## Author Index Volume 50 (2016)

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abd Fatah, A.Y., S.A. Mazlan, T. Koga, H. Zamzuri and F. Imaduddin</td>
<td>Design of magnetorheological valve using serpentine flux path method</td>
<td>(1) 29–44</td>
</tr>
<tr>
<td>Alam, T., see Islam, M.M.</td>
<td></td>
<td>(1) 11–28</td>
</tr>
<tr>
<td>Alam, T., see Samsuzzaman, M.</td>
<td></td>
<td>(2) 311–320</td>
</tr>
<tr>
<td>Arshad, H., see Alam, T.</td>
<td></td>
<td>(1) 45–49</td>
</tr>
<tr>
<td>Bao, X., H. Wang, C. Di and Z. Cheng</td>
<td>Magnetic field monitoring in submersible motor under eccentricity fault considering slotting effect</td>
<td>(2) 233–245</td>
</tr>
<tr>
<td>Belgrand, T., see Parent, G.</td>
<td></td>
<td>(4) 583–592</td>
</tr>
<tr>
<td>Brudny, J.-F., see Parent, G.</td>
<td></td>
<td>(4) 583–592</td>
</tr>
<tr>
<td>Cai, J., X. Sun and X. Zhao</td>
<td>A total energy reduction shielding effectiveness description for enclosures</td>
<td>(2) 283–295</td>
</tr>
<tr>
<td>Cao, J., see Yan, W.</td>
<td></td>
<td>(2) 247–254</td>
</tr>
<tr>
<td>Chen, H.-Y., see Ma, B.</td>
<td></td>
<td>(1) 201–213</td>
</tr>
<tr>
<td>Chen, I.-F., see Peng, C.-M.</td>
<td></td>
<td>(2) 225–232</td>
</tr>
<tr>
<td>Chen, J., B. Zhang, Y. Ding and H. Ding</td>
<td>Field analysis of a sinusoidal-edged Halbach magnet array using the differential quadrature finite element method</td>
<td>(1) 63–80</td>
</tr>
<tr>
<td>Chen, J., see Ma, B.</td>
<td></td>
<td>(1) 201–213</td>
</tr>
<tr>
<td>Chen, Y.-W., see Ma, B.</td>
<td></td>
<td>(1) 201–213</td>
</tr>
<tr>
<td>Chen, Z., Z. Li and H. Ma</td>
<td>Cogging torque reduction in surface-mounted permanent magnet machines with nonuniform slot distributions</td>
<td>(3) 467–482</td>
</tr>
<tr>
<td>Cheng, P., F. Yang, H. Luo, G. Guo, W. Ran, Y. Yang and I. Ullah</td>
<td>A method to calculate the reactive power of iced transmission line based on Poynting vector and FDFD</td>
<td>(3) 417–433</td>
</tr>
<tr>
<td>Cheng, Q., Z. Zhang and N. Xie</td>
<td>Power losses analysis of the gasoline direct injector within different driven strategies</td>
<td>(3) 379–394</td>
</tr>
<tr>
<td>Cheng, Z., see Bao, X.</td>
<td></td>
<td>(2) 233–245</td>
</tr>
<tr>
<td>Cheong, L.Y., see Jilani, M.T.</td>
<td></td>
<td>(2) 353–363</td>
</tr>
<tr>
<td>Díaz, G.A. and E.E. Mombello</td>
<td>New compact and singularity free formulations for the magnetic field produced by a finite cylinder considering linearly varying current density</td>
<td>(3) 483–501</td>
</tr>
<tr>
<td>da S. Fonseca, W., D. de S. Lima, A.K.F. Lima, N.S. Soeiro and M.V.A. Nunes</td>
<td>Analysis of electromagnetic-mechanical stresses on the winding of a transformer under inrush currents conditions</td>
<td>(4) 511–524</td>
</tr>
</tbody>
</table>
de S. Lima, D., see da S. Fonseca, W. (4) 511–524
Di, C., see Bao, X. (2) 233–245
Ding, H., see Chen, J. (1) 63– 80
Ding, Y., see Chen, J. (1) 63– 80
Dong, J.-F., see Zhai, X.-M. (3) 395–405

El-Bary, A.A., see Ezzat, M.A. (4) 549–567
Ezzat, M.A. and A.A. El-Bary, Magneto-thermoelectric viscoelastic materials with memory-dependent derivative involving two-temperature (4) 549–567

Fang, S., see Zhang, Y. (4) 617–626
Faruque, M.R.I., see Alam, T. (1) 45– 49
Faruque, M.R.I., see Islam, M.M. (1) 11– 28
Faruque, M.R.I., see Islam, S.S. (1) 145–153
Fu, G., see Zhang, Z.-Y. (2) 331–337

Gao, H. and W. Song, Analysis on unbalance vibration and compensation for maglev flywheel (1) 177–187
Gerstbauer, E., see Pfützner, H. (1) 81– 95
Ghaffar, A., see Yaqoob, M.Z. (1) 51– 61
Ghandehari, M.B., A. Khazaei and S. Vaezi, A novel method to eliminate the resonance of a rectangular enclosure with aperture (2) 215–224
Guo, G., see Cheng, P. (3) 417–433

Hajima, K., M. Yamashita and T. Honda, Performance evaluation of magnetically driven cytology brush applicable to capsule endoscopy (1) 167–176
Hao, Z., see Peng, C.-M. (2) 225–232
He, H., see Ma, B. (1) 201–213
Honda, T., see Hajima, K. (1) 167–176
Hong, T., see Tang, Z.-M. (2) 321–330
Hossain, M.I., see Islam, M.M. (1) 11– 28
Hrizi, H., see Jamel, B.R.H. (1) 155–166
Hu, C., see Su, Y.-G. (4) 627–636
Huang, C., F. Wu, J. Zhao and D. Zhou, A novel fault diagnosis method in SVPWM voltage-source inverters for vector controlled induction motor drives (1) 97–111
Huang, K.-M., see Liao, Y.-H. (2) 275–282
Huang, K.-M., see Tang, Z.-M. (2) 321–330
Huang, P., see Zhang, Z.-Y. (2) 331–337
Huang, Y., see Zhang, Y. (4) 617–626
Hung, C.-C., see Peng, C.-M. (2) 225–232

Imaduddin, F., see Abd Fatah, A.Y. (1) 29– 44
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Islam, M.M.</td>
<td>see Samsuzzaman, M.</td>
<td>(2) 311–320</td>
</tr>
<tr>
<td>Islam, M.T.</td>
<td>see Alam, T.</td>
<td>(1) 45–49</td>
</tr>
<tr>
<td>Islam, M.T.</td>
<td>see Islam, M.M.</td>
<td>(1) 11–28</td>
</tr>
<tr>
<td>Islam, M.T.</td>
<td>see Islam, S.S.</td>
<td>(1) 145–153</td>
</tr>
<tr>
<td>Islam, M.T.</td>
<td>see Samsuzzaman, M.</td>
<td>(2) 311–320</td>
</tr>
<tr>
<td>Jadoon, A.</td>
<td>see Yang, Y.</td>
<td>(2) 297–309</td>
</tr>
<tr>
<td>Jamel, B.R.H., H. Hrizi and N. Sboui</td>
<td>Analysis and improvement of HF circuits based on SIW and DGS technologies using iterative method</td>
<td>(1) 155–166</td>
</tr>
<tr>
<td>Khan, A.M.</td>
<td>see Jilani, M.T.</td>
<td>(2) 353–363</td>
</tr>
<tr>
<td>Khan, Y.</td>
<td>see Yaqoob, M.Z.</td>
<td>(1) 51–61</td>
</tr>
<tr>
<td>Khazaei, A.</td>
<td>see Ghandehari, M.B.</td>
<td>(2) 215–224</td>
</tr>
<tr>
<td>Kim, S.-J.</td>
<td>see Lee, S.-H.</td>
<td>(3) 503–510</td>
</tr>
<tr>
<td>Kim, Y.-J.</td>
<td>see Lee, S.-H.</td>
<td>(3) 503–510</td>
</tr>
<tr>
<td>Kim, Y.-J.</td>
<td>see Park, E.-J.</td>
<td>(4) 637–645</td>
</tr>
<tr>
<td>Koita, T.</td>
<td>see Abd Fatah, A.Y.</td>
<td>(1) 29–44</td>
</tr>
<tr>
<td>Kou, K.</td>
<td>see Wang, C.</td>
<td>(3) 367–377</td>
</tr>
<tr>
<td>Lecointe, J.-P.</td>
<td>see Parent, G.</td>
<td>(4) 583–592</td>
</tr>
<tr>
<td>Lee, K.-S.</td>
<td>see Lee, S.-H.</td>
<td>(3) 503–510</td>
</tr>
<tr>
<td>Lee, S.-H., Y.-J. Kim, K.-S. Lee and S.-J. Kim</td>
<td>Prediction of dynamic characteristics of permanent magnet motor using numerical analysis coupled with motion equation</td>
<td>(3) 503–510</td>
</tr>
<tr>
<td>Li, D.C.</td>
<td>see Yang, X.L.</td>
<td>(3) 407–415</td>
</tr>
<tr>
<td>Li, H.</td>
<td>see Wang, W.-J.</td>
<td>(2) 263–273</td>
</tr>
<tr>
<td>Li, J.</td>
<td>see Liu, S.</td>
<td>(1) 113–125</td>
</tr>
<tr>
<td>Li, J.</td>
<td>see Sun, L.</td>
<td>(1) 189–200</td>
</tr>
<tr>
<td>Li, L.</td>
<td>see Li, R.</td>
<td>(4) 605–615</td>
</tr>
<tr>
<td>Li, R. and L. Li</td>
<td>Partial element equivalent circuit modeling and design for wireless power transfer system via magnetic resonant coupling</td>
<td>(4) 605–615</td>
</tr>
<tr>
<td>Li, T.-Q.</td>
<td>see Ma, B.</td>
<td>(1) 201–213</td>
</tr>
<tr>
<td>Li, X.</td>
<td>see Wang, B.</td>
<td>(1) 1–10</td>
</tr>
<tr>
<td>Li, X.</td>
<td>see Wang, C.</td>
<td>(3) 367–377</td>
</tr>
<tr>
<td>Li, Y.</td>
<td>see Liu, Z.</td>
<td>(4) 593–603</td>
</tr>
<tr>
<td>Li, Z.</td>
<td>see Chen, Z.</td>
<td>(3) 467–482</td>
</tr>
<tr>
<td>Li, Z.</td>
<td>see Shi, T.</td>
<td>(4) 525–535</td>
</tr>
<tr>
<td>Liao, Y.-H., H.-C. Zhu and K.-M. Huang</td>
<td>Fast algorithm for electromagnetic pulse heating on dispersive medium</td>
<td>(2) 275–282</td>
</tr>
<tr>
<td>Liao, Y.-H.</td>
<td>see Tang, Z.-M.</td>
<td>(2) 321–330</td>
</tr>
<tr>
<td>Lima, A.K.F.</td>
<td>see da S. Fonseca, W.</td>
<td>(4) 511–524</td>
</tr>
<tr>
<td>Lin, A.</td>
<td>see Ma, B.</td>
<td>(1) 201–213</td>
</tr>
</tbody>
</table>
Lin, H., see Zhang, Y. (4) 617–626
Liu, C., see Ning, Y. (3) 435–448
Liu, H., see Sun, L. (1) 189–200
Liu, J., see Liu, S. (1) 113–125
Liu, M.-B., see Wang, W.-J. (2) 263–273
Liu, S., J. Liu, Z. Wu and J. Li, Bifurcation control for electromechanical coupling torsional vibration in rolling mill system driven by DC motor (1) 113–125
Liu, X., see Xue, X. (4) 569–581
Liu, X., see Yang, Y. (2) 297–309
Liu, Z., Y. Su, Y. Li, Z. Pan and X. Wang, Numerical calculation of shielding effectiveness of electromagnetic shielding fabric based on finite difference time domain (4) 593–603
Long, C., see Wang, C. (3) 367–377
Luo, H., see Cheng, P. (3) 467–482
Ma, H., see Chen, Z. (3) 467–482
Mahmoud, I. and H. Rehaoulia, Design, nonlinear modelling and performances of a biomedical system (1) 127–143
Mahmud, M.Z., see Samsuzzaman, M. (2) 311–320
Mandeeep, J.S., see Samsuzzaman, M. (2) 311–320
Mansor, F., see Alam, T. (1) 45–49
Mansouri, A., N. Smairi and H. Trabelsi, Multi-objective optimization of an in-wheel electric motor (3) 449–465
Naqvi, Q.A., see Yaqoob, M.Z. (1) 29–44
Ning, Y. and C. Liu, Analysis and calculation of electromagnetic and temperature field in a hybrid excitation synchronous generator (3) 435–448
Nunes, M.V.A., see da S. Fonseca, W. (4) 511–524
Pan, Z., see Liu, Z. (4) 593–603
Peng, C.-M., I-F. Chen, C.-C. Hung and Z. Hao, Dual cross-shaped shorted-slots loaded patch antenna for WLAN applications (2) 225–232
Penin, R., see Parent, G. (4) 583–592
Pfützner, H., G. Shilyashki, E. Gerstbauer and G. Trenner, Multi-directionally non-linear magnetic equivalence circuit calculation (MACC) of rotational magnetization intensity in transformer cores (1) 81–95

Pi, X., see Sun, L. (1) 189–200

Qi, Z., see Wang, B. (1) 1–10

Ran, W., see Cheng, P. (3) 417–433

Rehaoulia, H., see Mahmoud, I. (1) 127–143

Rehman, M.Z.U., see Jilani, M.T. (2) 353–363

Ren, X., see Wang, B. (1) 1–10

Ren, X., see Wang, W.-J. (2) 263–273

Samsuzzaman, M., M.T. Islam, J.S. Mandeep, M.Z. Mahmud, T. Alam and M.M. Islam, Miniaturized dual band Y shaped antenna by high dielectric ceramic filled bio plastic composite material (2) 311–320

Samsuzzaman, M., see Alam, T. (1) 45–49

Samsuzzaman, M., see Islam, M.M. (1) 11–28

Sarker, M.R., see Mohamed, R. (4) 537–548

Shilyashki, G., see Pfützner, H. (1) 81–95

Smairi, N., see Mansouri, A. (3) 449–465

Soeiro, N.S., see da S. Fonseca, W. (4) 511–524

Song, W., see Gao, H. (1) 177–187

Sun, L., X. Pi, H. Liu and J. Li, Super-high speed medical micro-motor design and thermal field calculation (4) 627–636

Suzuki, K., see Park, E.-J. (4) 637–645

Tang, C.-S., see Su, Y.-G. (4) 627–636

Tang, Q., see Yan, W. (2) 247–254

Tang, Z.-M., K.-M. Huang, Y.-H. Liao, T. Hong and H.-C. Zhu, Study on stability of electric field in multimode microwave heating cavity (2) 321–330

Tian, X., see Xue, X. (4) 569–581

Tseng, K.-J., see Zhang, M. (2) 339–352
Uddin, M.J. and M.H. Ullah, The effective periodic homogeneous metamaterials for infinite complementary dielectric slab characteristics
(2) 255–262
Ullah, I., see Cheng, P.
(3) 417–433
Ullah, M.H., see Uddin, M.J.
(2) 255–262

Vaezi, S., see Ghandehari, M.B.
(2) 215–224

Wang, B., Y. Zhuang, X. Li, Y. Zhang, Z. Qi and X. Ren, Compact antenna with modified L-shape feed line for dual band operation
(1) 1–10
Wang, B.-J., see Ma, B.
(1) 201–213
Wang, C., X. Li, K. Kou, T. Wu and C. Long, Analytical model of magnetic field distribution in the air-gap of quartz flexible accelerometer
(3) 367–377
Wang, D., see Shi, T.
(4) 525–535
Wang, E., see Yan, W.
(2) 247–254
Wang, H., see Bao, X.
(2) 233–245
Wang, H.-B., see Zhai, X.-M.
(3) 395–405
Wang, W.-J., X. Ren, Y. Sun, H. Li and M.-B. Liu, Development of a strain measurement method utilizing a rectangular microstrip patch antenna
(2) 263–273
Wang, X., see Liu, Z.
(4) 593–603
Wen, W.P., see Jilani, M.T.
(2) 353–363
Wu, F., see Huang, C.
(1) 97–111
Wu, T., see Wang, C.
(3) 367–377
Wu, Z., see Liu, S.
(1) 113–125

Xie, N., see Cheng, Q.
(3) 379–394
Xue, X., X. Tian, D. Zhang and X. Liu, Design of a piezo-driven inchworm flexure stage for precision positioning
(4) 569–581

Yamashita, M., see Hajima, K.
(1) 167–176
Yan, W., J. Yu, Q. Tang, H. Zhang, J. Cao and E. Wang, Analysis and mitigation on conducted electromagnetic interference of semi-active control strategy for magnetorheological damper
(2) 247–254
Yang, F., see Cheng, P.
(3) 417–433
Yang, F., see Yang, Y.
(2) 297–309
Yang, L., see Zhang, Z.-Y.
(2) 331–337
Yang, X.L. and D.C. Li, Experimental investigation of diverging stepped magnetic fluid seals with large sealing gap
(3) 407–415
Yang, X.-M., see Ma, B.
(1) 201–213
Yang, Y., see Cheng, P.
(3) 417–433
Yang, Y., X. Liu, F. Yang, A. Jadoon and C. Zhang, Analysis of DC bias vibration of transformer core based on electromagnetic force field coupling
(2) 297–309
Yao, L.-F., see Zhai, X.-M.
(3) 395–405
Yaqoob, M.Z., I. Shakir, A. Ghaffar, Y. Khan and Q.A. Naqvi, Transmission of electromagnetic wave from anisotropic plasma coated nihilility circular cylinder
(1) 51–61
Yu, J., see Yan, W.
(2) 247–254
Zamzuri, H., see Abd Fatah, A.Y. (1) 29–44
Zhang, B., see Chen, J. (1) 63–80
Zhang, C., see Yang, Y. (2) 297–309
Zhang, D., see Xue, X. (4) 569–581
Zhang, H., see Yan, W. (2) 247–254
Zhang, M. and K.-J. Tseng, Lumped magnetic circuit model for faulty machine performance prediction (2) 339–352
Zhang, S., see Su, Y.-G. (4) 627–636
Zhang, Y., H. Lin, S. Fang and Y. Huang, Comparison and analysis of dual stator permanent magnet vernier machines with different pole/slot combinations for low speed direct drive applications (4) 617–626
Zhang, Y., see Wang, B. (1) 1–10
Zhang, Z., see Cheng, Q. (3) 379–394
Zhang, Z.-Y., L. Yang, S.-L. Zuo, P. Huang and G. Fu, A novel miniature circularly polarized antenna with beamwidth improvement (2) 331–337
Zhao, J., see Huang, C. (1) 97–111
Zhao, X., see Cai, J. (2) 283–295
Zheng, D., see Shi, T. (4) 525–535
Zhou, D., see Huang, C. (1) 97–111
Zhou, W., see Su, Y.-G. (4) 627–636
Zhu, H.-C., see Liao, Y.-H. (2) 275–282
Zhu, H.-C., see Tang, Z.-M. (2) 321–330
Zhuang, Y., see Wang, B. (1) 1–10
Zuo, S.-L., see Zhang, Z.-Y. (2) 331–337