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Abstract. Cells maintain cellular homeostasis employing different regulatory mechanisms to respond external stimuli. We
study two groups of signal-dependent transcriptional regulatory mechanisms. In the first group, we assume that repressor and
activator proteins compete for binding to the same regulatory site on DNA (competitive mechanisms). In the second group,
they can bind to different regulatory regions in a noncompetitive fashion (noncompetitive mechanisms). For both competitive
and noncompetitive mechanisms, we studied the gene expression dynamics by increasing the repressor or decreasing the
activator abundance (inhibition mechanisms), or by decreasing the repressor or increasing the activator abundance (activa-
tion mechanisms). We employed delay differential equation models. Our simulation results show that the competitive and
noncompetitive inhibition mechanisms exhibit comparable repression effectiveness. However, response time is fastest in the
noncompetitive inhibition mechanism due to increased repressor abundance, and slowest in the competitive inhibition mech-
anism by increased repressor level. The competitive and noncompetitive inhibition mechanisms through decreased activator
abundance show comparable and moderate response times, while the competitive and noncompetitive activation mechanisms
by increased activator protein level display more effective and faster response. Our study exemplifies the importance of
mathematical modeling and computer simulation in the analysis of gene expression dynamics.

Keywords: Mathematical modeling, numerical simulation, gene regulation, delayed differential equation, signal transduction,
gene regulatory network

1. Introduction

Cell constantly communicates with its environ-
ment and responds to external stimuli accordingly
to maintain cellular homeostasis. Such responses are
key for cells’ survival and their proper functioning.
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The failure to produce proper response to a signal is
often the cause of diseases such as cancer, heart dis-
eases, inflammation and diabetes. For example, the
cells of type II diabetics cannot respond to insulin sig-
nal, which could result in life threatening high blood
sugar levels [10, 26] and references therein.

Almost all of the cellular response mechanisms
involve change in gene expression levels. This change
is tightly controlled at multiple layers that include
transcription, translation and nuclear transport. Since
transcription of a gene is the first step of the infor-
mation flow from DNA to protein, it is the most
important step of regulation and has been studied
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extensively using both experimental and computa-
tional techniques [8, 14, 15, 30, 33]. Transcription of a
gene is regulated by transcription factor proteins that
bind to the regulatory region of the gene also called
enhancer. While some of the transcription factors are
activators and up-regulate the transcription, others are
repressor proteins and they slow down the rate of
transcription [1]. Transcriptional regulatory informa-
tion is represented by the patterns of the activator and
repressor binding sites in the gene regulatory regions.
The design of the regulatory region is essential for its
desired function, and minor alterations might have
profound effects in gene expression [2, 20].

Sayal et al. [32] studied transcription factor inter-
actions on enhancers and employed mathematical
models to explore effects of cooperativity, repression,
and factor potency. Their model correctly predicts
the activity of evolutionarily divergent regulatory
regions, providing insights into spatial relationships
between repressor and activator binding sites. Roth-
schild et al. [28] studied dynamics of promote activity
on 94 genes in E.coli in environments made up of all
possible combinations of four nutrients and stresses
to explore how gene expression in complex condi-
tions relates to the expression in simpler conditions.
They have observed that the promoter activity dynam-
ics in a combination of conditions is a weighted aver-
age of the dynamics in each condition alone. Sarkar et
al. [31] studied negatively auto-regulated transcrip-
tional circuits with increasing delays in the estab-
lishment of feedback of repression. They showed
that there is an interesting variation in the transient
dynamical features with increasing delays. The delay
induces instability, while negative feedback enhances
the stability, which explains rationale for the abun-
dance of similar designs. In a different study, the roles
of time delay on gene switch and stochastic resonance
was investigated [38]. They found that increasing the
time delay can accelerate the transition of a gene from
“on” to “off” state while the stochastic resonance can
be enhanced by both the time delay and correlated
noise intensity. Gupta et al. [12] studied transcrip-
tional delay and how it affects bistability, and found
that increasing delay dramatically increases the mean
residence times near stable states. Shai et al. [34]
broke down gene networks in E.coli into basic build-
ing blocks to look for patterns of interconnections
that recur more frequently and they found that much
of the network is composed of repeated appearances
of three highly significant motifs.

There has been a growing interest in understanding
the transcriptional regulation in recent years [3, 29].

Despite many experimental and computational stud-
ies, why a cell utilizes one binding site pattern over
another one is far from comprehensive, and it is still
unfolding [8, 14, 15, 30, 33]. A cell can achieve
similar or vastly different responses utilizing distinct
transcription factor binding patterns on a gene’s reg-
ulatory region. For example, in the presence of an
activator and a repressor protein regulating the same
gene, the gene expression level can be controlled in
a competitive or noncompetitive fashion. While in a
competitive mechanism, repressor and activator pro-
teins compete to bind to the same DNA region, they
bind to different binding sites in the region in a non-
competitive mechanism. Cells utilize both of these
mechanisms at different genes in a context specific
manner to maintain its cellular integrity and produce
proper responses to external stimuli.

Here, we focused on two simple transcription
factor binding patterns (competitive and noncom-
petitive) regulated by a transient signal in E.coli.
Since such patterns are also conserved in other
organisms, our study may shed a light on better
understanding of transcriptional regulation in other
more complex organisms. Using mathematical
modeling and computer simulations, we studied
dynamics produced by such patterns in response to
transient signal profiles at the population level. We
used delay differential equation models to explore
the activatory and inhibitory regulations of protein
by the signal. To quantify the protein dynamics, three
metrics mP , mT and D were used. The metric mP

represents the mid-protein abundance, the metric mT

is the time required to reach the mP level, and finally
the metric D is the duration of the response, which is
defined as the total time for which the protein level
is below(inhibitory regulation) or above(activatory
regulation) its mP level [4].

The outline of the paper is as follows: Section 2
elaborates on the development of the models and the
biological assumptions made. Section 3 summarizes
the details of the model parameter estimation. Results
section articulates our findings and their implications
(Section 4). Our final remarks are found in Section 5.

2. Mathematical models

The mathematical models presented in this study
describe eight different inhibition and activation
mechanisms. Inhibition mechanisms CA− , CR+ ,
NA− and NR+ are depicted in Fig. 1. Activation
mechanisms CA+ , CR− , NA+ and NR− are shown in
Fig. 2. In all mechanisms a generic mRNA (M) and
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Fig. 1. A cartoon depiction of four different repression mechanisms CA− , CR+ , NA− and NR+ . In the competitive mechanisms (CA− and
CR+ ), the activator protein (green circle) and the repressor protein (red square) compete to bind to the same regulatory region (green-red
rectangle) of DNA. In the noncompetitive mechanism (NA− and NR+ ), there are two separate binding sites on the regulatory region, one is
for the activator protein (green rectangle) and the other is for the repressor protein (red rectangle). In all figures, the lines originating from
the signal with rounded ends represent the decrease in the amount of activator and repressor. Similarly, directed arrows represent an increase
in the amount of activator and repressor. The horizontal arrows between gene (G) and mRNA (M) represent transcription process, which can
be down-regulated by the repressor protein and upregulated by the activator protein. The horizontal arrows between mRNA (M) and Protein
(P) denote the translation of mRNA to protein. Finally, the vertical arrows represent degradation of mRNA and protein. Here, τM and τP are
for the transcriptional and translational time delays, respectively.
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Fig. 2. A cartoon showing four different activation mechanisms CA+ , CR− , NA+ and NR− . In the competitive mechanisms (CA+ and
CR− ), the activator protein (green circle) and the repressor protein (red square) compete to bind to the same regulatory region(green-red
rectangle) of DNA. In the noncompetitive mechanism (NA+ and NR− ), there are two separate binding sites on the regulatory region, one is
for the activator protein (green rectangle) and the other is for the repressor protein (red rectangle). In all figures, the lines coming out of the
signal with rounded ends show a decrease in the activator and repressor abundance. Similarly, directed arrows represent an increase in the
activator and repressor abundance. The horizontal arrows between gene (G) and mRNA (M) represent transcription process, which can be
downregulated by the repressor protein and upregulated by the activator protein. The horizontal arrows between mRNA (M) and Protein (P)
denote the translation of mRNA to protein. Finally, the vertical arrows represent degradation of mRNA and protein. Here, τM and τP are for
the transcriptional and translational time delays, respectively.
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protein (P) are regulated through a transient signal
(S) that controls the activator (A) and repressor(R)
protein levels. The activator protein (green circle)
and repressor protein (red square) compete to bind
to the same regulatory region (green-red rectangle)
of DNA in the competitive mechanisms (CA− , CA+ ,
CR− and CR+ ). On the other hand, activator and
repressor proteins bind to two separate binding sites
in the noncompetitive mechanism (NA− , NA+ , NR−
and NR+ ), green and red rectangles, respectively.
The lines coming out of the signal with rounded and
directed arrow-ends represent down regulation of the
activator and up-regulation of the repressor protein
in the inhibition mechanisms, respectively. In the
activation mechanisms, these lines represent down-
regulation of the repressor and up-regulation of the
activator protein, respectively. The horizontal arrows
between gene (G) and mRNA (M), and between
mRNA (M) and protein (P) represent transcription
and translation processes, respectively. The vertical
arrows represent mRNA and protein degradation.
Transcriptional and translational time delays are
noted on the horizontal arrows using τM and τP .

We have utilized mass-action kinetics based on
delay differential equation (DDE) models to study
the dynamic responses produced by these regulatory
mechanisms as a response to the transient signal.
Through these mechanisms, a cell can increase or
decrease the protein abundance through transcription
by employing different regulatory interactions.

Some abbreviations are used in naming the mech-
anisms for the practical purposes. In a mechanism’s
name, C stands for competitive binding and N stands
for noncompetitive binding. The letters R and A

respectively represent regulations through repression
and activation. The sign + represents increase and
− illustrates decrease in the levels of the regula-
tory proteins. More specifically, mechanism CR− is
the mechanism activation in the competitive binding
mechanism and activation is due to the decrease in the
repressor protein levels, while mechanism NA− is the
inhibition mechanism in the noncompetitive binding
mechanism and inhibition is due to the decrease in
the activator protein levels.

2.1. Gene regulation with competition

In the competitive model, the net rate of change in
repressor bound gene complex ( dGR

dt
) is assumed to

be the difference of binding (roGR(t)) and unbinding
rates (rf GR) of the repressor protein as in the equa-
tion Eq. (1). Here ro and rf represent the binding and

unbinding rate constants for the repressor molecule
(R) to the gene (G).

dGR

dt
= roG R(t) − rf GR (1)

Similarly, the rate of change of activator bound

gene levels ( dGA

dt
) is given as the difference between

binding and unbinding rates of the activator protein
Equation (2). In this equation, ao and af are the pos-
itive constants that determine how fast the activator
(A) binds and unbinds to the gene (G), respectively.

dGA

dt
= aoG A(t) − af GA (2)

Since we assume that the total gene abundance
stays constant over time, the following equation holds

G + GA + GR = 1 (3)

Hence, we only model the abundances of two states
of the gene GR and GA.

The dynamics of mRNA abundance is described
by Equation (4). We assume the rate of change in
the mRNA abundance ( dM

dt
) is the difference of its

mRNA synthesis rate (ηm0Gτm + ηmaG
A
τm

) and its
degradation (βmM) rate. The two terms in the synthe-
sis rate represent the mRNA synthesis rates due to free
(ηm0Gτm ) and activator bound (ηmaG

A
τm

) state with
respective synthesis rate constants of ηm0 and ηma .

dM

dt
= ηmaG

A
τm

+ ηm0Gτm − βmM (4)

The dynamics of the protein P is modeled by Equa-
tion (5). We assume that the net rate of change in the
protein abundance ( dP

dt
) is the difference between its

synthesis (αpMτp ) and degradation rates (βpP). Here
αp and βp denote the protein synthesis and degrada-
tion rates, respectively.

dP

dt
= αpMτp − βpP (5)

mRNA transcription from DNA and protein trans-
lation from mRNA are not instantaneous processes.
RNA polymerase must traverse the gene and ribo-
somes should elongate through mRNA to translate it
into protein. We included delay terms τm and τp in
the different states of the gene and mRNA to account
for the time it takes for the entire process to be com-
pleted. Here, for example, Gτm = G(t − τm), which
represents the abundance of G not at time t, but at a
time τm ago.

To explore the signal dependent responses of these
simple regulatory mechanisms, we assume that the
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levels of the activator protein A and the repressor pro-
tein R in the models are regulated through a transient
signal S(t), which is assumed to be a step function
characterized by two positive parameters γ and k as
in Equation (6)

S(t) =
{

γ , if 0 ≤ t < k

0 , if t ≥ k
(6)

Here the signal amplitude parameter (γ) measures
the system’s sensitivity to the perturbation caused
by the signal, and the signal persistency parame-
ter (k) determines how long the signal is applied to
the system. For example, to model a signal-induced
repression in the competitive model, activator level
A0 can either be decreased by the signal A(t) =

A0
1+S(t) or the repressor level R0 can be increased by
the signal R(t) = R0(1 + S(t)). Similarly, to model a
signal-induced activation in the competitive model,
activator level A0 can either be increased by the sig-
nal A(t) = A0(1 + S(t)) or the repressor level R0 can
be decreased by the signal R(t) = R0

1+S(t) . The initial
activator and repressor protein levels are assumed to
be equal and are 100 molecules per cell.

2.1.1. The steady state analysis of competition
models

The steady state analysis for the competition mod-
els have been performed. The details of the derivation
can be found in Appendix. The steady state equation
for the three states of the gene G, mRNA(M) and
protein(P) are

GR∗ = R

A + R + κ
(7)

GA∗ = A

A + R + κ
(8)

G∗ = κ

A + R + κ
(9)

M∗ = κηm0 + ηma A

βm (A + R + κ)
(10)

P∗ = αp

(
κηm0 + ηma A

)
βpβm (A + R + κ)

(11)

where κ = rf

ro
.

2.2. Gene regulation without competition

The temporal evolution of the receptor-gene com-
plex is modeled by Equation (12). It is assumed that

the net rate of change in the repressor-gene com-
plex ( dGR

dt
) is the difference of the gain rate and the

loss rate. The gain rate is due to the binding of the
repressor protein (R) to the gene (G) to form the
gene repressor complex (roG R) and the dissociation
rate of activator protein (A) from the GAR complex
(raf GAR). The loss rate is the sum of the associa-
tion rate of activator protein (A) to the GR complex
(raoG

RA) and the dissociation rate of the repressor
protein (R) from the GR complex (rf GR). The pos-
itive parameters ro and rf represent respectively the
binding and unbinding rate constants for the repres-
sor molecule (R) to the gene (G). Similarly, rao and
raf stand for the binding and unbinding rate con-
stants for the repressor molecule (R) to the gene
(GA), respectively.

dGR

dt
= roG R(t) + raf GAR − raoG

RA(t) − rf GR

(12)
The dynamics of the activator-gene complex is

described by Equation (13).

The rate of change of activator bound gene ( dGA

dt
)

is again the difference of the gain and loss rates. The
first two terms (aoG A + arf GAR) account for the
gain rate due to the binding of the activator protein
A to the unoccupied gene G with an associated rate
constant a0, and unbinding of the activator protein
A from the ternary GAR complex with the propor-
tionality constant arf . The sum of the last two terms
(−aroG

AR − af GA) is the loss rate, which involves
the association rate of the repressor protein R to GA

complex and the dissociation rate of the activator pro-
tein A from the GA complex. The parameter aro is
the rate constant that determines how fast the repres-
sor R binds to the GA complex, and af is the rate
constant that determines the liberation of A from the
GA complex.

dGA

dt
= aoG A(t) + arf GAR − aroG

AR(t) − af GA

(13)
Moreover, we assume that the total gene abundance

stays constant over time as in Equation (14). Due to
this conservation equation, we only modeled three
states of the gene GR, GA and GAR, but not G.

G + GA + GR + GAR = 1 (14)

Equation (15) describes the mRNA dynamics,
which is the difference of its synthesis and degra-
dation rates. The synthesis rate involves the sum
of three terms (αmarG

AR
τm

+ αmaG
A
τm

+ αm0Gτm ). The
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first term (αmarG
AR
τm

) represents the contribution of
the GAR complex in the synthesis rate. The sec-
ond term (αmaG

A
τm

) describes the contribution of the
GA complex. And finally, the third term (αm0Gτm )
accounts for the synthesis rate due to the unoccu-
pied gene G. The parameters αm0 , αma and αmar are
respectively the synthesis rate constants for G, GA

and GAR complexes. The parameter τm represents the
time delay due to mRNA synthesis since transcription
is not instantaneous process but it requires some time
to be completed. As before Gτm = G(t − τm) repre-
sents the abundance of G at not time t, but at a time
τm ago.

dM

dt
= αmarG

AR
τm

+ αmaG
A
τm

+ αm0Gτm − βmM

(15)
The rate of production of the protein P is mod-

eled by Equation (16), which is the difference of its
production rate (αpMτP ) and degradation rate (βPP)
with the associated rate constants αp and βp, respec-
tively. Here parameter τp is the translational time
delay such that Mτp = M(t − τp).

dP

dt
= αpMτp − βpP (16)

2.2.1. The steady state analysis for the gene
regulation without competition

The steady state analysis for the noncompetition
models have been performed. The details of the
derivation can be found in Appendix. The steady state
equation for the four states of the gene G, mRNA(M)
and protein(P) are

GR∗ = κ R

(A + κ) (R + κ)
(17)

GA∗ = κ A

(A + κ) (R + κ)
(18)

GAR∗ = A R

(A + κ) (R + κ)
(19)

G∗ = κ2

(A + κ) (R + κ)
(20)

M∗ = αm0κ
2 + αmaκ A + αmar A R

βm (A + κ) (R + κ)
(21)

P∗ = αp

βp

(
αm0κ

2 + αmaκ A + αmar A R

βm (A + κ) (R + κ)

)
(22)

where κ = rf

ro
.

3. Parameter values

In this section, the details of the parameter estima-
tion or collection are given for E.coli cell.

�

βm: The average mRNA half life is estimated
as 5 - 10 minutes for E.coli [36]. In another
study, the median mRNA half life has been mea-
sured to be 3.69 ± 0.49 [5]. We took 5 minutes
for the mRNA half-life in this study. Assum-
ing the degradation occurs exponentially, which
gives an estimate of ln(2)

5 = 0.1386 min−1 for
the mRNA degradation parameter βm.

�

ηm0 and ηma : The average mRNA copy num-
ber per cell in E.coli shows variation, which is
experimentally measured to be between 0.1 and
60 mRNA molecules per cell [35]. In another
recent study, quantitative system wide measure-
ments of mRNA and protein levels in individual
cells using single-molecule counting technique
have been used. This study showed that the
average mRNA copy number per cell ranges
from 10−3 to 10 [36]. In this study we took
the steady state level of 4 mRNA molecules per
cell. We assume that the transcription rate of
the activator bound state GA is 10 times faster
than that of the free state G, i.e. ηma = 10ηm0 .
From Equation (10), the steady state of mRNA
is given by the equation M∗ = κηm0 +ηma

βm(200+κ) , which
is equal to 4. If we further assume that the
binding and unbinding rates for both the repres-
sor and activator proteins are equal (κ = 1),

this gives us a relationship of
ηm0 +10ηm0
βm(200+1) = 4,

which results in the estimatesηm0 = 0.1512 and
ηma = 10 × 0.1512 = 1.5120.

�

αm0 , αma and αmar : It is assumed that the tran-
scription rate of the activator bound state GA

and the activator and repressor bound state
GAR are respectively 10 and 3 times faster
than the transcription rate of the free state
G. Hence, we have αma = 10αm0 and αmar =
3αm0 . From Equation (21), the steady state
of mRNA is given by the equation M∗ =
αm0 κ2+αmaκ+αmar

βm(κ+100)2 , which has been estimated to
be 4 earlier. Similar to the competitive case, the
binding and unbinding rates for the repressor
and activator proteins are assumed to be equal
and we took κ = 1. The assumptions above

result in the equality
αm0 +10αm0 +3αm0

1012βm
= 4,

which results in the estimates of αm0 = 0.1584,
αma = 10 × 0.1584 = 1.5840 and αmar = 3 ×
0.1584 = 0.4752.
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�

βp: The protein half-life changes from protein
to protein and varies from 15 to 120 minutes in
E.coli [41]. If the temporal degradation profile
is exponential, then these figures give two esti-
mates of 0.0462 and 0.0057 min−1 for βp. Here,
we used βp = 0.02 min−1, which is approxi-
mately equal to the average of these two figures
and provides a protein half-life of 35 minutes.

�

αp: Molecular abundances of all proteins in
E. coli have been experimentally studied by
advanced proteomic technologies, and were
classified into three groups [13]. In the same
study, they reported that the protein numbers for
E. coli range from ∼ 100 to 105. By Equation
(11) and (22), we have αpM∗ = βpP∗, which

leads to an estimate of αp = βp P∗
M∗ = 0.5 per

minute for this parameter in the absence of the
signal. We used this estimate in our simulations.

�

τm: The average mRNA length is measured to
be 1000 nucleotides in E.coli [16]. RNA poly-
merase transcription rate of mRNA has been
estimated as 39 − 55 nt/sec [6]. We took the
rate 39 nt/sec, which corresponds to the small-
est doubling rate 0.6 doubling per hour. This
results in 1000

60×39 = 0.42 min upper bound for
transcriptional delay parameter τm.

�

τp: The ribosomal elongation rate in E.coli
varies between 12 to 33 amino acids per second
[18, 23]. In another study, it has been reported
that the translation rate is between 12 and 21
amino acids per second [6]. In the same study,
they reported the translation rate as 12 amino
acids per second for a bacteria with doubling
rate of 0.6 doubling per hour. Here we use a
generic protein with average mRNA length of
1000 nucleotides. Using this figure we obtain
τp � 1000

3×12×60 = 0.46 min.

4. Results

We analyzed dynamics produced by the compet-
itive and noncompetitive activatory and inhibitory
binding mechanisms whose equations are listed in
Table A.1 and Table A.2. All the simulations and
analysis were implemented in Matlab using the
biologically realistic estimates for the parameters
detailed in Section 3. In the simulations, the signal
persistency parameter k changes from 10 to 100 min-
utes, the signal amplitude parameter γ varies between
10-fold and 100-fold and ro parameter varies between

10−4 and 10−1, while all the others are held at their
values listed in Section 3. We will focus on the dis-
cussion of the results for the binding constant ro =
10−4 here. The simulation results for ro = 10−3,
ro = 10−2 and ro = 10−1 have been provided in the
Appendix. Different mechanisms show comparable
mP dynamics for varying ro levels. However, the
differences between the mechanisms become neg-
ligible for mT and D metrics as this parameter
increases.

4.1. Inhibition mechanisms

In this section, we studied the competitive and non-
competitive inhibition mechanisms that result in a
decrease in the protein abundance as a result of a
transient signal. We denote the competitive binding
mechanism in which the activator protein abundance
is decreased by CA− . CR+ represents the competitive
binding mechanism in which the repressor level is
increased by a signal. On the other hand, the abbre-
viations NA− and NR+ stand for the noncompetitive
mechanisms that a transient signal decreases the acti-
vator or increases the repressor levels, respectively.

4.1.1. Comparison of the competitive inhibition
mechanisms

The effects of the transient constant signal on the
protein abundance in the competition models were
studied. In these two mechanisms, the activator and
repressor proteins compete for binding to the same
regulatory site on DNA. The abbreviation CA− stands
for the competitive mechanism in which the activa-
tor protein abundance is decreased by the signal. On
the other hand, CR+ is the competitive mechanism
in which the repression is due to an increase in the
repressor protein abundance by the signal. In both
mechanisms, the protein abundance decreases due to
the signal.

The results of our simulations for the response
metrics mP , mT and D are shown in Fig. 3 as γ

values change between 10 and 100, and k varies
from 10 to 100 minutes when ro = 10−4. Our simu-
lations show different dynamics for the mid-protein
mP levels of the mechanisms CA− and CR+ . In CA−
mechanism, mP remains approximately constant as
the signal amplitude increases for the fixed signal
persistency. However, when the signal amplitude is
small (γ <∼ 20) and the signal persistency is large
(k >∼ 60 min), mP shows slight nonlinear behav-
ior. On the other hand, CR+ displays more nonlinear
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dependence on the signal, particularly for smaller γ

values. For varying signal profiles, while mP changes
between 82 molec./cell and 98 molec./cell in CA− , it
varies from 74 molec./cell to 95 molec./cell in CR+ .
Each mechanism reaches the minimum mP levels
when the signal persistency and signal amplitude are
at their maximum, i.e. k = 100 min and γ = 100 fold.

The heat maps for the mT levels have similar
behavior for both of the competition mechanisms
CA− and CR+ . mT remains constant as the signal
magnitude γ increases with fixed signal persistency k

in CA− mechanism. CR+ mechanism displays nonlin-
ear dependence to signal for smaller γ . Unlike what
is observed in the mP metric, the variation in mT

is larger in CA− than the values in CR+ . While mT

changes between 25 min and 71 min in CA− , it varies
from 41 to 77 min in CR+ . We observe that the time
required to reach mP is significantly shorter (∼ 25
min) in the CA− than the values CR+ mechanism can
produce (∼ 41 min).

The qualitative behavior of the duration metric D

for both mechanisms is quite similar. For the sig-
nal with fixed persistency, D does not change as γ

increases in CA− . For fixed γ levels, D increases
with k. For a fixed value of γ , D increases as k

increases nonlinearly for all values of γ in both mech-
anisms. However, this nonlinear behavior changes for
different values of γ in the CR+ mechanism. The
quantitative variation in the metric D is surprisingly
similar for both mechanisms. While in CA− , the D

changes between 154 min and 170 min, it varies from
201 min to 218 min in CR+ .

Differences in the competitive inhibition mech-
anisms: The results of our simulations for the
differences of response metrics mP , mT and D are
depicted in Fig. 4. mP level in CR+ is always ∼ 3 − 8
molecules less than what has been observed in CA−
for varying signal profiles. This difference is heav-
ily dependent on the signal amplitude γ and gets
larger as γ increases. For all the signal profiles consid-
ered, mT level in CA− is always ∼ 2 − 18 minutes
smaller than the values in CR+ . This difference is
more dependent on the signal persistency k and it
gets larger as k increases. Our simulation also shows
that the difference in mT is highest for shorter sig-
nal persistency (γ = 10) and amplitude (k = 10). The
duration metric D is always bigger in CR+ than its
value in CA− . For the varying signal profiles, D is
∼ 46 − 48 minutes longer in CR+ . This difference
takes its maximum value when both γ and k are
relatively large, however it becomes smallest when
k >∼ 80 and γ <∼ 15.

4.1.2. Comparison of the noncompetitive
inhibition mechanisms

We then examined the change of the protein abun-
dance in the noncompetitive binding mechanisms
for varying persistent signal profile. In these mech-
anisms, the activator and repressor proteins bind
different regulatory regions of DNA. Here NA−
represents the mechanism, in which the activator pro-
tein level is decreased by the signal. In the second
mechanism(NR+ ), the repressor protein abundance
is increased with the signal. The results of our
simulations for the response metrics mP , mT and
D are summarized in Fig. 3 for γ values chang-
ing between 10 and 100, and k values changing
between 10 and 100 minutes when the parameter ro
is 10−4.

The mid-protein levels mP for the two noncompet-
itive mechanisms have distinct dynamics as shown
in the last two rows of Fig. 3. As the signal ampli-
tude increases, mP does not change significantly
for the fixed signal persistency in NA− . However,
when the signal amplitude is small (γ <∼ 20) and
the persistency is large (k >∼ 60 min), mP has
nonlinear dependence on these parameters. In NR+
mechanism, mP dependence on the signal parame-
ters is more nonlinear than what has been observed
in NA− mechanism. The quantitative variation in
mP is almost the same in both mechanisms, and
changes from 82 molec./cell to 99 molec./cell in NA−
and from 76 molec./cell to 93 molec./cell in NR+ .
The minimum mP abundance in each mechanism is
reached when the signal profile has the maximum
persistency (k = 100 min) and amplitude (γ = 100
fold).

The mT metric shows significantly different
dynamics in these mechanisms. For the fixed signal
persistency while this metric takes relatively con-
stant values in NA− mechanism, it has a nonlinear
dependence on the signal amplitude in NR+ mech-
anism. When the signal amplitude is small (γ <∼
20) and the signal persistency is large (k >∼ 60
min), this nonlinearity increases in NR+ mecha-
nism. The time variation is larger in NA− than in
NR+ , which is 46 minutes and 23 minutes, respec-
tively. In both mechanisms, minimum values for the
mT metric are comparable, NA− mechanism has its
minimum at 24 min and NR+ mechanism’s mini-
mum is at 21 min mT changes from 24 min to 70
min in NA− and from 21 min to 44 min in NR+
mechanism.

Our simulations show that the duration metric D

has similar qualitative performance in both mech-
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anisms and the dependence of this metric on the
signal is roughly linear. For fixed signal persistency,
D remains constant as the signal amplitude varies.
The slight nonlinearity is observed for smaller signal
amplitude (γ <∼ 15) with large persistency (k >∼
50 min) in NR+ mechanism. The quantitative change
of D in NR+ mechanism is approximately twice as
much as that of in NA− , which are 38 min and 17
min, respectively.

Differences in the noncompetitive inhibition mech-
anisms: The results of our simulations for the
differences of response metrics mP , mT and D are
depicted in the second row of Fig. 4. The difference
in mid-protein levels between the two noncompeti-
tive models is ∼ 4 − 11 molecules for the range of
signal profiles considered. mP metric takes lower
values in NR+ than in NA− . The biggest difference
is observed for large signal amplitude (γ >∼ 70)
with a small persistency (k < 30 min). NR+ mech-
anism has ∼ 1 − 33 minutes shorter mT levels than
NA− . The difference of mT between two mecha-
nisms depend on the signal linearly as the signal
persistency increases (γ >∼ 30). The maximum dif-
ference is observed when the signal persistency and
amplitude are at their maximum levels. The dura-
tion metrics D takes ∼ 0 − 21 minutes longer in NR+
than in NA− . It remains approximately constant for
large signal amplitude (γ >∼ 20) for all signal persis-
tency considered. It reaches its maximum value for
the largest signal amplitude with the longest signal
persistency.

4.1.3. Comparison of the competitive and
noncompetitive inhibition mechanisms for
decreasing activator levels

We compared the change of the protein abundance
in the competitive and noncompetitive binding mech-
anisms depending on varying signal profile. In the
activator dependent inhibition mechanisms CA− and
NA− , the activator protein abundance is decreased
by the signal. CA− stands for the activator depen-
dent competitive inhibition mechanism, and NA−
represents the activator dependent noncompetitive
inhibition mechanism. The results of our simulations
for the response metrics mP , mT and D are shown
in first and third rows in Fig. 3 while the parame-
ters γ and k changes between 10 and 100 and when
ro = 10−4. The mid-protein mP levels of the compet-
itive and noncompetitive binding mechanisms have
a relatively similar dynamics as shown in the first
and third rows of Fig. 3. Our simulations predicts

that for fixed signal persistency levels the mP levels
do not show significant change in both mechanisms.
However, if the signal amplitude γ is held constant,
the mP levels decrease in a linear fashion as sig-
nal persistency increases. In both mechanisms when
the signal amplitude is small (γ <∼ 10) and the sig-
nal persistency is large (k >∼ 60 min), mP depends
on the signal in a nonlinear fashion. The quantitative
variation in mP is roughly the same in both mecha-
nisms for all the signal profiles considered. mP level
changes from 82 molec./cell to 98 molec./cell in CA−
and from 82 molec./cell to 99 molec./cell in NA− .
The minimum mP abundance for each mechanism
are reached when the signal profile has the maximum
persistency (k = 100 min) and amplitude (γ = 100
fold).

In both mechanisms mT levels show similar
dynamics for varying signal profile. As the signal
persistency gets longer, the mT values increases lin-
early in the both mechanisms. However, if the signal
persistency is held fixed, mT does not change as the
signal amplitude increases. The quantitative change
in mT is 46 minutes for both CA− and NA− . Both
mechanisms require roughly the same time to reach
mid-protein abundance. While mT changes from 25
min to 71 min in CA− mechanism and from 24 min
to 70 min in NA− mechanism.

The duration metric D has similar qualitative per-
formance. For fixed signal persistency k, D remains
constant as the signal amplitude varies. However, for
a fixed signal amplitude, our simulations predict a
non-linear increase of D as the signal persistency k

gets longer. The quantitative variation of D in both
mechanisms are also different, It is 16 min in CA−
and 17 min in NA− . D changes from 154 min to 170
min in CA− and from 124 min to 141 min in NA−
mechanism.

Differences in the competitive and noncompetitive
inhibition mechanisms for decreasing activator lev-
els: The differences of response metrics mP , mT

and D are depicted in the third row of Fig. 4. The
mP abundance difference between the mechanisms
is negligible for all the signal profiles. Our simula-
tions predict that there is no significant difference
in mT metric for varying signal profiles. However,
our simulations show that the duration metric D is
∼ 28 − 30 minutes longer in CA− than the dura-
tion in NA− . The difference in metric D takes on
its minimum for signal persistency k >∼ 75 min-
utes and attains its longest value when k <∼ 25
minutes.
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4.1.4. Comparison of the competitive and
noncompetitive inhibition mechanisms for
increasing repressor levels

Lastly, we compared the effect of the transient
constant signal on the protein abundance in the com-
petitive and noncompetitive binding mechanisms for
increasing repressor levels. As a reminder, CR+ and
NR+ stand for the competitive and noncompetitive
mechanisms respectively in which the repressor pro-
tein abundance is increased by the transient signal. In
both mechanisms, the protein abundance decreases
due to signal. The response metrics mP , mT and D

are shown in Fig. 3 for γ values in between 10 and
100 folds, and k changes between 10 and 100 minutes
when ro = 10−4.

Our simulations show that both models have simi-
lar mid-protein mP levels. When the signal amplitude
is large (γ >∼ 50), mP remains approximately con-
stant as the signal amplitude increases for the fixed
signal persistency in both mechanisms. However,
when the signal amplitude is small (γ <∼ 50),
mP has nonlinear behavior. Moreover, mP changes
between 74 molec./cell and 95 molec./cell in CR+ and
it varies from 76 molec./cell to 93 molec./cell in NR+ .

mT behaves nonlinearly in both mechanisms when
the signal amplitude is less than 50 and linearly oth-
erwise. They both reach their maximum values for
the smallest signal amplitude and the largest persis-
tency. We observe the difference of their quantitative
variations are at the extreme values. The quantita-
tive difference in CR+ mechanism is approximately
1.5 fold more than what it is in NR+ , which are
36 molec./cell and 23 molec./cell, respectively. mT

changes between 41 molec./cell and 77 molec./cell in
CR+ , it varies from 21 molec./cell to 44 molec./cell
in NR+ .

The dependence on the signal of the duration met-
ric D is nonlinear for both mechanisms when the
signal amplitude is small (γ <∼ 20). The quantita-
tive variation in the metric is quite different between
the two mechanisms. While in CR+ , the D changes
between 201 min and 218 min, in NR+ , it varies from
124 min to 162 min and the difference in NR+ mech-
anism is twice as much as what it is in CR+ (17 min
vs 38 min).

Differences in the competitive and noncompetitive
inhibition mechanisms for increasing repressor lev-
els: The differences of response metrics mP , mT

and D are depicted in Fig. 4. For smaller persis-
tency (k <∼ 50), mP level in CR+ is bigger than
in NR+ . When the signal persistency and ampli-
tude approach to their maximum values, the opposite

happens. Moreover, a nonlinear relation is observed
in the heat map for smaller γ amplitudes (γ <∼ 20).
For all the signal profiles that we have considered,
mT level in CR+ is always ∼ 20 − 36 minutes big-
ger than what is observed in NR+ . This difference
is more dependent on the signal persistency k and it
gets bigger as k increases. The duration metric D is
always bigger in CR+ than in NR+ . D is ∼ 56 − 77
minutes longer in CR+ for the varying signal profiles.
This difference takes its maximum value when k has
smaller values.

4.2. Activation mechanisms

In this section, we studied the competitive and non-
competitive activation mechanisms that result in an
increase in the protein abundance as a result of a
transient signal. We denote the competitive binding
mechanism in which the activator protein abundance
is increased by CA+ . CR− represents the competitive
binding mechanism in which the repressor level is
decreased by a signal. On the other hand, the abbre-
viations NA+ and NR− stand for the noncompetitive
mechanisms that a transient signal increases the acti-
vator or decreases the repressor levels, respectively.

4.2.1. Comparison of the competitive activation
mechanisms

In the competitive activation mechanisms, we
assume the transient signal increases the activator
or decreases the repressor level which leads to an
increase in protein P abundance. In these mecha-
nisms, the activator and repressor proteins compete
to bind the same regulatory site on DNA thereby reg-
ulating the synthesis rate of the mRNA for the protein
P . The heat maps of the response metrics mP , mT

and D are depicted in Fig. 5 for these two mechanisms
where the signal amplitude, γ , changes between 10
and 100 fold, and the signal persistency, k, varies from
10 to 100 minutes when the binding rate constant ro
is held constant at 10−4.

The change in the mid-protein levels for CA+
and CR− mechanisms show different quantitative and
qualitative dynamics as shown in the first two rows
of Fig. 5. The dependence on the signal is nonlin-
ear in CA+ mechanism, while it is almost linear in
CR− . This linearity is more noticeable for the higher
signal amplitude (γ >∼ 20). In both mechanisms,
the highest mP values are attained when the sig-
nal amplitude and persistency are at their maximum
values, i.e. γ = 100 fold and k = 100 minutes. It is
obvious from our simulations that increasing activa-
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Fig. 3. Heat maps for the comparison of three metrics (mid-protein level mP , time to reach mid-protein level mT and duration D) describing
the dynamics of competitive (CA− , CR+ ) and noncompetitive (NA− , NR+ ) inhibition mechanisms. In these simulations, the signal amplitude
γ and persistency k range from a 10-fold to a 100-fold change when ro = 10−4. All the other parameters were held constant at their values
listed in Section 3. See text for the details.

tor protein results in more increase in mid-protein
abundance, mP . In CA+ mechanism, mP changes
from 111 molec./cell to 153 molec./cell. On the other
hand, in CR− mechanism, it varies only between 101
molec./cell and 109 molec./cell.

The mT metric shows slightly different depen-
dence on the transient signal for each mechanism. In
CR− , mT remains constant for the fixed signal persis-
tency and increasing signal amplitude. However, in
CA+ mechanism, it has nonlinear dependence on the
signal for smaller signal amplitudes (γ < 30). mT is
in average shorter in CA+ mechanism than in CR− .
mT level ranges between 22 and 54 min in CA+ while
it ranges from 44 to 92 min in CR− .

The duration metric D varies quite nonlinearly for
large signal persistency (k >∼ 60 min) in CA+ mech-

anism, while its dependence on the signal is more
linear in CR− . For fixed signal persistency levels, D

does not change significantly in CR− as signal ampli-
tude increases. Quantitatively, D metric changes from
154 to 184 minutes in CA+ and from 201 to 210
minutes in CR− . We can conclude that CR− mech-
anism stays above the mid-protein level longer than
CA+ .

Differences in the competitive activation mecha-
nisms: The differences of the response metrics mP ,
mT and D are plotted in the first row of Fig. 6.
The difference of mP levels depends on the transient
signal nonlinearly. CA+ mechanism has ∼ 10 − 45
molecules more than CR− . As the signal ampli-
tude and persistency increase, the difference also
increases, and takes its maximum (∼ 45 molec./cell)
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Fig. 4. Heat maps for the comparison of the differences of three metrics (mid-protein level mP , time to reach mid-protein level mT and
duration D) showing the dynamics of competitive (CA− , CR+ ) and noncompetitive (NA− , NR+ ) inhibition mechanisms. For all these
simulations, the signal amplitude γ and persistency k are changed from 10-100 fold when ro = 10−4 while all the other parameters were
kept constant at their estimated values listed in Section 3. For details see the text.

at k = 100 and γ = 100. The difference of mT lev-
els between two mechanisms changes nonlinearly
and it increases as the signal persistency increases.
CR− mechanism always needs longer time to reach
the highest protein level than CA+ . The time differ-
ence between two mechanisms varies from ∼ 19 to
∼ 43 minutes. The maximum difference is observed
when the signal amplitude and persistency reach their
maximums. The difference between the duration met-
ric D of two mechanisms produces nonlinear results
for small signal amplitude (γ < 40 min). As the sig-
nal profile changes, CR− mechanism has ∼ 26 − 47
minutes more than CA+ . The smallest difference is
reached when k > 80, while the highest difference is
observed when k < 20.

4.2.2. Comparison of the noncompetitive
activation mechanisms

We explored the effect of the signal on the protein
abundance in the noncompetitive activation mech-
anisms in which the activator (NA+ ) and repressor
(NR− ) proteins bind different DNA sites, thereby both
mechanisms lead to an increase in the protein abun-
dance. The heat maps of the response metrics mP ,
mT and D are plotted in Fig. 5. The signal amplitude
γ changes between 10 and 100 fold, and the signal
persistency, k, alters from 10 to 100 minutes with the
constant ro = 10−4.

Our simulations show that the mid-protein met-
ric mP for each mechanism have different dynamics
for varying signal profile. NA+ shows more non-
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Fig. 5. Heat maps for the comparison of three metrics (mid-protein level mP , time to reach mid-protein level mT and duration D) describing
the dynamics of competitive (CA+ , CR− ) and noncompetitive (NA+ , NR− ) activation mechanisms. In these simulations, the signal amplitude
γ and persistency k range from 10-fold to 100-fold change when ro = 10−4. All the other parameters were held constant at their values listed
in Section 3. See text for details.

linear dependence on the signal amplitude, while
NR− remains almost constant as the signal amplitude
increases for the fixed signal persistency. We observe
that, NR− has a slight nonlinearity when k >∼ 60
minutes and γ <∼ 20. Quantitatively, the metric mP

in NA+ mechanism varies from 110 molec./cell to
136 molec./cell, and while it changes from 101
molec./cell to 112 molec./cell in NR− .

The mT metric displays significantly different
dynamics in both mechanisms. For all signal pro-
files, mT changes in a nonlinear fashion in NA+
mechanism, whereas it shows almost linear behavior
in NR− . However, the highest mT level is observed
when the signal persistency is at the maximum (k ∼
100 min) for all signal amplitudes in NR− mecha-
nism. The values of mT metric are also different in

both mechanisms. mT changes from 21 to 44 minutes
in NA+ and from 24 to 70 minutes in NR− . Overall,
mT is shorter in NA+ than in NR− .

The duration metric, D, shows a comparable qual-
itative behaviour for varying signal profile. In NA+
mechanism, D has slight nonlinear dependence on
the signal. In particular, for the small signal amplitude
(γ <∼ 20) and the large signal persistency (k >∼ 60
min) the nonlinearity is more significant. On the other
hand, in NR− , D stays unchanged as the signal ampli-
tude varies for the fixed persistency. Although the
smallest D values are the same for each mechanism,
which is 124 min, the largest values are different,
which is 162 min in NA+ and is 141 min in NR− .

Differences in the noncompetitive activation mech-
anisms: The differences of the response metrics mP ,
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Fig. 6. Heat maps for the comparison of the differences of three metrics (mid-protein level mP , time to reach mid-protein level mT and
duration D) showing the dynamics of competitive (CA+ , CR− ) and noncompetitive (NA+ , NR− ) activation mechanisms. For all these
simulations, the signal amplitude γ and persistency k are changed from 10-100 fold when ro = 10−4 while all the other parameters were
kept constant at their estimated values listed in Section 3. For details see the text.

mT and D are displayed in the second row of Fig. 6.
The mid-protein metric mP has ∼ 9 − 24 molecules
per cell smaller in NR− than in NA+ . The maximum
difference is observed for the largest signal amplitude
and persistency. The difference changes nonlinearly
with various signal profiles. For all signal profiles,
the mT metric in NR− mechanism is larger than
NA+ . The difference of mT between two mechanisms
is significantly nonlinear when the signal amplitude
is small (γ <∼ 30). Quantitatively, the time differ-
ence between two mechanisms is ∼ 1 − 33 minutes.
The maximum difference is reached when the signal
amplitude and persistency are at their maximum. The
duration metric D in NA+ mechanism is ∼ 0 − 21
minutes more than in NR− . The greatest difference is
obtained for the largest signal amplitude and persis-
tency.

4.2.3. Comparison of the competitive and
noncompetitive activation mechanisms for
increasing activator levels

We investigated the difference between the com-
petitive and noncompetitive activation mechanisms
as the activator protein levels increase. mP levels
have very similar qualitative dynamics for both mech-
anisms, but distinct quantitative behavior. mP in CA+
changes from 111 molec./cell to 153 molec./cell and
in NA+ , from 110 molec./cell to 136 molec./cell. As
signal varies, the metric mT shows slightly different
qualitative and quantitative dynamics in both mech-
anisms. The maximum mT is 54 minutes in CA+ and
44 minutes in NA+ . The minimum mT is 22 min-
utes in CA+ and 21 minutes in NA+ . The duration
metric D shows qualitatively similar, but quantita-
tively different dynamics. D changes between 154
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and 184 minutes in the competitive mechanism, it
varies from 124 to 162 minutes in the noncompetitive
mechanism.

Differences in the competitive and noncompetitive
activation mechanisms for increasing activator lev-
els: We measured the differences of the response
metrics mP , mT and D in the competitive and non-
competitive activation mechanisms, and the results
are shown in the third row of Fig. 6. The difference
between the mid-protein levels changes slightly non-
linearly for varying signal profile. NA+ mechanism
has 0 − 17 molec./cell less than CA+ .The difference
in mT levels has a nonlinear dynamic as the transient
signal varies. NA+ requires ∼ 1 − 12 minutes less
than CA+ to attain the mid-protein level. For all sig-
nal profiles, D metric of NA+ is ∼ 22 − 30 min less
than that of CA+ . The difference depends nonlinearly
on the signal profile for smaller values of k.

4.2.4. Comparison of the competitive and
noncompetitive activation mechanisms via
decreased repressor abundance

We investigated the difference between the com-
petitive and noncompetitive activation mechanisms
as the repressor protein abundance decreases.

Our simulations illustrate that both mechanisms
have similar qualitative and quantitative dynamics in
terms of mP . In CR− mechanism the mid-protein
level starts at 101 molec./cell and goes up to 109
molec./cell. On the other hand, in the noncompet-
itive binding mechanism, NR− , the highest protein
abundance is 112 molec./cell and its lowest is 101
molec./cell. Our simulations predict that mT levels
are determined by k but not γ , and show qualita-
tively similar, but quantitatively distinct dynamics.
For both mechanisms, the smallest values (24 and 44)
are observed when k ∼ 10; and the largest mT levels
(70 and 92) are attained when k ∼ 100. The duration
metric D is mainly determined by k, and shows quali-
tatively similar, but quantitatively different dynamics.
In both mechanisms, the smallest values (124 and
201) are observed when k ∼ 10; and the largest D

levels (141 and 210) are attained when k ∼ 100.
Differences in the competitive and noncompeti-

tive activation mechanisms via decreased repressor
abundance: The differences in the competitive and
noncompetitive activation mechanisms for decreas-
ing repressor protein abundance are summarized in
the last row of Fig. 6. The difference of mP levels
varies nonlinearly as the transient signal differs, but
quantitatively shows negligible difference (∼ 0 − 3
molec./cell). As the signal persistency k increases, the

mT difference between the two mechanism becomes
larger. NR− needs ∼ 19 − 22 minutes less than CR− .
The duration metric D in CR− is ∼ 69 − 77 minutes
longer than in NR− . While D is dependent on sig-
nal persistency k nonlinearly, it is not affected by the
changes in signal amplitude γ for fixed k levels.

5. Discussions

One of the fascinating questions of biology is
how to control the development and physiology of
organisms. The answer of this question is encoded in
the regulatory binding sites in the enhancer regions
of genes. Understanding transcriptional regulation
is essential for the analysis of cellular functions,
disease mechanisms and evolutionary dynamics
[9, 27, 40].

The binding sites in the enhancer region control the
development and physiology of organisms by regulat-
ing both temporal and spatial expression of genes [7].
The arrangement of binding sites within the enhancer
regions is critical to achieve proper biological func-
tion [22]. Mutations that affect the individual binding
sites and their arrangements often lead to diseases and
phenotypic diversity within and between species.

Mathematical models offer an alternative approach
to biological experimentation for studying gene reg-
ulation. In this study, we explored competitive and
noncompetitive binding site arrangements of an acti-
vator and a repressor protein, and examined inhibitory
and activatory gene regulation dynamics. In the
competitive mechanisms, the activator and repressor
proteins compete to bind to the same regulatory DNA
site, while they bind different regions of DNA in the
noncompetitive mechanisms. In all mechanisms, the
transient signal leads to an increase or decrease in the
activator or repressor protein abundances resulting in
a change in the gene expression.

Competitive and noncompetitive binding mecha-
nisms have been shown to be important for many
prokaryotic and eukaryotic organisms [9, 37]. Just to
mention a few examples, in lac operon of E.coli, the
repressor protein and RNA polymerase compete to
bind to the same regulatory region of the structural
genes of LacZ, LacY and LacA. When allolactose
binds to the repressor protein, it can no longer bind
to the regulatory region and RNA polymerase starts
transcription, which leads to 1000-fold increase in
the basal level of the genes’ products [25]. In early
development of Drosophila melanogaster embryos,
dorsal-ventral pattern formation is controlled through



N. Yildirim et al. / Differential transcriptional regulation by alternatively designed mechanisms 111

both competitive and noncompetitive binding [43].
In this system, Snail repressor protein competes to
bind to the same regulatory site with Twist acti-
vator protein. However, the Snail protein represses
the Dorsal activator in a noncompetitive fashion.
Similarly, in the circadian clock network there is
a competitive (but not noncompetitive) binding of
Ror and Rev-Erb to the Bmal1 gene. One suggested
difference between competitive and noncompetitive
binding mechanisms is that these two mecha-
nisms are capable of producing different qualitative
dynamics in biological systems. In a recent study,
Munteanu et al. has shown that competitive binding
reduces the parameter space that leads to oscillations
[24].

This study provides insights on the dynamics of the
competitive and noncompetitive binding mechanisms
by providing a comprehensive comparison. Our anal-
ysis suggests that the competitive and noncompetitive
inhibition mechanisms exhibit comparable repres-
sion effectiveness, but the response time is the fastest
in the noncompetitive inhibition mechanism through
increased repressor abundance and the slowest in the
competitive inhibition mechanism through increased
repressor level. Although the four inhibition mech-
anisms all decrease protein levels, cells selectively
use these regulatory mechanisms as needed. The
systems that require an urgent response would be
better off using the noncompetitive inhibition mech-
anism through increased repressor abundance. The
competitive inhibition mechanism through increased
repressor level might be better for the systems that
need long-term responses or whose effects need not
be immediate after the signal.

Similarly, our simulations show that the com-
petitive and noncompetitive activation mechanisms
by increased activator protein level display more
effective and faster response in comparison to the
competitive and noncompetitive activation mecha-
nisms due to decreased repressor abundance. The
biological systems that require urgent and severe
response should make use of competitive and non-
competitive activation mechanisms by increased
activator protein level. These observations can be
tested experimentally using synthetically engineered
genetic circuits utilizing fluorescent proteins. Our
analysis emphasizes the importance of mathematical
modeling for better understanding the gene regula-
tion dynamics, which is the key for the analysis of
cellular functions, disease mechanisms and evolu-
tionary dynamics. Such knowledge is also important
for finding better disease diagnoses and therapies.

We have to mention that the mathematical mod-
els used here are strictly deterministic in nature and
based on the explicit assumption that one is dealing
with a population of cells and large molecule num-
bers so that the law of large numbers is applicable.
It is worth stressing that if one is interested in the
details of the dynamics at the level of a single cell, a
different approach has to be taken for the small num-
ber of molecules. Gillespie [11] has considered in
detail how simulations of such situations could be per-
formed and used by many others [17, 19, 21, 39, 42].
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A. Appendix: mathematical models of gene
regulation

A.1.1. Steady state analysis of the competition
models

At the steady state, the following equations must

hold: dGR

dt
= dGA

dt
= dM

dt
= dP

dt
= 0, which results in

the following system of equation for the steady state
of this system

0 = roG
∗ R − rf GR∗

0 = aoG
∗ A − af GA∗

0 = ηmaG
A∗ + ηm0G

∗ − βmM∗

0 = αpM∗ − βpP∗

Assuming all the binding rates are equal,
we get

ao = ro

Similarly, by assuming all the unbinding rates are
same, we obtain

af = rf

Then, the steady state equations for the four
possible states of the gene G in terms of the bind-
ing (ro) and unbinding rate (rf ) constants simplify
to,

GR∗ = roG
∗ R

rf
(A.1)

GA∗ = roG
∗ A

rf
(A.2)

G∗ = rf

ro (A + R) + rf
(A.3)

If we further assume that the unbinding rate con-
stant is κ times the binding constant, that is

rf = κ r0

Then the steady state equations simplify to

GR∗ = R

A + R + κ
(A.4)

GA∗ = A

A + R + κ
(A.5)

G∗ = κ

A + R + κ
(A.6)

From Equation (A.23), we get

M∗ = 1

βm

(ηm0G
∗ + ηmaG

A∗)

= κηm0 + ηma A

βm (A + R + κ)
(A.7)

Then, Equation (A.23) gives us

P∗ = αp

βp

M∗ = αp

(
κηm0 + ηma A

)
βpβm (A + R + κ)

(A.8)

A.1.2. Steady state analysis of the competition
models

The steady state of this system can be computed
by setting all the time derivatives to zero. That is

dGR

dt
= dGA

dt
= dM

dt
= dP

dt
= 0

which results in the following system of equations

0 = roG
∗R + raf GAR∗ − raoG

R∗A − rf GR∗ (A.9)

0 = aoG
∗A + arf GAR∗ − aroG

A∗R − af GA∗ (A.10)

0=aroG
A∗R + raoG

R∗A − arf GAR∗ − raf GAR∗(A.11)

0 = αmar
GAR∗ + αma

GA∗ + αm0G
∗ − βmM∗ (A.12)

0 = αpM∗ − βpP∗ (A.13)

If we assume all the binding rates are equal, we get

ao = aro = rao = ro

If we further assume all the unbinding rates are
same we obtain,

af = raf = arf = rf

Then, in terms of the binding(ro) and unbinding
rate(rf ) constants, the steady state equation for the
four possible states of the gene G becomes,

GR∗ = ro G∗ R + rf GAR∗

ro A + rf
(A.14)

GA∗ = ro G∗ A + rf GAR∗

ro R + rf
(A.15)

GAR∗ = ro
2G∗ A R

rf 2 (A.16)

G∗ = rf
2(

ro R + rf
) (

ro A + rf
) (A.17)
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Table A.1
Summary of the biochemical reactions and reaction rates for the competition model

Biochemical Reactions Descriptions Reaction Rates

G + R
ro�
rf

GR Gene Repression v1 = roGR, v2 = rf GR

G + A
ao�
af

GA Gene Activation v3 = aoGA, v4 = af GA

GA
ηma−→ M mRNA Transcription by GA v5 = ηmaG

A
τm

G
ηm0−→ M mRNA Transcription by G v6 = ηm0 Gτm

M
αp−→ P Protein Translation v7 = αpMτp

M
βm−→ � mRNA Degradation v8 = βmM

P
βp−→ � Protein Degradation v9 = βpP

dGR

dt
= v1 − v2,

dGA

dt
= v3 − v4,

dM

dt
= v5 + v6 − v8,

dP

dt
= v7 − v9

Table A.2
Summary of the biochemical reactions and reaction rates for the noncompetive model

Biochemical Reactions Descriptions Reaction Rates

G + R
ro�
rf

GR Gene Repression v1 = roGR, v2 = rf GR

G + A
ao�
af

GA Gene Activation v3 = aoGA, v4 = af GA

GA + R
aro�
arf

GAR Gene Activation/Repression v8 = aroG
AR, v9 = arf GAR

GR + A
rao�
raf

GAR Gene Activation/Repression v10 = raoG
RA, v11 = raf GAR

GA
αma−→ M mRNA Transcription v5 = αmaG

A
τm

G
αm0−→ M mRNA Transcription v6 = αm0 Gτm

GAR
αmar−→ M mRNA Transcription v7 = αmar G

AR
τm

M
αp−→ P Protein Translation v12 = αpMτp

M
βm−→ � mRNA Degradation v13 = βmM

P
βp−→ � Protein Degradation v14 = βpP

dGR

dt
= v1 + v11 − v10 − v2,

dGA

dt
= v3 + v9 − v8 − v4,

dGAR

dt
= v8 + v10 − v9 − v11,

dM

dt
= v5 + v6 + v7 − v13,

dP

dt
= v12 − v14

If we further assume that the unbinding rate
constant is κ times the binding constant, that is
rf = κ r0. Then, the steady state equations simplify
to

GR∗ = κ R

(A + κ) (R + κ)
(A.18)

GA∗ = κ A

(A + κ) (R + κ)
(A.19)

GAR∗ = A R

(A + κ) (R + κ)
(A.20)

G∗ = κ2

(A + κ) (R + κ)
(A.21)

From Equation (A.12),

M∗ = 1

βm

(αm0G
∗ + αmaG

A∗ + αmarG
AR∗) (A.22)

= αm0κ
2 + αmaκ A + αmar A R

βm (A + κ) (R + κ)
(A.23)

Then by Equation (A.13),

P∗ = αp

βp

M∗

= αp

βp

(
αm0κ

2 + αmaκ A + αmar A R

βm (A + κ) (R + κ)

)
(A.24)
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A.1.3. Heat maps for the response metrics for the competitive and noncompetitive binding mechanisms

Repression Figures

Fig. A.1. Heat maps for the comparison of three metrics (mid-protein level mP , time to reach mid-protein level mT and duration D)
describing the dynamics of competitive (CA− , CR+ ) and noncompetitive (NA− , NR+ ) inhibition mechanisms. In these simulations, the signal
amplitude γ and persistency k range from a 10-fold to a 100-fold change when ro = 0.001. All the other parameters were held constant at
their values listed in Section 3.
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Fig. A.2. Heat maps for the comparison of the differences of three metrics (mid-protein level mP , time to reach mid-protein level mT

and duration D) showing the dynamics of competitive (CA− , CR+ ) and noncompetitive (NA− , NR+ ) inhibition mechanisms. For all these
simulations, the signal amplitude γ and persistency k are changed from 10-100 fold when ro = 0.001 while all the other parameters were
kept constant at their estimated values listed in Section 3.
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Fig. A.3. Heat maps for the comparison of three metrics (mid-protein level mP , time to reach mid-protein level mT and duration D)
describing the dynamics of competitive (CA− , CR+ ) and noncompetitive (NA− , NR+ ) inhibition mechanisms. In these simulations, the signal
amplitude γ and persistency k range from a 10-fold to a 100-fold change when ro = 0.01. All the other parameters were held constant at
their values listed in Section 3.
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Fig. A.4. Heat maps for the comparison of the differences of three metrics (mid-protein level mP , time to reach mid-protein level mT

and duration D) showing the dynamics of competitive (CA− , CR+ ) and noncompetitive (NA− , NR+ ) inhibition mechanisms. For all these
simulations, the signal amplitude γ and persistency k are changed from 10-100 fold when ro = 0.01 while all the other parameters were
kept constant at their estimated values listed in Section 3.
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Fig. A.5. Heat maps for the comparison of three metrics (mid-protein level mP , time to reach mid-protein level mT and duration D)
describing the dynamics of competitive (CA− , CR+ ) and noncompetitive (NA− , NR+ ) inhibition mechanisms. In these simulations, the signal
amplitude γ and persistency k range from a 10-fold to a 100-fold change when ro = 0.1. All the other parameters were held constant at their
values listed in Section 3.
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Fig. A.6. Heat maps for the comparison of the differences of three metrics (mid-protein level mP , time to reach mid-protein level mT

and duration D) showing the dynamics of competitive (CA− , CR+ ) and noncompetitive (NA− , NR+ ) inhibition mechanisms. For all these
simulations, the signal amplitude γ and persistency k are changed from 10-100 fold when ro = 0.1 while all the other parameters were kept
constant at their estimated values listed in Section 3.
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Activation Figures

Fig. A.7. Heat maps for the comparison of three metrics (mid-protein level mP , time to reach mid-protein level mT and duration D)
describing the dynamics of competitive (CA+ , CR− ) and noncompetitive (NA+ , NR− ) activation mechanisms. In these simulations, the signal
amplitude γ and persistency k range from a 10-fold to a 100-fold change when ro = 0.001. All the other parameters were held constant at
their values listed in Section 3.
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Fig. A.8. Heat maps for the comparison of the differences of three metrics (mid-protein level mP , time to reach mid-protein level mT

and duration D) showing the dynamics of competitive (CA+ , CR− ) and noncompetitive (NA+ , NR− ) activation mechanisms. For all these
simulations, the signal amplitude γ and persistency k are changed from 10-100 fold when ro = 0.001 while all the other parameters were
kept constant at their estimated values listed in Section 3.
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Fig. A.9. Heat maps for the comparison of three metrics (mid-protein level mP , time to reach mid-protein level mT and duration D)
describing the dynamics of competitive (CA+ , CR− ) and noncompetitive (NA+ , NR− ) activation mechanisms. In these simulations, the signal
amplitude γ and persistency k range from a 10-fold to a 100-fold change when ro = 0.01. All the other parameters were held constant at
their values listed in Section 3.



N. Yildirim et al. / Differential transcriptional regulation by alternatively designed mechanisms 125

Fig. A.10. Heat maps for the comparison of the differences of three metrics (mid-protein level mP , time to reach mid-protein level mT

and duration D) showing the dynamics of competitive (CA+ , CR− ) and noncompetitive (NA+ , NR− ) activation mechanisms. For all these
simulations, the signal amplitude γ and persistency k are changed from 10-100 fold when ro = 0.01 while all the other parameters were
kept constant at their estimated values listed in Section 3.
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Fig. A.11. Heat maps for the comparison of three metrics (mid-protein level mP , time to reach mid-protein level mT and duration D)
describing the dynamics of competitive (CA+ , CR− ) and noncompetitive (NA+ , NR− ) activation mechanisms. In these simulations, the signal
amplitude γ and persistency k range from a 10-fold to a 100-fold change when ro = 0.1. All the other parameters were held constant at their
values listed in Section 3.
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Fig. A.12. Heat maps for the comparison of the differences of three metrics (mid-protein level mP , time to reach mid-protein level mT

and duration D) showing the dynamics of competitive (CA+ , CR− ) and noncompetitive (NA+ , NR− ) activation mechanisms. For all these
simulations, the signal amplitude γ and persistency k are changed from 10-100 fold when ro = 0.1 while all the other parameters were kept
constant at their estimated values listed in Section 3.


