
Integrated Computer-Aided Engineering 24 (2017) 261–277 261
DOI 10.3233/ICA-170544
IOS Press

An efficient approach to directly compute the
exact Hausdorff distance for 3D point sets

Dejun Zhanga,b, Fazhi Hea,d,∗, Soonhung Hanc, Lu Zoub, Yiqi Wua and Yilin Chena
aSchool of Computer Science, Wuhan University, Wuhan, Hubei, China
bCollege of Information and Engineering, Sichuan Agricultural University, Yaan, Sichuan, China
cDivision of Ocean Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
dState Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and
Technology, Wuhan, Hubei, China

Abstract. Hausdorff distance measure is very important in CAD/CAE/CAM related applications. This manuscript presents an
efficient framework and two complementary subalgorithms to directly compute the exact Hausdorff distance for general 3D
point sets. The first algorithm of Nonoverlap Hausdorff Distance (NOHD) combines branch-and-bound with early breaking to
cut down the Octree traversal time in case of spatial nonoverlap. The second algorithm of Overlap Hausdorff Distance (OHD)
integrates a point culling strategy and nearest neighbor search to reduce the number of points traversed in case of spatial overlap.
The two complementary subalgorithms can achieve a highly efficient and balanced result. Both NOHD and OHD compute the
exact Hausdorff distance directly for arbitrary 3D point sets. We conduct a number of experiments on benchmark models and
CAD application models, and compare the proposed approach with other state-of-the-art algorithms. The results demonstrate the
effectiveness of our method.

Keywords: Hausdorff distance, 3D point sets, similarity, octree, branch and bound, runtime analysis

1. Introduction

Distance measure is the fundamental step for many
applications in science and engineering areas [15,41,
68]. Hausdorff distance can quantify the similarity be-
tween two arbitrary point sets without the necessity
to establish the one-to-one correspondence between
them. In most engineering applications, the number of
point sets obtained by 3D model is not identical, and
it is difficult to establish a one-to-one correspondence
between them. Therefore, Hausdorff distance is suit-
able for measuring similarity between 3D models in
engineering practice.

Hausdorff distance has drawn particular attention
from scholars in many science and engineering fields,
such as CAE/CAD/CAM [40,68], pattern recogni-

∗Corresponding author: Fazhi He, School of Computer Science,
Wuhan University, Wuhan, Hubei, China. E-mail: fzhe@whu.edu.
cn.

tion [52,63], similarity measure [16,30,32,48], shape
matching [5,70], mesh model simplification [26], re-
construction of curved and surfaces [11,12,18,35], and
penetration depth [66,73].

It is a hard task to improve the efficiency of the al-
gorithm while ensuring the accuracy in calculating the
Hausdorff distance. Generally speaking, the similarity
measure for 3D models based on Hausdorff distance
faces at least three problems: (1) Most of the previ-
ous algorithms of similarity measure based on Haus-
dorff distance have a strong disciplinary background,
and are short of generalization; (2) Since the Hausdorff
distance measure is computationally intensive, it is re-
stricted to applications for large scale data; (3) Fur-
thermore, in some applications, computing exact Haus-
dorff distance needs additional cost (for example, 3D
point sets are pre-processed and rasterized into voxel
models), which worsen efficiency of some state-of-the-
art algorithms.

To the best of our knowledge, it is difficult to cover

ISSN 1069-2509/17/$35.00 c© 2017 – IOS Press and the author(s). All rights reserved
This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial License
(CC BY-NC 4.0).

262 D. Zhang et al. / An efficient approach to directly compute the exact Hausdorff distance for 3D point sets

above limitations in one single processing algorithm.
For an example, the state-of-the-art algorithm of 2015
(EARLYBREAK) [65] can achieve the high efficiency
in processing the medical images (considered as voxel
data), while it is low efficiency in calculating spatial
objects of highly overlapping.

How to find a new approach to cover above prob-
lems as much as possible and achieve an efficient
and balanced result is becoming a challenge. In this
manuscript, based on whether the pair of point sets are
nonoverlaped or overlaped, an efficient computation
framework is presented with two complementary sub-
algorithms, Nonoverlap Hausdorff Distance (NOHD)
and Overlapped Hausdorff Distance (OHD).

– The NOHD algorithm builds an Octree for input
point sets, and uses the principle of branch-and-
bound and early breaking to prune the branches of
Octree efficiently, which can reduce the number
of nodes that have to be traversed.

– However, the efficiency is poor when applying the
NOHD algorithm to two point sets of seriously
overlapped. Therefore, we propose the OHD al-
gorithm to solve this problem. The OHD algo-
rithm builds adaptive Octree, and also designs
point culling strategy which can reduce the tra-
versed points. Both NOHD and OHD compute the
exact Hausdorff distance directly for arbitrary 3D
point sets. Under the subalgorithms of NOHD and
OHD, we present a new Hausdorff distance com-
puting procedure, which can choose the comple-
mentary subalgorithms to compute the Hausdorff
distance with different spatial relationship of the
pair of point sets.

The remainder of this manuscript is organized as
follows. In Section 2, we briefly review the related
work. Section 3 describes the problem and challenge
for computing Hausdorff distance. In Section 4, we
present two novel subalgorithms, the NOHD algorithm
and the OHD algorithm. In Section 5 we construct an
integrated framework of computing the Hausdorff dis-
tance. Section 6 conducts experiments with analysis.
Finally, the conclusions and future work are discussed
in Section 7.

2. Related work

The research of Hausdorff distance originated from
computer vision [23,25,31,46,59,61,62] and was
quickly extended to many areas of science and engi-
neering [5,9,13,40,41,68].

2.1. Curves and surfaces

The problem of efficient calculation of the Haus-
dorff distance has become a hot topic in this field, has
influenced the progress in CAD/CAE/CAM.

Alt et al. [7] presented an algorithm for Hausdorff
distance computation based on a characterization of
the possible points where the distance can be attained.
Chen et al. [18] presented an algorithm for computing
the Hausdorff distance between two B-Spline curves,
which improves the reference [7] by using a pruning
technique to reduce computation time.

Bai et al. [11] presented an algorithm for comput-
ing an approximate Hausdorff distance between pla-
nar free-form curves by approximating the input curves
with polylines and then computing the Hausdorff dis-
tance between the line segments. Kim et al. [34] pre-
sented a compact representation for the Bounding Vol-
ume Hierarchy (BVH) of Non-uniform rational Basis
spline (NURBS) surfaces using Coons patches, which
could be used to construct a BVH-based algorithm for
computing the Hausdorff distance between NURBS
surfaces.

Kim et al. [36] developed a real-time algorithm
for the precise Hausdorff distance between planar
freeform curves using hardware depth buffer.

Recently, Krishnamurthy et al. [28,38,39] developed
a GPU algorithm that computes the Hausdorff distance
between NURBS surfaces. Interactive speeds are ob-
tained by performing GPU traversal of a bounding-
box hierarchy and selectively culling pairs of bounding
boxes that could not contribute to the Hausdorff dis-
tance.

2.2. Polygonal models

The Hausdorff distance computation for large polyg-
onal meshes has been a very difficult task to implement
for real-time application.

Atallah [9] provided an algorithm for computing the
Hausdorff distance for a special case of point sets,
namely non-intersecting, convex polygons. The algo-
rithm has the complexity of O(n + m) where m and
n are the vertex counts. Alt et al. [5] presented a
method based on the Voronoi diagram which requires
O((n+m) log(n+m)) running time. Barton et al. [39]
presented an O(n4 log n) deterministic algorithm for
computing the precise (up to floating point) Hausdorff
distance between polygonal meshes.

Due to the complexity of exactly computing the
Hausdorff distance, the approximate algorithms have

D. Zhang et al. / An efficient approach to directly compute the exact Hausdorff distance for 3D point sets 263

been proposed as practically solutions [8,22,26,47].
Llanas [47] proposed two approximate algorithms
based on random covering for non-convex polytopes.
Guthe et al. [26] proposed an approximate algorithm
for calculating the Hausdorff distance between mesh
surfaces. This algorithm makes use of the specific char-
acteristics of meshes to avoid sampling all points in the
compared surfaces. These regions are then further sub-
divided and regions that cannot attain the Hausdorff
distance are purged away.

Tang et al. [66] implemented an approximate algo-
rithm that is based on BVH that is preprocessed in
advance (before real-time computation). Their imple-
mentation is very fast in practice, running at interactive
speed for complicated dynamics scene.

2.3. Point sets

Above algorithms are based on the specific charac-
teristics of meshes and thereby lacks generality. Some
general methods are proposed. Given two nonempty
point-sets with n and m points respectively, a brute-
force algorithm to compute the Hausdorff distance re-
quires O(n×m) time.

Alt et al. [5] presented a method based on the
Voronoi diagram which requires O((n + m) log(n +
m)) running time. For R3, Alt et al. [6] proposed a
randomized algorithm with O((n + m + (nm)3/4)
log(n + m)) expected time. Papadias et al. [55] pro-
posed an algorithm for finding aggregate nearest neigh-
bors (ANN) in databases.

Nutanong et al. [54] extended the algorithm pro-
posed in [55] to avoid the iteration of all points in A.
The aggregate nearest neighbor was executed simulta-
neously in both directions, where two R-Trees (one for
each point set) were used at the same time.

Taha et al. proposed the randomization and the early
breaking optimization in reference [65] to achieve ef-
ficient, almost linear, calculation. This optimization
avoid scanning all voxel pairs by identifying and skip-
ping unnecessary rounds.

The purpose of this study is to explore a general
method to compute the exact Hausdorff distance for
CAD/CAE/CAM applications and to ensure the effi-
ciency.

3. Problem state

3.1. Hausdorff distance

The Hausdorff distance [66] is the maximum devia-
tion between two models, measuring how far two point

sets are from each other [26]. Given two nonempty
point sets A = {x1, x2, . . . , xn} and B = {y1, y2,
. . . , ym}, the Hausdorff distance between A and B is
defined as H(A,B).

H(A,B) = max(h(A,B), h(B,A)) (1)

where

h(A,B) = max
x∈A

(
min
y∈B
‖x− y‖

)
(2)

h(B,A) = max
y∈B

(
min
x∈A
‖y − x‖

)
(3)

H(A,B) denotes the Hausdorff distance in R3. h(B,
A) and h(A, B) are the one-sided value from A to B
and from B to A, respectively.

The Hausdorff distance is often used in engineer-
ing and science for pattern recognition, shape match-
ing and error controlling. If H(A,B) is a small value,
A and B are partially matched; If H(A,B) is equal to
zero, then A and B are matched exactly.

3.2. NAIVEHDD and one-side BREAK algorithm

The basic computing method of the Hausdorff dis-
tance is described as Algorithm 1.

The outer loop of the NAIVEHDD algorithm tra-
verses all points in A, while the inner loop traverses
all points in B. The time complexity of NAIVEHDD
algorithm is O(m× n).

Algorithm 1. NAIVENDD algorithm

Input: Two finite point sets A, B
Output: Directed Hausdorff distance
1. cmax← 0
2. for x ∈ A do
3. cmax←∞
4. for y ∈ B do
5. d← ‖x, y‖
6. cmin← min{cmin, d}
7. end for
8. cmax← max{cmax, cmin}
9. end for
10. return cmax

Taha et al. [65] pointed out that it is not necessary for
inner loop (4 ∼ 7 lines) of the NAIVEHDD algorithm
to traverse all points in B, and proposed an early break
strategy in Algorithm 2. In the inner loop of Algo-
rithm 2, when a distance is found that is below the cur-

264 D. Zhang et al. / An efficient approach to directly compute the exact Hausdorff distance for 3D point sets

rent cmax, continuing to traverse the remaining points
inB makes no contribution to update cmax. Therefore,
the breaking of the inner loop at that time will reduce
the cost of traversing B. In the best case when the in-
ner loop meets the breaking condition at the first exe-
cution and then break, the ideal time complexity of the
EARLYBREAK algorithm is O(m).

The original algorithm published in [65] missed one
line and had been corrected in a note.

Algorithm 2. EARLYBREAK algorithm

Input: Two finite point sets A, B
Output: Directed Hausdorff distance
1. cmax← 0
2. Ar ← randomize(A)
3. Br ← randomize(B)
4. for x ∈ Ar do
5. cmin←∞
6. for y ∈ Br do
7. d← ‖x, y‖
8. If d < cmax then
9. cmin← 0
10. break
11. end if
12. cmin← min{cmin, d}
13. end for
14. cmax← max{cmax, cmin}
15. end for
16. return cmax

3.3. Challenge and analysis

In Algorithm 2, the event of meeting the condition
that d is over cmax is denoted as e, P (e) = q. The
event of meeting the condition that d is less than cmax
is denoted as e, P (e) = p = 1 − q. the breaking con-
dition for the inner loop (6 ∼12 lines) is that event e
occurs.

Assuming that the inner loop has been implemented
for R times before the loop terminates, then the proba-
bility density function of R can be expressed as:

f(x) = P (d1 > cmax, . . . , dx−1 > cmax,

dx 6 cmax)

= qx−1p (4)

The expectation of R (the number of execution of
the inner loop) is equal to the expectation of f(x),

E(R) =

∞∑
x=1

xf(x) =

∞∑
x=1

xqx−1p =
1

p
(5)

According to Eq. (5), the number of tries in the in-
ner loop is inverse proportion to q. Meanwhile, Taha et

al. [65] pointed out that p depends on h(A,B) and the
distribution of all the pair of distances between A and
B, rather than directly on the number of B.

The larger h(A,B) is, the larger cmax is, and the
larger p is. The average probability of the breaking
condition can be expressed as:

p̄ = average
(∫ cmax

x=0

g(x)dx

)
= c

∫ H

x=0

g(x)dx

(6)

Where g(x) represents the probability distribution
function of all the distances between A and B, and c is
a constant representing the relationship between cmax
and the final Hausdorff distance.

After substituting Eq. (6) into Eq. (5), the expecta-
tion of R can be obtained as:

E(R) =
1

P̄
=

1

c

∫ h

x=0

g(x)dx

(7)

It should be noticed that the smaller h(A,B) is, the
larger R is, leading to a decreased efficiency of the
EARLYBREAK algorithm. In the worst case, when the
h(A,B) between A and B is equal to zero, the inner
loop will traverse all the points inB, and the time com-
plexity of the EARLYBREAK algorithm is equal to
that of NAIVEHDD algorithm.

In order to overcome the deficiency in overlap sit-
uation, Taha and Hanbury [65] proposed a strategy to
exclude the intersection point set between A and B.
As shown in Fig. 1, for given grid sets AG (brown
box in Fig. 1(a)) and BG (blue box in Fig. 1(b)),
{AG} ∩ {BG} (green box in Fig. 1(c)) is first cal-
culated. Then the grid set EG is computed as EG =
{AG} − {AG} ∩ {BG}. At last, the EG is used to cal-
culate the Hausdorff distance in EARLYBREAK algo-
rithm as h(EG, BG).

According to the property of Hausdorff distance,
h(AG, BG) = h(EG, BG). Obviously, the time com-
plexity of h(EG, BG) is significantly better than that
of h(AG, BG). Therefore, the EARLYBREAK algo-
rithm has achieved outstanding results in calculating
the Hausdorff distance of medical images.

There are still some problems for EARLYBREAK
algorithm [65]. Firstly, the execution number of the in-
ner loop was reduced by early breaking and random
initialization, but the execution number of the outer
loop was not reduced. Secondly, when the similarity
between A and B is high (e.g., the Hausdorff distance
is small), the strategy of early breaking fails to reduce
the time complexity. Thirdly, the EARLYBREAK al-
gorithm is inherently and naturally suitable for voxel

D. Zhang et al. / An efficient approach to directly compute the exact Hausdorff distance for 3D point sets 265

Fig. 1. Excluding intersection in EARLYBREAK. (a) AG; (b) BG;
(c) {AG} ∩ {BG}; (d) EG.

model and medical image, not for general 3D model,
such as 3D point cloud in CAD/CAE/CAM. Finally,
if we simply apply the EARLYBREAK algorithm for
general 3D models, the original 3D model have to be
preprocessed and rasterized into voxel model, which is
the approximation for the original 3D models. There-
fore, the final result will be approximate one, not exact
one.

This manuscript tries to address the above problems
as much as possible, and present a new approach to
directly and efficiently calculate the Hausdorff distance
for general 3D model with an exact result.

4. The proposed two subalgorithms

Firstly, due to the fact that the two subalgorithms are
based on Octree, a set of definitions related to lower
bound and upper bound are provided. In the case of
spatial nonoverlap, a subalgorithm named NOHD was
proposed. Then, we analyzed the complexity for com-
puting the Hausdorff distance in the case of spatial
overlap and proposed the OHD algorithm.

4.1. The definition of bound and the description of
overlap

The Hausdorff distance betweenA andB can be ac-
tually obtained by calculating the Hausdorff distance
between A and OctreeB (constructed from B). The
principles of branch-and-bound [24] have be adopted
in our NOHD and the OHD algorithms to reduce the
number of nodes to be traversed. Therefore, before pre-

senting the NOHD and OHD algorithms, the related
definitions are given as follows.

Definition 1. Lower bound of point to node. Given a
singleton set {p} and a node C in an Octree, a lower
bound of the Hausdorff distance from p to the elements
confined by C is defined as Eq. (8),

lb(p, C) = min {DIST(p, object) : object ∈ C}

(8)

As shown in Fig. 2(a), the lb(p, C) of Hausdorff dis-
tance between point p and node C can be obtained
by calculating the minimum possible distance between
point p and the nearest object (vertexes, edges, sur-
faces) of node C.

Definition 2. Lower bound of point set to node. Given
a point set P and a node C in an Octree, a lower bound
of the Hausdorff distance from P to the elements con-
fined by C is defined as Eq. (9),

LB(P,C) = min {lb(p, C) : p ∈ P} (9)

As shown in Fig. 2(b), the LB(P,C) of Hausdorff dis-
tance between the point set P to node C can be ob-
tained by calculating the minimum value of the lower
bound between all points in the point set P and node
C.

Definition 3. Upper bound of point to node. Given a
singleton set {p} and a node C in an Octree, a upper
bound of the Hausdorff distance from p to the elements
confined by C is defined as Eq. (10),

ub(p, C) = max {DIST(p, vertex) : vertex ∈ C}

(10)

As shown in Fig. 2(c), the ub(p, C) of the Hausdorff
distance between point p and node C can be obtained
by calculating the maximum possible distance between
point p and the farthest object (vertex) in node C.

Definition 4. Upper bound of point set to node. Given
a point set P and a node C in an Octree, a upper bound
of the Hausdorff distance from P to the elements con-
fined by C is defined as Eq. (11),

UB(P,C) = min {ub(p, C) : p ∈ P} (11)

As shown in Fig. 2(d), the UB(P,C) of Hausdorff
distance from the point setP to nodeC can be obtained
by calculating the minimum value of the upper bound
from all points in the point set P to node C.

According to the analysis in Section 3, when the
value of Hausdorff distance between A and B is rela-
tively small as two objects overlap, the previous algo-

266 D. Zhang et al. / An efficient approach to directly compute the exact Hausdorff distance for 3D point sets

Fig. 2. Lower bound and upper bound of Hausdorff distance: (a) lower bound from point to node; (b) lower bound from points to node; (c) upper
bound from point to node; (d) upper bound from points to node.

rithms (including state-of-the-art EARLYBREAK in
the reference [65]) cannot efficiently reduce the time
complexity. However, the small value of Hausdorff dis-
tance occurs in many engineering applications. There-
fore, before presenting our algorithms, the overlap is
described.

Given an object A in 3D space, the range for bound-
ing box BBA is described as follows:

x ∈
[
xLA, x

U
A

]
, y ∈

[
yLA, y

U
A

]
, z ∈

[
zLA, z

U
A

]
.

Similarly, given an object B in 3D space, the range
for bounding box BBB is described as follows:

x ∈
[
xLB , x

U
B

]
, y ∈

[
yLB , y

U
B

]
, z ∈

[
zLB , z

U
B

]
.

In context of this manuscript, the description of
overlapping between BBA and BBB can be written as
follows.

Ix =
{
x|xLA6x6xUA && xLB 6 x6xUB , x∈R

}
(12)

Iy =
{
y|yLA6y6yUA && yLB 6 y6yUB , y∈R

}
(13)

Iz =
{
z|zLA6z6zUA && zLB 6 z6zUB , z∈R

}
(14)

As shown in Fig. 3(a), when Ix = Φ‖Iy = Φ‖Iz =
Φ, it is denoted as A ∩ B = Φ. It means there is
nonoverlapping relationship between A and B.

As shown in Fig. 3(b), when Ix 6= Φ && Iy 6= Φ
&& Iz 6= Φ, it is denoted asA∩B 6= Φ. It means there
is overlapping relationship between A and B.

Fig. 3. The spatial relations between A and B: (a) nonoverlapping;
(b) overlapping.

4.2. The first subalgorithm: NOHD

4.2.1. The basic idea of NOHD and the definition of
priority queue

In order to reduce the outer loop number of traversal
of A, the NOHD algorithm is proposed.

Firstly, the calculation of Hausdorff distance fromA
to B is converted into calculating the Hausdorff dis-
tance from OctreeA (constructed from A) to B. The
lower bound of the Hausdorff distance from any node
N in OctreeA to B is denoted as LB(B,N), and the
upper bound of the Hausdorff distance is denoted as
UB(B,N). By traversing all the nodes in OctreeA and
updating LB(B,N), the final LB(B,N) is the Haus-
dorff distance betweenA andB at end of NOHD algo-
rithm.

Secondly, NOHD algorithm defines a new concept
of entry of Decreasing Priority Queue (DPQ) to en-
hanced the principles of branch-and-bound, and there-
fore to reduce the number of nodes of OctreeA to be
traversed. In the context of Hausdorff distance calcu-
lation, the definition for entry of DPQ is given as fol-
lows.

D. Zhang et al. / An efficient approach to directly compute the exact Hausdorff distance for 3D point sets 267

Definition 5. Entry(N,MinUB). Attributes of each En-
try(N , MinUB) are described as follows: (i) Node
N ← node in an Octree for A, which could be an
object node or a non-object node (index node); (ii)
Distance MinUB ← the minimum value of the upper
bound between all points in the point set B to node N ,
that is, the UB(B,N).

The DPQ which arranges Entries(N , MinUB) in de-
creasing order according to the key value of MinUB.

4.2.2. NOHD algorithm description

Algorithm 3. NOHD algorithm

Input: Two finite point sets A, B
Output: Directed Hausdorff distance
1. OctreeA ← Create an Octree for A
2. DPQ← Create a “descending order”

priority queue
3. Insert(((RootOf(OctreeA),∞), DPQ)
4. MaxLB← 0
5. while (DPQ is not empty) do
6. Entry(N, MinUB)← Dequeue(DPQ)
7. if N is a non-object then
8. if MinUB > MaxLB then
9. for each child node C of N do
10. [UB(B,C),LB(B,C),Flag]←

CubeToPoints (C, B, MaxLB)
11. if Flag == true then
12. MaxLB← max{MaxLB,

LB(B,C)}
13. Insert((C, UB(B,C)), DPQ)
14. end if
15. end for
16. end if
17. Sort DPQ in descending order using

the second element
18. else
19. for each point x of N do
20. d← PointToPoints(x; B; MaxLB)
21. MaxLB← max{MaxLB, d}
22. end for
23. end if
24. end while
25. return MaxLB

The NOHD algorithm is described in Algorithm 3.
The initialization involves the following steps: (i) To
create an Octree OctreeA for point set A; (ii) To create
a priority queue DPQ; (iii) to insert the root of OctreeA
with an initial MinUB of∞ into DPQ. (iv) To initialize
MaxLB to 0.

After the initialization, DPQ contains a single en-
try with the root of OctreeA as the associated node.
For each iteration of the while loop (5 ∼ 24 lines), the
head Entry(N , MinUB) is removed from DPQ. There
are two cases depending on whether N is an object or
not.

– In case 1, if N is not a point object, the children
of N (8 ∼17 lines) are processed.

– In case 2, ifN is a point object (19∼22 lines), the
minimum distance from point x to point set B is
obtained by calling Algorithm 5, and is compared
with MaxLB. After comparison, the greater one is
the final Hausdorff distance.

In processing of node N , two culling procedures are
performed.

The first culling is based on whether MinUB is
greater than MaxLB or not, the following steps are pro-
cessed respectively:

– If MinUB > MaxLB, all child nodes in node N
should be traversed (9 ∼15 lines);

– If MinUB < MaxLB, node N cannot generate a
distance greater than the current MaxLB, and it is
pruned away.

In the second culling, CubeToPoints (Algorithm 4)
is called, and a breaking flag of child node C is re-
turned.

– If the flag is “false”, the child node C cannot gen-
erate a distance that contributes to the final Haus-
dorff distance, and it is pruned away.

– If the flag is “true”, the child node C may gen-
erate a distance that contributes to the final Haus-
dorff distance, and then it is inserted into DPQ.

The pseudocode of CubeToPoints is described as Al-
gorithm 4, into which three parameters are input: child
nodes C, points set B, and the currently greatest lower
bound MaxLB.

The Algorithm 4, firstly initializes the flag, the
UB(B, C) and LB(B,C), and then computes the upper
and lower bounds between all points in B and child
node C. For a given point y of B, the upper bound of y
to child node C is calculated. If the ub(y, C) is below
MaxLB, then the minimum upper bound from all points
in B to child node C must be below MaxLB. Thus,
child node C cannot generate a distance over MaxLB,
and then the Flag is assigned as “false”, and the whole
for loop breaks. When the flag of Algorithm 4 is re-
turned as “false”, the node will be pruned away by Al-
gorithm 3.

268 D. Zhang et al. / An efficient approach to directly compute the exact Hausdorff distance for 3D point sets

Algorithm 4. CubeToPoints(C, B, Max LB)

Input: Child Node C, Point set B, MaxLB
Output: UB(B;C), LB(B;C), Flag

1. Flag← true
2. UB(B,C)←∞,LB(B,C)←∞
3. for each point y of B do
4. [ub(y, C), lb(y, C)]←

PointToCube(y, C)
5. if ub(y, C) 6 MaxLB then
6. Flag← false
7. break
8. end if
9. UB(B;C)← min{UB(B,C), ub(y, C)}
10. LB(B;C)← min{LB(B,C), lb(y, C)}
11. end for
12. return UB(B,C), LB(B,C), Flag

The pseudocode of PointToPoints is shown as Algo-
rithm 5, which takes three parameters: point x of node
C, points set B, and the greatest lower bound MaxLB.

Algorithm 5 calculates the minimum distance from
point x to B. For a given y of B, the distance d of y
to x of child node C is calculated. And if d is less than
MaxLB, the minimum distance between point x and B
must be less than MaxLB. Since it is impossible to gen-
erate a distance over the current lower bound MaxLB
between point x and B, the whole for loop ends.

The combination of Algorithms 4 and 5 can effi-
ciently reduce the time complexity of calculating the
distance from A to B.

Algorithm 5. PointToPoints(x, B, MaxLB)

Input: Point x, Point set B, MaxLB
Output: cmin

1. cmin←∞
2. for each point y of B do
3. d← ‖x, y‖
4. if d < MaxLB then
5. break
6. end if
7. cmin← min{cmin, d}
8. end for
9. return cmin

4.3. Difficulties for computing hausdorff distance in
overlap situation

In NOHD algorithm, the Hausdorff distance be-
tween A and B is calculated with h(OctreeA, B), as
shown in Fig. 4.

Fig. 4. Hausdorff distance computation between non-overlapping
point sets.

Fig. 5. Hausdorff distance computation between overlapping point
sets.

In processing OctreeA, the NOHD algorithm tra-
verse the child node of current node and insert it into
DPQ when the UB(B, C) is over MaxLB. Once a
UB(B, C) below MaxLB occurs, the traverse on child
node of current node will end and the pruning strategy
will be executed. For example, if LB(B,A55) is the lat-
est MaxLB, the nodes A2 and A7 are pruned away be-
cause UB(B, A2) and UB(B, A7) are less than LB(B,
A55). Therefore, MaxLB is constantly updated and the
nodes of no-contribution are also pruned away con-
stantly, and finally the Hausdorff distance is obtained.

Figure 5 shows a situation, in which A and B are
highly overlapping in 3D space. According to anal-
ysis in previous Sections, there is no efficient solu-
tions (including the EARLYBREAK algorithm in ref-
erence [65] and NOHD algorithm in this manuscript)
in this situation for two reasons.

– Firstly, along with the increment of Octree depth,
the lower bound fromB to most nodes of OctreeA
is zero (e.g., LB(B,A5)). Therefore, MaxLB (with
zero as the minimum distance) cannot be updated
because the upper bound of B to most nodes in
OctreeA is over MaxLB, and the pruning strategy
cannot be executed in Algorithms 3 and 4.

– Secondly, when A and B are highly similar (e.g.,
small h(A,B)), the strategy of early breaking in
Algorithm 5 will fail in most cases.

D. Zhang et al. / An efficient approach to directly compute the exact Hausdorff distance for 3D point sets 269

Based on the above analysis, both the
EARLYBREAK algorithm and NOHD algorithm can-
not efficiently reduce the time complexity in overlap
situation. Therefore, we proposed the second subalgo-
rithm, the OHD algorithm, to deal with this situation.

4.4. The second subalgorithm: OHD

The OHD algorithm computes the Hausdorff dis-
tance between A and OctreeB (constructed from B),
while NOHD algorithm calculates the Hausdorff dis-
tance from OctreeA (constructed from A) to B.

Since the lower bound of the Hausdorff distance
between any point ak in A and any node N in Oc-
treeB is lb(ak, N), the distance between ak and the
nearest node in OctreeB is Minlb, where Minlb =
MIN{lb(ak, N)|N ∈ OctreeB}.

By constantly traveling A and updating Minlb, the
maximum Minlb is found (e.g., h(A,B)). In this way,
the h(A,B) can be found without traversing all points
in A in OHD algorithm, as shown in Algorithm 6.

Algorithm 6. OHD algorithm

Input: Two point set A, B
Output: Directed Hausdorff distance
1. Initialize the AHD
2. Create the OctreeB with the given resolution

(AHD)
3. Maxlb← AHD
4. for each point x of A do
5. if Point culling == false then
6. Minlb← NNDist(x, OctreeB)
7. Maxlb← max{Maxlb,Minlb}
8. end if
9. end for
10. return MaxLB

The key steps of Algorithm 6 is organized as fol-
lows.

– Firstly, the Approximate Hausdorff Distance
(AHD) between A and B is Initialized.

– Secondly, an OctreeB forB is built with the given
resolution (AHD).

– Thirdly, a strategy of point culling is applied,
where any point in A will be culled if it has no
contribution to the final Hausdorff distance.

– Finally, the distance between the candidate point
and the nearest point in OctreeB is calculated as
Minlb, which is used to update current Maxlb if
it is greater than the Maxlb. The final Hausdorff
distance is the Maxlb at end of the loop.

Fig. 6. Strategy of point culling.

4.4.1. Initialization of Approximate Hausdorff
Distance (AHD)

In typical approximate algorithm [65], the initial
value of AHD is zero at the time when the outer loop is
started. With the gradual execution of outer loop, AHD
will monotonically increase and reach the value near to
final Hausdorff distance after limited times of the loop.

Therefore, the initialization of AHD can be quickly
implemented after limited number of loops, which is
set as λ×|A| in OHD algorithm. According our exper-
iment research, this manuscript gives the recommen-
dation as follows: the λ = 1/100.

4.4.2. Point culling to reduce number of out iterations
for exact algorithm

A strategy of point culling is proposed to reduce
number of out iterations, that is, to reduce the point
number of A to be traversed in outer loop.

An Octree OctreeB with the given resolution (AHD)
is built as shown in Fig. 6, where the cube legends rep-
resent leaf nodes of OctreeB , and the red point legends
represent A and the black point legends represent B.

The points of A can be divided into two classes: the
leaf-node points and the non-leaf-node points.

– The leaf-node points (such as: a1, a4, a6) are spa-
tially located inside the leaf node of OctreeB ,
and the temporary Hausdorff distance generated
by these points cannot be over AHD and can be
safely culled away.

– The non-leaf-node points (such as: a2,a3,a5) are
not located in the leaf node of OctreeB , and the
temporary Hausdorff distance generated by these
points may be over AHD. Therefore, only these
points are remained to be further processed by the
OHD algorithm.

270 D. Zhang et al. / An efficient approach to directly compute the exact Hausdorff distance for 3D point sets

Therefore, our strategy in OHD algorithm is to cull
these leaf-node points.

4.4.3. The branch-and-bound and the nearest
neighbors distance

The lower bound of the Hausdorff distance between
any point ak in A and any node N in OctreeB is
lb(ak, N), so the distance between ak and the near-
est node in OctreeB is Minlb = MIN{lb(ak, N)|N ∈
OctreeB}. By constantly traveling A and updating of
Minlb, the maximum Minlb is found (e.g., h(A,B)).

In order to efficiently reduce number of inner iter-
ations, that is, to avoid traversing all of nodes in Oc-
treeB in inner loop, the OHD algorithm enhances the
existing branch-and-bound approach with a new con-
cept of entry of Ascending Priority Queue (APQ). In
context of this manuscript, the definition for entry of
APQ is given as follows.

Definition 6. Entry(N, Minlb). Attributes of each En-
try(N , Minlb) are described as follows: (i) Node N ←
node in an Octree for B, which could be an object
or a non-object(index node); (ii) Distance Minlb ←
the lower bound of point x of A to node N , that is,
lb(x,N).

Where, the APQ arranges Entries(N , Minlb) in as-
cending order according to the key value Minlb.

The NNDist algorithm is shown as Algorithm 7. The
initialization (1 ∼ 3 lines) consists of the following
steps: (i) initialize Minlb to ∞; (ii) create a priority
queue APQ; (iii) insert the root of OctreeB with an ini-
tial Minlb of 0 into APQ.

After the initialization, APQ contains a single entry
with the root of OctreeB as the associated node. For
each iteration of the while loop (4∼ 25 lines), the head
Entry(N , lb(ak,N)) is dequeued from APQ. There are
two cases depending on whether N is an object or not.

Case 1: If N is not a point object (7∼15 lines), two
culling procedures are performed.

– The first culling is based on whether
lb(ak,N) from ak toN is less than Minlb
or not: if lb(ak, N) > Minlb, node N
cannot generate a distance less than the
current Minlb, and thus should be pruned
away; if lb(ak, N) < Minlb, all child
nodes in node N should be traversed
(8∼13 lines).

– The second culling is based on whether
lb(ak,C) from ak to child nodeC is over
Minlb or not: if lb(ak, C) > Minlb, child
node C cannot generate a distance less

than the current Minlb, and it should be
pruned away; if lb(ak, C) <Minlb, child
node C may be generate a distance less
than the current Minlb, and node C is in-
serted into APQ.

Case 2: If N is a point object (17 ∼ 23 lines), all
points of current node will be processed.
– First, the distance d from ak to points

confined by N is computed.
– Second, if d is below Maxlb, the ak can-

not contribute to the final Hausdorff dis-
tance, the APQ is cleared.

– Third, after comparing d with Minlb, the
smaller one is Minlb.

Algorithm 7. NNDist(ak, OctreeB)

Input: Two finite point set A, B; Maxlb
Output: Minlb

1. Minlb←∞
2. APQ← Create an “ascending order”

priority queue
3. Insert(((RootOf(OctreeB), 0), APQ)
4. While (APQ is not empty) do
5. Entry(N , lb(ak, N)← Dequeue(APQ)
6. if N is non-object then
7. if lb(ak, N) 6 Minlb then
8. for each child node C of N do
9. lb(ak, C)← PointToCube(ak, C)
10. if lb(ak, C) 6 Minlb then
11. Insert ((C, lb(ak, C), APQ)
12. end if
13. end for
14. end if
15. Sort APQ in ascending order using the

second element
16. else
17. for each point y of N do
18. d← ‖ak, y‖
19. if d 6 Maxlb then
20. APQ← Φ
21. end if
22. Minlb← min{Minlb, d)
23. end for
24. end if
25. end while

5. An efficient framework based on spatial
relationship

Based on spatial relationships of A and B, an effi-

D. Zhang et al. / An efficient approach to directly compute the exact Hausdorff distance for 3D point sets 271

Fig. 7. The spatial distance between A and B is changing continu-
ously from nonoverlapping to overlapping.

cient framework was proposed, as illustrated in Algo-
rithm 8. Given the degree of overlap between a pair
of point sets, the Algorithm 8 choose suitable subalgo-
rithm to compute Hausdorff distance in a way of high
efficiency and balance.

As shown in Fig. 7, the Hausdorff distance between
A and B is continuously changing from nonoverlap-
ping to fully overlapping.

Algorithm 8. The pseudocode of the proposed
framework

Input: Two finite point set A, B
Output: Hausdorff distance
1. Evaluate the space relationship
2. if A ∩B == Φ then
3. Execute the NOHD algorithm
4. else if 0 6 α 6 θ then
5. Execute the EARLYBREAK algorithm
6. else
7. Execute the OHD algorithm
8. end if
9. return Hausdorff distance

When A ∩ B = Φ, the NOHD algorithm can effi-
ciently reduce the Octree traversal cost by the strate-
gies of branch-and-bound and early breaking, so the
efficiency of the NOHD algorithm is higher than the
EARLYBREAK algorithm. Therefore, in our algo-
rithm framework, the NOHD algorithm was employed
to compute the Hausdorff distance in this situation.

When A ∩ B 6= Φ (A and B is overlapping as de-
scribed in Section 4), two algorithms will be called re-

spectively based on the degree of overlap in our algo-
rithm framework. We describe the degree of overlap
with α, where 0 6 α 6 1:

– α is 0 when A and B are just contact;
– α is 1 when A and B are fully overlapping.
We also introduce a threshold θ, which is rec-

ommended as 0.33 based on experiments in this
manuscript. There are two cases based on the value of
threshold θ in our algorithm framework.

– When θ 6 α 6 1, the OHD algorithm excludes
a large number of points in A that have made
no contribution to the final Hausdorff distance.
So the efficiency of the OHD algorithm is higher
than the EARLYBREAK algorithm. Therefore,
the OHD algorithm was employed to compute the
Hausdorff distance in this situation.

– When 0 6 α 6 θ, only a few points can
be excluded by the OHD algorithm, so the ef-
ficiency of the OHD algorithm is lower than
the EARLYBREAK algorithm. Therefore, the
EARLYBREAK algorithm was employed to com-
pute the Hausdorff distance in this situation.

Besides the adaptively and balance, the proposed
algorithm can calculate the Hausdorff distance effi-
ciently for general 3D model with an exact result. Un-
der the background, any new and efficient algorithm in
future can be easy integrated into the framework, just
as the EARLYBREAK algorithm.

6. Experimental results

A number of experiments are conducted to verify
the efficiency and effectiveness of the proposed algo-
rithm, which is implemented using on Windows 7/In-
ter(R) core(TM) i7-4470 (3.4 GHz)/8.00 GB of mem-
ory with C++.

We used the code from the PCL-1.6.0 (http://www.
pointclouds.org/) [60] for building Octree. To evalu-
ate the performance of the proposed algorithm, it was
tested with three different types of data, namely ran-
dom 3D Gaussians, point cloud models and CAD/CAE
models generated from CAD software.

– In the first experiment (Section 6.1), 3D point sets
were generated based on random Gaussians and
were used to test the effectiveness of the early
breaking strategy for Octree in the NOHD algo-
rithm.

– In the second experiment (Section 6.2), 3D point
sets were generated based on random Gaussians
and were used to test the effectiveness of the point
culling strategy in the OHD algorithm.

272 D. Zhang et al. / An efficient approach to directly compute the exact Hausdorff distance for 3D point sets

– In the third experiment (Section 6.3), 3D point
sets were used to test the effect of depth on the ef-
ficiency of the NOHD algorithm and the effect of
coefficient λ on the efficiency of OHD algorithm.

– In the fourth experiment (Section 6.4), 3D models
generated from CAD software were used to com-
pare the proposed algorithm with the EARLY-
BREAK algorithm under Motion.

– In the last experiment (Section 6.5), several ex-
amples from typical fields (such as point cloud
models and CAD/CAE models) are tested among
the NAIVEHDD algorithm, the INC algorithm,
the EARLYBREAK algorithm and the proposed
algorithm.

6.1. Test for early breaking in the NOHD algorithm

In order to verify the idea of NOHD early break-
ing strategy in general, random Gaussians data were
used for testing. 300 pairs of nonoverlapping random
Gaussian point clouds were generated. The number of
points in each pair varies from 3 thousands to 0.3 mil-
lion. The effectiveness of our early breaking strategy in
the NOHD algorithm was tested with different number
of points in A and B.

In order to verify the effectiveness of NOHD early
breaking strategy, we denoted the algorithm that had
removed the early breaking strategy from the NOHD
algorithm as the NOHD algorithm.

As shown in Table 1, the fourth column and fifth col-
umn report the average of 10 computation results for
the NOHD algorithm and the NOHD algorithm, indi-
vidually. The average time cost increased along with
the increase in the number of A and B. However, com-
pared with the NOHD algorithm, the NOHD algorithm
can efficiently reduce the average time cost by the early
breaking strategy.

6.2. Test for point culling in OHD algorithm

In order to verify the validity of the point culling
strategy in the OHD algorithm, the same data sets as
Section 6.1 are used. We denoted the algorithm that
had removed the point culling strategy from the OHD
algorithm as the OHD algorithm.

As shown in Table 2, the fourth column and fifth
column report the average of 10 computation results
for the OHD algorithm and the OHD algorithm, indi-
vidually. The OHD algorithm did not adopt the point
culling strategy and Algorithm 7 should be called for
each points in A, while the OHD algorithm used the

Table 1
Contribution of early breaking: Comparison between the efficiency
of the NOHD algorithm when using early breaking or not

Pairs Set size Execution time (sec)
|A| |B| NOHD NOHD

(1) 3 K 3 K 0.03589 0.02247
(2) 15 K 10 K 0.14427 0.09993
(3) 23 K 27 K 0.33513 0.23967
(4) 43 K 41 K 0.45207 0.3058
(5) 49 K 64 K 0.65733 0.3232
(6) 64 K 78 K 0.96393 0.48947
(7) 77 K 51 K 0.58567 0.42353
(8) 86 K 35 K 0.65933 0.58753
(9) 105 K 113 K 1.07733 0.74767

(10) 123 K 31 K 1.14933 0.74567
(11) 131 K 93 K 1.1878 0.70933
(12) 145 K 110 K 1.2986 0.8624
(13) 169 K 160 K 1.5378 0.99287
(14) 210 K 220 K 2.07807 1.34207
(15) 231 K 239 K 2.2312 1.38447

Table 2
Contribution of point culling: Comparison between the efficiency of
the OHD algorithm when using point culling or not

Pairs Set size Execution time (sec)
|A| |B| OHD OHD

(1) 4 K 4 K 1.577 0.56087
(2) 6 K 12 K 3.1044 1.67333
(3) 8 K 4 K 2.617 0.92533
(4) 12 K 16 K 5.385 2.11597
(5) 21 K 15 K 8.6174 2.04287
(6) 29 K 24 K 12.07487 5.299
(7) 29 K 17 K 10.78667 3.97227
(8) 37 K 22 K 15.1934 3.6774
(9) 39 K 32 K 17.3132 6.28933

(10) 40 K 34 K 15.83447 5.7202
(11) 40 K 28 K 16.64947 5.48007
(12) 41 K 35 K 20.3706 9.5222
(13) 44 K 26 K 16.0276 4.86627
(14) 46 K 47 K 20.1598 7.574
(15) 51 K 39 K 20.69647 7.33847

point culling strategy to exclude the points with no
contribution to the final Hausdorff distance and Algo-
rithm 7 is called for only part of points in A. There-
fore, compared with the OHD algorithm, the OHD al-
gorithm can efficiently reduce the time cost with the
point culling strategy.

6.3. Analysis of some important parameters

To further analyze various characteristics of the
method, we discussed the effect of depth on the effi-
ciency of the NOHD algorithm and the effect of coef-
ficient λ on the efficiency of OHD algorithm.

In context of this manuscript, in the case of spatial
nonoverlap, the calculation of Hausdorff distance from

D. Zhang et al. / An efficient approach to directly compute the exact Hausdorff distance for 3D point sets 273

Fig. 8. The relationship between depth of OctreeA and execution
time of NOHD algorithm.

Fig. 9. The relationship between λ and execution time of OHD algo-
rithm.

A to B is converted into calculating the Hausdorff dis-
tance from OctreeA to B.

We need to set the depth of Octree before construct-
ing the OctreeA from A. In general, the time cost of
constructing an Octree is proportional to the depth of
Octree. We selected three pairs of random Gaussian
point clouds to test the effect of depth on the efficiency
of the NOHD algorithm. The relationship between the
depth and the average execution time from 10 trials is
shown in Fig. 8. The efficiency of NOHD algorithm is
improved with the increasing of the value of depth, and
the high efficiency is obtained when depth is increased
to five or six. Moreover, with a bigger value of depth,
the efficiency is decreased.

According to the experimental research, this manu-
script recommended the depth of six.

When A and B were highly overlapping, the calcu-
lation of Hausdorff distance from A to B is converted
into calculating the Hausdorff distance between A and
OctreeB .

The OctreeB is built with the given resolution
(AHD). In context of this manuscript, the greater the
value of AHD is, the more efficiency of the point
culling within OHD algorithm is. Thus, the coefficient
λ directly effects the value of AHD, and indirectly ef-
fects the efficiency of computing the Hausdorff dis-
tance by OHD algorithm. We selected three pairs of
random Gaussian point clouds to test the effect of co-
efficient λ on the efficiency of the OHD algorithm. The
relationship between the coefficient λ and the average
execution time from 10 trials is shown in Fig. 9. The
efficiency of OHD algorithm is improved with the de-
creasing of λ, and the high efficiency is obtained when
λ is set as 1/80. Moreover, with a smaller value of λ,
the efficiency is decreased as a result of that the AHD
is much less than the Hausdorff distance.

According to our experimental research, this manu-
script gives the recommendation as follows: the λ =
1/100.

6.4. Hausdorff distance under motion

An important variation of the Hausdorff distance
problem is to find the distance when there is a rel-
ative movement between two models, such as pene-
tration [66,73]. This problem is known as geometric
matching under the Hausdorff distance metric. In this
section, we computed the Hausdorff distance between
a fixed model and a moving model to fully illustrate
the efficiency of the proposed algorithm.

Two models M and M ′ with same shape and same
size are shown in Fig. 10(a). As demonstrated in
Fig. 10(b), with the decrease in the Hausdorff distance,
the average time cost gradually increased. When M
andM ′ were highly overlapping, the time cost reached
the peak value. With the increase in the Hausdorff dis-
tance, the time cost gradually decreased.

When two models were nonoverlapping, the aver-
age time cost of the NOHD algorithm was signifi-
cantly better than that of the EARLYBREAK algo-
rithm. When the degree of overlap fell into the range
of 0 6 α 6 0.33, the EARLYBREAK algorithm was
integrated into our algorithm framework. When the de-
gree of overlap fell into the range of 0.33 6 α 6 1,
the time cost of the OHD algorithm was significantly
better than that of the EARLYBREAK algorithm.

As shown in Fig. 11, although two models are tested
with different shape and size, the proposed algorithm
achieved the same result as above.

274 D. Zhang et al. / An efficient approach to directly compute the exact Hausdorff distance for 3D point sets

Fig. 10. HD computation between a stationary torus and a moving
torus. (a) One torus is moving under a continuous translation. (b)
Comparison of the execution time between the proposed algorithm
and the EARLYBREAK algorithm.

Table 3
Hausdorff distance computation for different cases

Index Execution time (sec)
NAIVEHDD INC EARLYBREAK PROPOSED

(a) 47.282 3.107 0.226 0.225
(b) 27.782 2.013 0.363 0.091
(c) 51.933 21.07 6.658 2.136
(d) 39.936 0.722 0.109 0.051
(e) 11.371 0.828 0.062 0.063
(f) 92.576 50.044 5.381 0.531

6.5. Point cloud models and CAD/CAE/CAM models

In order to further evaluate its performance, the pro-
posed approach was applied to several examples from
different fields (such as point cloud models and CAD/
CAE/CAM models) for experimental comparison.

Three pairs of point cloud models and three pairs of
CAD/CAE/CAM models were tested in this section as
shown in Fig. 12. The step of calculating the Hausdorff
distance between the models was as follows: (1) Mod-
els M and M ′ were converted point sets A and B; (2)
the Hausdorff distance was calculated by Eqs (1)–(3).

The time costs in calculating the Hausdorff distance
through the NAIVEHDD algorithm, the incremental

Fig. 11. HD computation between a stationary gear and a moving
gear. (a) One gear is moving under a continuous translation and ro-
tation. (b) Comparison of the execution time between the proposed
algorithm and the EARLYBREAK algorithm.

Hausdorff distance calculation algorithm (INC) [54],
the EARLYBREAK algorithm [65], and the proposed
algorithm were shown in Table 3 (The units of time is
second).

According to the comparison of experiments, the
time cost executed by the proposed algorithm in calcu-
lating the Hausdorff distance is significantly less than
that executed by the NAIVEHDD algorithm, and is dis-
tinctly less than that executed by the EARLYBREAK
algorithm.

The proposed algorithm is composed of the NOHD,
the OHD and the EARLYBREAK algorithm. The
NOHD algorithm combines branch-and-bound with
early breaking to cut down the Octree traversal time
in case of spatial nonoverlap. The OHD algorithm in-
tegrates a point culling strategy and nearest neighbor
search to reduce the number of points traversed in case
of spatial overlap.

Therefore, the high efficiency of the NOHD algo-
rithm and the OHD algorithm in the proposed efficient
framework was confirmed once again.

D. Zhang et al. / An efficient approach to directly compute the exact Hausdorff distance for 3D point sets 275

Fig. 12. The different cases used for timing the minimum dis-
tance computations: (a) pears (10,754–10,754); (b) cow and
hippo (2,903–23,105); (c) two rabbits with different resolution
(34,834–3,594); (d) different cups (10,007–9,449); (e) different
wrenches (5,191–5,290); (f) singular models (13,564–12,680).

7. Conclusion and future work

An efficient framework with two complementary
subalgorithms is presented with theory analysis. The
experiments also demonstrate that the proposed ap-
proach, as a whole, outperforms the state-of-the art al-
gorithms [54,65]. The main contributions are summa-
rized as follows:

(1) Besides individual algorithms, an efficient
framework is presented, which automatically
chooses the suitable subalgorithms to compute
the Hausdorff distance in different spatial rela-
tionship between a pair of point sets. In this way,
the long-standing limitation of computing Haus-
dorff distance can be relaxed.

(2) In NOHD algorithm, we present a strategy syn-
thesizing branch-and-bound and early breaking,
and efficiently reduce cost of the Octree traver-
sal. In OHD algorithm, we construct a strat-
egy combining point culling and nearest neigh-
bor searching, and efficiently reduces the cost
of points traverse. And different from the state-
of-the art algorithm [54,65], the proposed algo-
rithms can directly calculate a pair of the 3D
point sets without transforming them into voxel
model.

(3) The experiments demonstrate that the proposed
approach, as a whole, outperforms the state-of-
the art algorithms [65].

(4) The proposed framework can easily integrate
other algorithms. Therefore, any subalgorithm
with a high efficiency can be added into this
framework in the future.

Since distance measurement is fundamental opera-
tion in applications of science, engineering and indus-
try [15,21,43,50,53,56,64,71,74–76], we will explore
following directions but no limited in future work:

(1) The qualitative evaluation of model similarity,
such as similarity assessments for 3D CAD/
CAE model retrieval [10,17], focused on the
qualitative aspects of the models, e.g., topolog-
ical result and geometric profile. On the other
hand, in the field of data exchange [29,37,42,
51,57,58,67,69] and collaborative design [19,
20,33,44,45,49], the quantitative comparison of
the similarity between source and target of
feature-based CAD models is the latest devel-
opment [72]. So the proposed method can be
adopted in this area to improve the comput-
ing efficiency of quantitative comparisons be-
tween large scale models in engineering appli-
cations of CAD/CAE/CAM in the future. For
example, the proposed algorithms can enhance
the computing efficiency of quantitative com-
parisons in Feature-based Data Exchange in
CAD/CAE/CAM when calculating the fitness in
optimization computation [72].

(2) This work is also related with design automa-
tion because the exact Hausdorff distance will
be automatically computed. Design automation
is considered as a particularly challenging issue
in Computer-Aided Engineering systems, such
as A MICROCAD system for interactive de-
sign of connections in steel buildings engineer-
ing [1,2], object-oriented model-based presen-
tation for integrated design of steel buildings
structures [3,4], and so on.

(3) The multi-core CPUs and many-core GPUs are
nice choices for high-performance, low-power
and cost-sensitive industrial applications. And
they are also available on common PC plat-
forms. Therefore, from view of practice, we
should try improve our algorithm with multi-
core/many-core acceleration platforms for in-
dustrial applications [14,27,77,78].

276 D. Zhang et al. / An efficient approach to directly compute the exact Hausdorff distance for 3D point sets

Acknowledgments

This work is supported by the National Science
Foundation of China (Grant No. 61472289) and Open
Project Program of State Key Laboratory of Digital
Manufacturing Equipment and Technology at HUST
(Grant No. DMETKF2017016).

References

[1] Adeli H, Fiedorek J. A MICROCAD system for design of
steel connections-applications. Comput & Struct. 1986; 24(3):
361-374.

[2] Adeli H, Fiedorek J. A MICROCAD system for design of
steel connections-program structure and graphic algorithms.
Comput & Struct. 1986; 24(2): 281-294.

[3] Adeli H, Kao WM. Object-oriented blackboard models for in-
tegrated design of steel structures. Comput & Struct. 1996;
61(3): 545-561.

[4] Adeli H, Yu G. An integrated computing environment for
solution of complex engineering problems using the object-
oriented programming paradigm and a blackboard architec-
ture. Comput & Struct. 1995; 54(2): 255-265.

[5] Alt H, Behrends B, Blömer J. Approximate matching of
polygonal shapes. Ann Math Artif Intel. 1995; 13(3-4): 251-
265.

[6] Alt H, Braß P, Godau M, Knauer C, Wenk C. Computing the
Hausdorff distance of geometric patterns and shapes. Discret
Comput Geom. 2003; 65-76.

[7] Alt H, Scharf L. Computing the Hausdorff distance between
curved objects. Int J Comput Geom Ap. 2008; 18(4): 307-320.

[8] Aspert N, Santa Cruz D, Ebrahimi T. MESH: Measuring er-
rors between surfaces using the Hausdorff distance. ICME.
2002; 705-708.

[9] Atallah MJ. A linear time algorithm for the Hausdorff distance
between convex polygons. Inform Process Lett. 1983; 17(4):
207-209.

[10] Bai J, Gao S, Tang W, Liu Y, Guo S. Design reuse oriented
partial retrieval of CAD models. Comput Aided Design. 2010;
42(12): 1069-1084.

[11] Bai YB, Yong JH, Liu CY, Liu XM, Meng, Y. Polyline ap-
proach for approximating Hausdorff distance between planar
free-form curves. Comput Aided Design. 2011; 43(6): 687-
698.

[12] Bartoň M. Solving polynomial systems using no-root elimina-
tion blending schemes. Comput Aided Design. 2011; 43(12):
1870-1878.

[13] Bartoň M, Hanniel I, Elber G, Kim MS. Precise Hausdorff dis-
tance computation between polygonal meshes. Comput Aided
Geom D. 2010; 27(8): 580-591.

[14] Belloch JA, Gonzalez A, Martinez-Zaldivar FJ, Vidal AM.
Multichannel massive audio processing for a generalized
crosstalk cancellation and equalization application using
GPUs. Integr Comput-Aid E. 2013; 20(2): 169-182.

[15] Bi ZM, Wang L. Advances in 3D data acquisition and process-
ing for industrial applications. Robot Cim-Int Manuf. 2010;
26(5): 403-413.

[16] Cardone A, Gupta SK, Deshmukh A, Karnik M. Machining
feature-based similarity assessment algorithms for prismatic
machined parts. Comput Aided Design. 2006; 38(9): 954-972.

[17] Chen X, Gao S, Guo S, Bai J. A flexible assembly retrieval ap-
proach for model reuse. Comput Aided Design. 2012; 44(6):

554-574.
[18] Chen XD, Ma W, Xu G, Paul JC. Computing the Hausdorff

distance between two B-spline curves. Comput Aided Design.
2010; 42(12): 1197-1206.

[19] Cheng Y, He F, Cai X, Zhang D. A group Undo/Redo
method in 3D collaborative modeling systems with perfor-
mance evalua-tion. J Netw Comput Appl. 2013; 36(6): 1512-
1522.

[20] Cheng Y, He F, Wu Y, Zhang D. Meta-operation Conflict
Resolution for Human-Human Interaction in Collaborative
Feature-Based CAD systems. Cluster Comput. 2016; 19(1):
237-253.

[21] Cheng HC, Lo CH, Chu CH, Kim YS. Shape similarity mea-
surement for 3D mechanical part using D2 shape distribu-
tion and negative feature decomposition. Comput Ind. 2011;
62(3): 269-280.

[22] Cignoni P, Rocchini C, Scopigno R. Metro: measuring error
on simplified surfaces. Comput Graph Forum. 1998; 17(2):
167-174.

[23] Dubuisson MP, Jain AK. A modified Hausdorff distance for
object matching. Pattern Recognition. 12th IAPR Interna-
tional Conference. 1994; 1: 566-568.

[24] Fukunaga K, Narendra PM. A branch and bound algorithm for
computing k-nearest neighbors. Ieee T Comput. 1975; 100(7):
750-753.

[25] Guo B, Lam KM, Lin KH, Siu WC. Human face recogni-
tion based on spatially weighted Hausdorff distance. Pattern
Recogn Lett. 2003; 24(1): 499-507.

[26] Guthe M, Borodin P, Klein R. Fast and accurate Hausdorff
distance calculation between meshes. International Confer-
ences in Central Europe on Computer Graphics and Visual-
ization. 2005; 41-48.

[27] Guthier B, Kopf S, Wichtlhuber M, Effelsberg W. Parallel im-
plementation of a real-time high dynamic range video system.
Integr Comput-Aid E. 2014; 21(2): 189-202.

[28] Hanniel I, Krishnamurthy A, McMains S. Computing the
Hausdorff distance between NURBS surfaces using numeri-
cal iteration on the GPU. Graph Models. 2012; 74(4): 255-
264.

[29] Hoffmann C, Shapiro V, Srinivasan V. Geometric interoper-
ability via queries. Comput Aided Design. 2014; 46: 148-159.

[30] Huttenlocher DP, Kedem K, Kleinberg JM. On dynamic
Voronoi diagrams and the minimum Hausdorff distance for
point sets under Euclidean motion in the plane. The eighth an-
nual symposium on Computational geometry. 1992; 110-119.

[31] Huttenlocher DP, Klanderman GA, Rucklidge WJ. Compar-
ing images using the Hausdorff distance. Ieee T Pattern Anal.
1993; 15(9): 850-863.

[32] Hwang CM, Yang MS, Hung WL, Lee M. A similarity mea-
sure of intuitionistic fuzzy sets based on the Sugeno integral
with its application to pattern recognition. Inform Sciences.
2012; 189: 93-109.

[33] Jing S, He F, Han S, Cai X, Liu H. A method for topologi-
cal entity correspondence in a replicated collaborative CAD
system. Comput Ind. 2009; 60(7): 467-475.

[34] Kim YJ, Oh YT, Yoon SH, Kim MS, Elber G. Coons BVH
for freeform geometric models. Acm T Graphic. 2011; 30(6):
169.

[35] Kim YJ, Oh YT, Yoon SH, Kim MS, Elber G. Efficient Haus-
dorff distance computation for freeform geometric models in
close proximity. Comput Aided Design. 2013; 45(2): 270-
276.

[36] Kim YJ, Oh YT, Yoon SH, Kim MS, Elber G. Precise Haus-
dorff distance computation for planar freeform curves using

D. Zhang et al. / An efficient approach to directly compute the exact Hausdorff distance for 3D point sets 277

biarcs and depth buffer. Visual Comput. 2010; 26(6-8): 1007-
1016.

[37] Kim J, Pratt MJ, Iyer RG, Sriram RD. Standardized data ex-
change of CAD models with design intent. Comput Aided De-
sign. 2008; 40(7): 760-777.

[38] Krishnamurthy A, McMains S, Halle K. Accelerating geomet-
ric queries using the GPU. SIAM/ACM Joint Conference on
Geometric and Physical Modeling. 2009; 199-210.

[39] Krishnamurthy A, McMains S, Hanniel I. GPU-accelerated
Hausdorff distance computation between dynamic de-
formable NURBS surfaces. Comput Aided Design. 2011;
43(11): 1370-1379.

[40] Lertchuwongsa N, Gouiffès M, Zavidovique B. Enhancing a
disparity map by color segmentation. Integr Comput-Aid E.
2012; 19(4): 381-397.

[41] Lertchuwongsa N, Gouiffès M, Zavidovique B. Mixed
color/level lines and their stereo-matching with a modified
Hausdorff distance. Integr Comput-Aid E. 2011; 18(2): 107-
124.

[42] Li J Kim BC, Han S. Parametric exchange of round shapes
between a mechanical CAD system and a ship CAD system.
Comput Aided Design. 2012; 44(2): 154-161.

[43] Li K, He F, Chen X. Real time object tracking via compressive
feature selection. Front Comput Sci. 2016; 10(4): 689-701.

[44] Li WD, Lu WF, Fuh JYH, Wong YS. Collaborative computer-
aided design research and development status. Computer-
Aided Design. 2005; 37(9): 931-940.

[45] Li X, He F, Cai X, Zhang D, Chen Y. A method for topolog-
ical entity matching in the integration of heterogeneous CAD
systems. Integr Comput-Aid E. 2013; 20(1): 15-30.

[46] Lin KH, Lam KM, Siu WC. Spatially eigen-weighted Haus-
dorff distances for human face recognition. Pattern Recogn.
2003; 36(8): 1827-1834.

[47] Llanas B. Efficient computation of the Hausdorff distance be-
tween polytopes by exterior random covering. Comput Optim
Appl. 2005; 30(2): 161-194.

[48] Lockett H, Guenov M. Similarity measures for mid-surface
quality evaluation. Comput Aided Design. 2008; 40(3): 368-
380.

[49] Lv X, He F, Cai W, Cheng Y. A string-wise CRDT algorithm
for smart and large-scale collaborative editing systems. Adv
Eng Inform. DOI: 10.1016/j.aei.2016.10.005.

[50] Mohan P, Haghighi P, Vemulapalli P, Kalish N, Shah JJ,
Davidson JK. Toward automatic tolerancing of mechanical as-
semblies: Assembly analyses. J Comput Inf Sci Eng. 2014;
14(4): 041009.

[51] Mun D, Han S, Kim J, Oh Y. A set of standard modeling
commands for the history-based parametric approach. Com-
put Aided Design. 2003; 35(13): 1171-1179.

[52] Ni B, He F, Pan Y, Yuan Z. Using shapes correlation for active
contour segmentation of uterine fibroid ultrasound images in
computer-aided therapy. Appl Math Ser B. 2016; 31(1): 37-
52.

[53] Ni B, He F, Yuan Z. Segmentation of uterine fibroid ul-
trasound images using a dynamic statistical shape model in
HIFU therapy. Comput Med Imag Grap. 2015; 46: 302-314.

[54] Nutanong S, Jacox EH, Samet H. An incremental Hausdorff
distance calculation algorithm. Proceedings of the VLDB En-
dowment. 2011; 4(8): 506-517.

[55] Papadias D, Tao Y, Mouratidis K, Hui CK. Aggregate nearest
neighbor queries in spatial databases. Acm T Database Syst.
2005; 30(2): 529-576.

[56] Primerano R, Wilkie D, Regli WC. A case study in system-
level physics-based simulation of a biomimetic robot. Ieee T

Autom Sci Eng. 2011; 8(3): 664-671.
[57] Qi J, Shapiro V. Geometric interoperability with epsilon so-

lidity. J Comput Inf Sci Eng. 2006; refvol6(3): 213-220.
[58] Rappoport A. An architecture for universal CAD data ex-

change. Proceedings of the eighth ACM symposium on Solid
modeling and applications. 2003; 266-269.

[59] Rucklidge W. Efficient visual recognition using the Hausdorff
distance. Lect Notes Comput Sc. 1996; 1173.

[60] Rusu RB, Cousins S. 3d is here: Point cloud library (pcl).
IEEE International Conference on Robotics and Automation.
2011; 1-4.

[61] Sangineto E. Pose and expression independent facial land-
mark localization using dense-SURF and the Hausdorff dis-
tance. Ieee T Pattern Anal. 2013; 35(3): 624-638.

[62] Sim DG, Kwon OK, Park RH. Object matching algorithms
using robust Hausdorff distance measures. Ieee T Image Pro-
cess. 1999; 8(3): 425-429.

[63] Sudha N. Robust Hausdorff distance measure for face recog-
nition. Pattern Recogn. 2007; 40(2): 431-442.

[64] Sun J, He F, Chen Y, Chen X. A multiple template approach
for robust tracking of fast motion target. Appl Math Ser B.
2016; 31(2): 177-197.

[65] Taha AA, Hanbury A. An efficient algorithm for calculat-
ing the exact Hausdorff distance. Ieee T Pattern Anal. 2015;
37(11): 2153-2163.

[66] Tang M, Lee M, Kim YJ. Interactive Hausdorff distance com-
putation for general polygonal models. Acm T Graphic. 2009;
28(3): 1-9.

[67] Tessier S, Wang Y. Ontology-based feature mapping and veri-
fication between CAD systems. Adv Eng Inform. 2013; 27(1):
76-92.

[68] Wu Y, He F, Han S. Collaborative CAD synchronization
based on a symmetric and consistent modeling procedure.
Symmetry. 2017; 9(4): 59.

[69] Wu Y, He F, Zhang D, Li X. Service-oriented feature-based
data exchange for cloud-based design and manufacturing.
Ieee T Serv Comput. DOI: 10.1109/TSC.2015.2501981.

[70] Yu H, He F, Pan Y, Chen X. An efficient similarity-based level
set model for medical image segmentation. J Adv Mech Des
Syst Manuf. 2016; 10(8): JAMDSM0100.

[71] Zeng Y, HorváTh I. Fundamentals of next generation CAD/E
systems. Comput Aided Design. 2012; 44(10): 875-878.

[72] Zhang DJ, He FZ, Han SH, Li XX. Quantitative optimization
of interoperability during feature-based data exchange. Integr
Comput-Aid E. 2016; 23(1): 31-51.

[73] Zhang L, Kim YJ, Varadhan G, Manocha D. Generalized
penetration depth computation. Comput Aided Design. 2007;
39(8): 625-638.

[74] Yan X, He F, Chen Y, Yuan Z. An efficient improved particle
swarm optimization based on prey behavior of fish schooling.
J Adv Mech Des Syst Manuf. 2015; 9(4): JAMDSM0048.

[75] Yan X, He F, Hou N. A novel hardware/software partition-
ing method based on position disturbed particle swarm opti-
mization with invasive weed optimization. J Comput Sci Tech.
2017; 32(2): 340-355.

[76] Yan X, He F, Hou N, Ai H. An efficient particle swarm opti-
mization for large scale hardware/software co-design system.
Int J Coop Inf Syst. DOI: S0218843017410015.

[77] Zhou Y, He F, Qiu Y. Dynamic strategy based parallel ant
colony optimization on GPUs for TSPs. Sci China Inform Sci.
2017; 60: 068102.

[78] Zhou Y, He F, Qiu Y. Optimization of parallel iterated local
search algorithms on graphics processing unit. J Supercom-
put. 2016; 72(6): 2394-2416.

