Africa Harnessing a Broadband Boom

Linda Schmid
Consultant on International Trade and Development, Trade in Services Officer, International Trade Center, Geneva
E-mail: LSchmiddc@gmail.com

1. Introduction

Africa encompasses 53 countries with almost 1 billion people on a vast continent of 30 million square kilometers. In the last decade, Africa experienced a mobile telephone revolution. The continent “leapfrogged” fixed-line telephone systems with mobile telephony and is on the cusp of a broadband boom. As undersea cables are lit and terrestrial fiber networks expand, Africa is poised to experience an exponential increase in online capacity. The deployment of wireless technologies and an effective regulatory environment can harness the broadband boom for economic growth including employment diversification, cross-border trade, and more substantial engagement in the global services economy.

2. Mobile versus fixed-line telephony

The rapid growth of mobile telephony on the continent offers important lessons for broadband expansion. In Africa, mobile connections have grown at an exceptional rate while fixed line penetration remains stagnant. In a comparatively large economy such as South Africa, only 10% of the population has a working fixed-line phone. “Nigeria, South Africa, Egypt, Morocco, Algeria, and Kenya are the primary mobile markets,” with average penetration rates of 33%, according to Fitch Ratings.1 Broadband development is in a nascent stage in these economies. The chart below demonstrates the significant penetration of mobile telephony compared to fixed and broadband services in select economies.

The exceptional growth of mobile telephony is largely due to regulatory reform and technological advances. Across the continent mobile telephony was opened to competition while provision of fixed line services largely remained with incumbents. For example, Tanzania uses competition, private sector provision, and foreign investment as a means to develop its telecommunications market. “Mobile telephony has enjoyed excellent growth since the introduction of competition in the subsector in 2000.”2 In 2008, mobile subscribers topped 10 million in Tanzania and private providers introduced wireless broadband services as well as voice over Internet protocol telephony.3 Expanding online access will similarly depend on an effective regulatory environment that prevents abusive market practices by providers and promotes investment in a rules-based environment.

3. International connectivity

New undersea cables and satellite investment will dramatically increase international connectivity. Limited international connectivity via satellite and submarine cable coupled with monopoly pricing severe-

Table 1
Sample telecommunication statistics (2008E)

<table>
<thead>
<tr>
<th>Country</th>
<th>Mobile subscribers (m)</th>
<th>Mobile penetration (%)</th>
<th>Fixed subscribers (m)</th>
<th>Fixed penetration (%)</th>
<th>Broadband subscribers (m)</th>
<th>Broadband penetration (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morocco</td>
<td>22.3</td>
<td>72</td>
<td>2.8</td>
<td>9</td>
<td>0.7</td>
<td>11</td>
</tr>
<tr>
<td>Egypt</td>
<td>38.1</td>
<td>55</td>
<td>12.1</td>
<td>15</td>
<td>0.6</td>
<td>3</td>
</tr>
<tr>
<td>South Africa</td>
<td>48.1</td>
<td>100</td>
<td>4.6</td>
<td>10</td>
<td>0.9</td>
<td>1</td>
</tr>
<tr>
<td>Tunisia</td>
<td>4.3</td>
<td>91</td>
<td>1.3</td>
<td>12</td>
<td>0.2</td>
<td>11</td>
</tr>
<tr>
<td>Kenya</td>
<td>12.9</td>
<td>39</td>
<td>.3</td>
<td>1</td>
<td>n.a.</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: penetration rates based on population.

Source: Fitch Ratings (2009).4

Table 2
Undersea cables under construction

<table>
<thead>
<tr>
<th>Cable system</th>
<th>Launch</th>
<th>Length</th>
<th>Capacity</th>
<th>Geographic linkages</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEACOM:</td>
<td>Sea cable System</td>
<td>15,000 km</td>
<td>1.28 Tbps</td>
<td>South Africa, Mozambique, Madagascar, Tanzania, Kenya, Ethiopia to India and Europe5</td>
</tr>
<tr>
<td>TEAMs:</td>
<td>East Africa Marine System</td>
<td>5,000 km</td>
<td>1.2 Tbps</td>
<td>Kenya – United Arab Emirates6</td>
</tr>
<tr>
<td>EASY:</td>
<td>East African Submarine Cable System</td>
<td>10,800 km</td>
<td>1.4 Tbps</td>
<td>Djibouti, Somalia, Mozambique with links to Lesotho, Zimbabwe, Malawi, Botswana, Uganda and Rwanda7</td>
</tr>
<tr>
<td>Main One</td>
<td>May 2010 on an open access basis</td>
<td>7,000 km</td>
<td>1.28 Tbps</td>
<td>Portugal – South Africa with landings on West Coast8</td>
</tr>
<tr>
<td>WACS:</td>
<td>2011 on an open access basis</td>
<td>14,000 km</td>
<td>3.84 Tbps</td>
<td>South Africa to UK with landings in Namibia, Angola, the Democratic Republic of Congo, Cameroon, Nigeria, Togo, Ghana, Côte d’Ivoire, Cape Verde, the Canary Islands, and Portugal9</td>
</tr>
</tbody>
</table>

By constrained broadband international connectivity to the continent. For example, maps of global undersea fiber optic cables demonstrate the severe capacity constraints Africa faced compared to transatlantic, transpacific, intra-Asia, and US Latin America routes in 2006. In that year, Europe-Africa-Asia routes provided only 87.5 gigabytes per second (Gbps) of lit submarine cable capacity compared to 2,982.7 Gbps for the transatlantic.10 The price of international bandwidth capacity remains high, “for example, in the fourth quarter of 2008 a 155 Mbps STM-1 line from London to Johannesburg cost 50 to 60 times as much as a comparable circuit between London and New York.11 New infrastructure coupled with an effective regulatory environment will transform the reach and cost of broadband services.

3.1. Undersea cables

Pent-up demand for voice and value-added services is driving investment in undersea and terrestrial infrastructure. Five undersea cables are under construction with two coming online in 2009. For example, “Sea-com” will link South Africa, Mozambique, Madagascar, Tanzania, Kenya, and Ethiopia to India and Europe at 1.28 terabits per second (Tbps). The business model for this private venture extends beyond the shoreline with the acquisition of national and regional licenses. The chart below offers a snapshot of the new undersea cable landscape. The lighting of undersea cables

4Bantis (2009).
5http://www.southafrica.info.
will dramatically increase fiber-optic capacity to the continent.

3.2. Open access

A broad range of national, regional and foreign investors are financing these undersea cables. For example, the WACs consortium includes, “Angola Telecom, Broadband Infraco, Cable & Wireless, MTN, Portugal Telecom, Sotelco, Tata Communications, Telecom Namibia, Telekom SA, Togo Telecom and Vodacom.”

All the undersea cables will launch on an open access basis allowing interconnection at commercial rates. For example, Seacom “will provide African retail carriers with equal and open access to inexpensive bandwidth, removing the international infrastructure bottleneck.”

Table 3

Sample of wireless technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WiMax</td>
<td>WiMax broadband technology provides portable or fully mobile wireless broadband Internet access as well as backhaul capabilities.</td>
</tr>
<tr>
<td>LTE</td>
<td>LTE is a fourth-generation (4G) wireless networking technology that enables download speeds of 100 Mbps and can act as alternatives to DSL, cable, satellite, and other traditional broadband offerings.</td>
</tr>
<tr>
<td>EVDO</td>
<td>EVDO enables wireless connection to the Internet and “relies on a signal from a wireless tower rather than a physical connection.”</td>
</tr>
</tbody>
</table>

3.3. Terrestrial infrastructure

Making broadband a reality requires terrestrial infrastructure. “Ghana, Uganda, Nigeria, Rwanda are undertaking internal fiber optic network rollouts at the national level.” Kenya built a national terrestrial fiber optic network. Mobile telephone companies are also investing in terrestrial backbone to provide “backhaul” operations. For example, one of Africa’s largest mobile operators, MTN will, “improve capacity of its existing networks, strengthen its [second-generation] 2G and [third-generation] 3G sites and . . . roll out fiber optic networks.” Substantial investment in terrestrial infrastructure will boost online access.

3.4. Mobile Internet connectivity

Wireless advances can help improve online access. The trajectory of the mobile market and the continued weakness of fixed-line infrastructure suggest that expanding online access will depend heavily on the availability of mobile Internet connectivity. The chart below identifies technologies that are being deployed on the continent to provide mobile Internet connectivity. “MTN Uganda, UTL and Zain have already embarked on a rapid deployment of mobile Internet with a major shift to higher speeds to develop mobile content that specifically targets the rural consumer.” Improving transmission from the handset to the mobile operator’s network is a priority.

The success of mobile telephony has attracted the attention of policymakers to the social and commercial value of effective communications. Telecommunications represent as much as 2.5% of gross domestic product (GDP) in many economies in Africa and generate substantial tax revenues in sub-Saharan Africa.

17Bantis (2009).
The industry is an important source of employment, an incentive for students to study science and technology, and a source of funding for philanthropic activities.

4.1. Employment diversification

The telecommunications industry is contributing to employment diversification. For example, Kenya Safaricom established a ”customer call centre as competition in the mobile telephone sector shifts from pricing to quality of service.”23 The call center can employ 1000 staff per shift. The chart below identifies common employment positions in the communications industry.

<table>
<thead>
<tr>
<th>Professional, management, business, and financial</th>
</tr>
</thead>
<tbody>
<tr>
<td>– accountants and auditors</td>
</tr>
<tr>
<td>– computer software engineers</td>
</tr>
<tr>
<td>– electrical and electronic engineering technicians</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Installation, maintenance, and repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>– managers of mechanics, installers, repairs</td>
</tr>
<tr>
<td>– equipment installers and repairs</td>
</tr>
<tr>
<td>– electrical and electronics repairs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Office and administrative support</th>
</tr>
</thead>
<tbody>
<tr>
<td>– bill and account collectors</td>
</tr>
<tr>
<td>– marketing and retail sale representatives</td>
</tr>
<tr>
<td>– customer service representatives</td>
</tr>
<tr>
<td>– secretaries and administrative assistants</td>
</tr>
</tbody>
</table>

4.2. Establishment of technology institutes

The demand for communication professionals prompted the establishment of technology institutes on the continent. For example, Ghana Telecom University College (GTUC) and Zhong Xing Telecommunications (ZTE) are “establishing a training center with a practice laboratory... for students and lecturers.”25 The expanding communications industry offers educational opportunities at technical training institutes.

4.3. Impact on commerce

Mobile telephony has helped to transform the economy in many countries. For example, price information is more readily available to farmers and small merchants. "In Malawi, small entrepreneurs are engaging in cross-border financial transactions that heretofore would have been impossible.”26 Many governments are also using electronic systems to facilitate civil registration procedures and business licensing requirements.

The expansion of mobile telephony has brought unique services to consumers who may not have had access to a bank, computer, or fixed-line telephone previously. For example, the “non-banked” can use mobile money transfer services to manage financial transactions without using a traditional bank. In Kenya, the mobile provider “Zane is set to offer its new service, Zap, and enter the mobile money transfer market.”27 The chart below illustrates the type of transactions and practical applications low-cost handsets and pre-paid services allow.

<table>
<thead>
<tr>
<th>Mobile service for the “non-banked”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transaction</td>
</tr>
<tr>
<td>Purpose</td>
</tr>
<tr>
<td>Mobile money transfer</td>
</tr>
<tr>
<td>– cash to mobile</td>
</tr>
<tr>
<td>– mobile to cash</td>
</tr>
<tr>
<td>– mobile to mobile</td>
</tr>
<tr>
<td>– pay bills and pay for goods and services</td>
</tr>
<tr>
<td>– receive money and send money to friends and family</td>
</tr>
<tr>
<td>– send and receive money to bank accounts</td>
</tr>
<tr>
<td>– increase air time on account28</td>
</tr>
</tbody>
</table>

Mobile telephone operators provide “pay-as-you-go” platforms to consumers with an appetite for communications and a wide variety of other services supplied electronically. Mobile telecom companies have built subscriptions on voice services over the last 10 years and have begun to offer interactive voice recognition and mobile content such as games, news, and

Broadband growth will also support exchange of the rich cultural and social media on the continent.

4.4. Conduit for data heavy research and development services (R&D)

Broadband build-out will help grow research and development services across the continent. As an example, the EC financed GeANT2 network30 links “30 million research and education users in 34 countries”31 and recently established a high-speed link with the UbuntuNet Alliance,32 in sub-Saharan Africa. The Alliance includes traditional educational groups such as:

- Kenya Education Network (KENET)
- Malawi Research and Education Network (MAREN)
- Mozambique Research and Education Network (MoRENet)
- Tertiary Education Network of South Africa (TENET)
- Tanzania Education and Research Network (TERNET)
- Research and Education Network of Uganda (RENU)

Expanded online capacity will enable these networks to interact and exchange data in real time and engage in public and commercial R&D services. For example, South Africa has a global footprint in R&D services with 23% of R&D funds originating from abroad.33 R&D offers employment for scientists and engineers and advances innovation in agricultural production, manufacturing, and health services.

4.5. Corporate philanthropy

Telecommunications firms reinvest in the continent via direct and philanthropic activities. In addition to providing mobile services, firms are joining other corporate partners such as airlines and banks to become formidable supporters of sports and the arts. The chart below illustrates examples of corporate support to advance public health, promote education, and raise standards in media.

\begin{table}[h]
\centering
\begin{tabular}{|l|l|l|}
\hline
Company & Sector & Example \\
\hline
MTN & Foundations & Established charitable foundations in 11 countries \\
& Environmental initiatives & MTN offers recycling facilities for used mobile phones and batteries \\
& Health activities & Malaria Legacy Initiative for 2010 is intended to ensure 100% coverage and use of anti-malaria mosquito bed nets in affected African countries \\
Vodacom & Support to the media & Vodacom Journalist of the Year Awards reward excellence in journalism across all media fields \\
& Scholarships in ICT related fields & Established to address skills shortage in science and technology \\
& Health activities & Financing for hospital renovation, as well as pediatric, and optometry procedures. \\
\hline
\end{tabular}
\caption{Philanthropic activities}
\end{table}

Sources: MTN website34 and Vodacom annual report (2007)35.

5. Regulatory challenges

Governments have worked to build regulatory competence to ensure continued communications investment and important social and economic returns. At the same time, consumers in African countries spend a much greater proportion of their income on communications than consumers in OECD countries: in Kenya consumers spend 17% of income, in Tanzania 15.4%, in Senegal 14.2%, in South Africa 7.4%; by comparison, in the OECD, consumers only spend 2.5% of income.36 National regulators must work adeptly to improve the functioning of the market to reduce costs and improve the quality and scope of communication services. Regulatory authorities must grapple with several challenges to ensure that national and regional communications networks operate seamlessly. Regulatory authorities must ensure institutional sustainability while they face a rapidly evolving market and the need for regional regulatory cooperation. Furthermore, regulators are relatively new to the business. “In 1990, Mauritius was the only African nation with an independent regulatory authority.” The chart below identifies those countries with independent regulators as of 2007.

30http://www.geant2.net.
32http://www.ubuntu.net.
34http://www.mtn.com.
Table 7
African countries with independent regulators 2007

<table>
<thead>
<tr>
<th>Country</th>
<th>Côte D’Ivoire</th>
<th>Madagascar</th>
<th>Senegal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algeria</td>
<td>Egypt</td>
<td>Malawi</td>
<td>Seychelles</td>
</tr>
<tr>
<td>Benin</td>
<td>Ethiopia</td>
<td>Mali</td>
<td>Sierra Leone</td>
</tr>
<tr>
<td>Botswana</td>
<td>Eritrea</td>
<td>Mauritania</td>
<td>South Africa</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>Gabon</td>
<td>Mauritius</td>
<td>Sudan</td>
</tr>
<tr>
<td>Burundi</td>
<td>Ghana</td>
<td>Mozambique</td>
<td>Tanzania</td>
</tr>
<tr>
<td>Cameroon</td>
<td>Guinea</td>
<td>Morocco</td>
<td>Togo</td>
</tr>
<tr>
<td>Cape Verde</td>
<td>Guinea-Bissau</td>
<td>Namibia</td>
<td>Tunisia</td>
</tr>
<tr>
<td>Central African Republic</td>
<td>Kenya</td>
<td>Niger</td>
<td>Uganda</td>
</tr>
<tr>
<td>Chad</td>
<td>Lesotho</td>
<td>Nigeria</td>
<td>Zambia</td>
</tr>
<tr>
<td>Congo</td>
<td>Liberia</td>
<td>Rwanda</td>
<td>Zimbabwe</td>
</tr>
</tbody>
</table>

5.1. Institutional sustainability

Regulatory activities require sustained technical expertise, secure financial support, and institutional independence. Effective regulatory oversight is a universal challenge with regulatory responsibilities covering fundamental issues such as cost and quality of service as well as more complex matters including adjudication of interconnection disputes, enforcement of interconnection agreements, licensure, and frequency management.38 With adequate skills and enforcement capabilities, regulators can improve the market. For example, the communications Authority of Zambia found that carriers were not providing adequate services or “value for money,” consequently firms responded with increased infrastructure investment.39 Stakeholders interested in a vibrant communications infrastructure such as government, business, academia, consumers, as well as the press can recognize the importance of effective and high quality regulatory authorities.

5.2. Grappling with evolving communication issues

Broadband deployment raises new policy issues for regulatory authorities across the continent. Regulatory authorities work to effectively address transit issues, international gateway licensing, unified licenses, and improvements in radio spectral efficiency.40 For example, landlocked countries such as Mali, Niger, Chad, the Central African Republic, Zaire, Zambia, Zimbabwe, and Botswana require cross-border fiber optic build-out and Internet connection agreements with fiber network providers on commercially reasonable terms. Regulatory intervention to make sure that cross-border interconnection is on a commercially reasonable basis is a primary concern in expanding online access. Regulatory cooperation on a bilateral and regional basis can help authorities grapple with evolving issues through information sharing and consultation.

5.3. Using regional regulatory cooperation to improve the market

Regulatory cooperation can help create a positive environment for cross-border broadband deployment. For example, regulatory authorities can exchange experts, compare regulatory review processes, and specific rules and regulations to reduce friction due to different practices. Regulatory authorities can work cooperatively to provide a transparent, rules-based, environment for cross-border operators.

5.4. Balancing regulatory incentives with punitive measures

Regulatory agencies use incentives and punitive measures to achieve national communication objectives. For example, some regulatory agencies have stepped up disciplinary actions. The “Information and Communication Technologies Authority (ICTA) of Mauritius asked the country’s telecom carriers to reduce their mobile and international calling tariffs,” when carriers failed to respond to ICTA inquiries regarding interconnection charges.41 National regulators play an important role in ensuring that network providers offer interconnection arrangements on commercially reasonable terms. Regulators can become adept at balancing incentives with disciplinary measures by working with counterparts abroad.

5.5. Foreign investment

Foreign investors remain an important source of communications investment. Active trade facilitation that creates dialogue between businesses and governments can help address commercial issues that impede trade. For example, discriminatory regulatory policies or regulatory fragmentation can inhibit investment. Theft is also a concern when building cell towers or laying copper cables. Investors are looking for pro-competitive market policies, including technology neutrality, nondiscrimination, as well as rational investment requirements. Governments can also reduce or eliminate tariffs at the border on communications equipment to reduce the cost of infrastructure investment and maintenance.

6. Harnessing broadband

With wireless technologies and an effective regulatory environment, broadband expansion will create substantial economic growth and access to important services. Broadband expansion in Africa will have a substantial impact across the economy. First and foremost communication networks will provide real-time access to data and important services such as telemedicine and tele-education on a large scale.

A high-speed communications infrastructure will propel access to the regional and global services economy. The chart below highlights the benefits of a few service industries that are traded globally over communications systems. Broadband services will help to localize provision of important services. With broadband access, an exponential increase in access to telemedicine, tele-education and other important services will take place.

<table>
<thead>
<tr>
<th>Sectors</th>
<th>Examples of Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education</td>
<td>- Higher education and adult education services available online enable individuals to obtain important educational credentials to effectively participate in the evolving, knowledge-based economy.</td>
</tr>
<tr>
<td>Health</td>
<td>- Online health services can help sustain the well-being of a nation’s people. Online health information can help dampen the severe HIV/AIDS epidemic striking the continent.</td>
</tr>
<tr>
<td>Environment</td>
<td>- Remote environmental services can help reduce the contamination of air, water, and soil and enable state-of-the-art waste reduction and treatment processes as well as waste-to-energy systems.</td>
</tr>
<tr>
<td>Tourism</td>
<td>- Environmental services are also uniquely tied to tourism and a factor in sustaining the tourism industry.</td>
</tr>
<tr>
<td></td>
<td>- Online access will improve marketing and direct contact with tourists.</td>
</tr>
<tr>
<td></td>
<td>- Tourism is a primary export for many developing countries. “In 2007, travel receipts for developing countries reached $285 billion, around 33% of their total exports of commercial services.”</td>
</tr>
</tbody>
</table>

44Nick Fetcho, TIA, Interview by Author, Washington DC, May 18, 2009

Table 8, continued

<table>
<thead>
<tr>
<th>Sectors</th>
<th>Examples of Benefits</th>
</tr>
</thead>
</table>
| Business | Least-developed countries experienced 13% annual growth in tourism since 2000.
| | Accounting services provided online can enable a clear assessment of corporate health and public sector finances. |
| | Computer & related services provided online can improve productivity across the economy and represent an important source of job creation. |
| | Legal services provided online can facilitate engagement in commercial contracts and mitigate investment risk. |

7. Conclusion

The exceptional communications growth in Africa albeit from a very low starting point reflects a confluence of factors. Technological innovation combined with investment and a basic level of political cooperation has enabled the continent to leapfrog stages of telecommunications development. “African mobile markets are currently growing by about 50% in value every year, as handset costs continue to fall and 3G technology becomes more common.”

Effective regulatory authorities will play a critical role in harnessing the broadband boom by ensuring a high quality and reasonable cost of service, prioritizing interconnection arrangements on commercially reasonable terms, and adeptly managing and enforcing universal service programs and provisions.

Note: Linda Schmid is a contributing author to Managing the Challenges of WTO Participation, Cambridge University Press, 2005.

References

Websites:
http://www.alcatel-lucent.com
http://www.evdoinfo.com
http://www.geant2.net.

http://www.mainonecable.com
http://www.mtn.com
http://www.southafrica.info
http://www.ubuntunet.net