation in all cells in cases of Alzheimer
disease argues for widespread oxidative DNA
damage rather than widespread apoptosis.
Certainly, this interpretation is consistent with the
oxidative nuclear damage in all cells of the brain
in areas affected in Alzheimer disease (107,110).

Therapeutics

An important question in discerning whether
reducing oxidative stress may have therapeutic
value is whether it is a primary or secondary
event in disease pathogenesis (57,106) (Figure 4).
Recent evidence, reviewed above, supports
oxidative damage as the earliest cytopathological
and biochemical change of Alzheimer disease
(53,86,102,104,107,109,123,126).

Agents that inhibit free radical formation
(6,35,42,47,68,81,83,88,95,121,125), reduce both
the incidence and the progression of Alzheimer

Fig. 4. All known therapeutic agents for Alzheimer’s
disease, save palliative cholinergics, share antioxidant
activity.

disease (Figure 4) (9,15,38,48,50,58,66,67,70,80,
82,85,95,97,98,114,115,118). This relationship,
together with the efficacy of metal chelation
treatment (59), strongly suggest that oxidative
stress precedes cell and tissue damage and
therefore agents that prevent oxidative damage
show promise in the treatment of Alzheimer
disease.

CONCLUSION

In summary, oxidative stress may underline all
of the commonly accepted notions in Alzheimer
disease pathogenesis, including
hyperphosphorylation, apolipoprotein E
genotype, and mutations of the β-protein
precursor.  Further studies, to examine the types
and extent of oxidative damage, will undoubtedly
identify which antioxidant agents will prove most
efficacious in the treatment of Alzheimer disease.
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