Corrigendum

A FFT integral formulation using edge-elements for Eddy Current Testing
by A. Tamburrino, S. Ventre and G. Rubinacci

Please note the following addendum at the end of Section 3:

We notice that the boundary condition \(\mathbf{J} \cdot \mathbf{n} = 0 \) can be easily imposed in simply connected domains by means of the tree-cotree decomposition [4]. Since the active edges of the regular cotree of Fig. 1 does not include boundary edges, \(\mathbf{J} \) satisfies the boundary condition \(\mathbf{J} \cdot \hat{\mathbf{n}} = 0 \) on \(\partial V_c \) together with unwanted additional constraints in \(V_c \). These additional constraints are removed by adding a layer of \((N_x - 1) \times (N_z - 1)\) \(y \)-directed active edges. This layer does not change the convolutional structure of the discrete operator \(\mathbf{L} \) and it can be treated by means of the FFT so giving an additional computational cost of the order of \(O(N_x N_y N_z \log_2(N_x N_z)) \). This additional computational cost is minimized for \(N_y = \min\{N_x, N_y, N_z\} \). The worst case is achieved when \(N_x = N_y = N_z \); in this case the additional computational cost is about 30% of the total computational cost.