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Abstract. Starting from a compositional operational semantics afdition P Systems we have

previously defined, we face the problem of developing anragiization that is sound and complete
with respect to some behavioural equivalence. To achiegegthal, we propose to transform the
systems into a normal form with an equivalent semantics. #xstsstep, we introduce axioms which

allow the transformation of membrane structures into flatmmenes. We leave as future work the
further step that leads to the wanted normal form.
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1. Introduction

We have recently defined a compositional operational seéosaoitP Systems [13] as a labeled transition
system (LTS) [3]. The class of P Systems we have consideestharso calledransition P Systemsith
dissolving rules and with cooperative evolution rules. Ha tlefinition of the semantics, P Systems are
seen asgeactive systemg.0], namely as systems that can receive stimuli from anrenwent and can
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react to these stimuli, possibly by sending some reply bathke environment. In particular, membranes
are seen as the entities that can receive stimuli, in termbjetts, from an environment. The environ-

ment of a membrane can be another membrane containing itaaitghsome rules which send objects

into it. As an environment of a membrane we consider alsor atteenbranes possibly contained in it and

having some rules which send objects out. The objects reddiy a membrane from the environment

could enable the application of some rules of the membraatetuld eventually send some objects back
to the environment, namely to outer and inner membranes.

The LTS we have defined allows us to observe the behaviour wilbrenes in terms of objects sent to
and received from inner and external membranes. A stateedfB is a configuration of the considered
P System, and a transition from a state to another descnibegezution step of the P System, in which
rules are applied according to maximal parallelism in & thembranes of the system. Transitions are
labeled with the multiset of objects received from the emwinent, the multiset of objects sent to outer
membrane, and the multisets of objects sent to inner merabliarthe described execution step. Other
information carried by labels is needed to build the LTS irompositional way. This means that the
semantics of a complex system can be inferred from the séwanitits components.

In [3] we have proved that some well-known behavioural egjaivces such as trace equivalence and
bisimulation defined on our LTS are congruences. This mdaatsiftwe can prove that a membrane
system that is a component of some bigger system is behallip@guivalent to another membrane
system, then the former can be replaced with the latter ibitgpger system without changing the global
behaviour. In other words, there exists no environment iickvithe bigger system with the original
component reacts differently to stimuli with respect to shene system with the replaced component.

Behavioural equivalences are powerful analysis tools e étiow us to compare the behaviours of
two systems and to verify properties of a system by asseslsengquivalence between such a system
and another one known to satisfy those properties. Howpk@ring behavioural equivalence is not easy
because the semantics of a system often consists of infiatessand infinite transitions. For this reason,
it is usually important to find an axiomatization of some heébaral equivalence, namely a sound and
complete characterization of the equivalence in terms ioinag on the syntax of systems. In this way the
equivalence between two systems could be proved by shohétghtere exists a sequence of applications
of such axioms that transforms one system into the others allows the proof of the equivalence to
be performed without considering the (possibly complexhaatics of the compared systems, and this
usually favors the development of tools for the comparisissystems.

We would like to define a sound and complete axiomatizatiothefequivalences we have given
in [3]. Itis not easy to prove soundness and completeness akematization, hamely that axioms
relate behaviourally equivalent systems and that all biebeally equivalent systems are in the relation
characterized by the axioms. In particular, completenessfps usually difficult. What can help to
prove this result is a notion of normal form to which all thensimlered systems can be reduced. This
could allow the set of axioms to be split into two subsets: amesisting of the axioms that can be used
to bring the systems into their normal form and the other isting of axioms that relate systems in
normal form. This, in turn, could allow the proof of compleéss to be simplified by considering only
the axioms in the second set.

In this paper we perform the first steps towards the defingfanormal form for P Systems preserv-
ing behavioural equivalences. In particular, we face tloblem of determining the membrane structure
of the normal form of a system. We start by considering P Systevithout dissolving rules, and we
show, by giving some axioms, that any P System in this classearansformed into an equivalent P
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System consisting of only one membrandlg§asystem). In order to obtain this result we slightly enrich
the membranes of a P System, namely we associate with eachrar@marinterface that is a set of
objects that are allowed to be received by the membrane froex@&rnal membrane.

We also consider P Systems with dissolving rules, and we ghypgiving one more axiom, that any
P System in this class whose outmost membrane does notrcamiadissolving rule, can be transformed
into a flat system. In order to obtain this result we need tesicar P Systems in which evolution rules
may have promoters and inhibitors.

These results and the flattening technique we define in oodebtain them, can be used not only
in the context of the definition of an axiomatization of oumsmtics. For instance, one interested in
developing some analysis or verification technique on PeBystcould develop such a technique on flat
systems and use our flattening method to compile generamgsnto flat ones.

The results we obtain in this paper about the equivalencefSystem and of its corresponding
flat form, are based on the notion bisimulation[11, 12]. A bisimulation is an equivalence relation
on states of an LTS that relates states from which transitigith the same labels can be performed,
reaching states that are again related by the bisimulalibis means that bisimilar states of an LTS are
able to simulate each other step—by-—step.

We defined bisimulation for our semantics of P Systems in [I8].this case, states of the LTS
correspond to states of the computation of a P System, ansiticans correspond to computation steps.
The fact that we use bisimulation to prove the equivalena@PBystem with its corresponding flat form
means that we prove that the flat form preserves the behavidhe P System at each computation step.
We remark that bisimulation on P Systems is a stronger betiealiequivalence than the commonly used
ones based on the comparison of the generated/acceptechimsy

This paper is structured as follows. In Section 2 we recaldbfinition of P Systems and of the
syntax and the semantics of the P Algebra (the algebraidiootaf P Systems we introduced in [3]).
In Section 3 we give some basic axioms on terms of the P Algelor&ections 4 and 5 we give our
flattening technique for P Systems without and with dissgviules, respectively. Finally, in Section 6
we draw some conclusions and discuss possible future gevelats.

Related work Operational semantics for P Systems have been proposed & [2 9]. All these
semantics are not compaositional and have no notion of oabkrbehaviour. In fact, they have not been
defined with the aim of developing behavioural equivalendearticular, [2] aims at simplifying the
development of an interpreter of P Systems proved to be aor@] aims at proving the decidability
of the divergence problem for the considered variant of ReBys, [7] aims at describing the causal
dependencies occurring between applications of rules oSgdfem, and in [9] a formal framework is
proposed to describe a large number of variants of P Systems.

The flattening result we obtain by considering P Systemsauitlilissolving rules is similar to the
result given in [4], where a notion gbmputational encoding introduced and used to show thatPBR
Systems (PBR Systems with > 0 membranes) can be simulated yPBR Systems (PBR Systems
with no membranes). We refer the reader to [5] for an intrtéiducto PBR Systems. The difference
between the result given in [4] and ours is that the axioms iwe ® transform a P System into its
flat form are proved to preserve our compositional semartiiesce they are sound with respect to any
behavioural equivalence. The flat system we obtain canceplze original one in any bigger system
without changing the global behaviour.
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Another normal form of P Systems is introduced in [14], whielie shown that any P System of
degreek (namely, in which the depth of the membrane nesting tré¢ éonsisting of a composition of
membranes can be reduced to an equivalent P System of degtittethe same number of membranes.
In this case the P System in normal form is equivalent to tiggral one in the sense that it can generate
the same language, where a word of the language is the coatate of the objects sent outside the skin
membrane during the execution of the system. This meangihatiginal system and the one in normal
form can be considered as equivalent even if one of the twfoqpes additional steps in which no objects
are sent out of the skin. The notion of equivalence we consieee, instead, is stronger. In fact, in order
to ensure that a system in normal form can always replaceigimal system in any context, we need to
require that the two systems are step—by—step equivalent.

2. P Systems and the P Algebra

In this section we recall the definition of P Systems [13] afiithe P Algebra [3]. The class of P Systems
we consider includes cooperative evolution rules, dissglvules and rule promoters and inhibitors.
Moreover, we extend this class of P Systems with a notion ohbrane interface. We shall adapt the
syntax and semantics of the P Algebra with respect to [3] &b déh these features.

2.1. P Systems

A P System consists offderarchy of membranahat do not intersect, with a distinguishable membrane,
called theskin membranesurrounding them all. As usual, we assume membranes tobleéeth by
natural numbers. Given a set of objeétsa membranen contains a multiset abbjectsin V, a set of
evolution rules and possibly other membranes, calild membranesr is also called thgparentof

its child membranes). Objects represent molecules swiigpimia chemical solution, and evolution rules
represent chemical reactions that may occur inside the mamalrontaining them. For each evolution
rule there is a multiset of objects representing the reé&gtamd a multiset of objects representing the
products of the chemical reaction. A rule in a membranean be applied only to objectsin, meaning
that the reactants should be preciselyrinand not in its child membranes. The rule must contain target
indications, specifying the membranes where the new abroduced by applying the rule are sent. The
new objects either remain i, or can be sent out of, or can be sent into one of its child membranes,
precisely identified by its label. Formally, the productsaafile are denoted with a multiset miessages

of the following forms:

e (v, here), meaning that the multiset of objeatgproduced by the rule remain in the same mem-
branem;

e (v,out), meaning that the multiset of objeatgproduced by the rule are sent outrof

e (v,in;), meaning that the multiset of objeatproduced by the rule are sent into the child mem-
branel.

An evolution rule may have sonmomotersand soménhibitors. Promoters are objects that are required
to be present and inhibitors are objects that are requirdzk tabsent in the membrame in order to
enable the application of the rule. Promoters will be deshgimply as objects, namety, b, c, . . ., while
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inhibitors will be denoted as objects preceded by a negatiarbol, namely-a, —b, ¢, . . .. Given a set
of promoter and inhibitor symbol®, we denote withD*™ and D~ the sets of objects containing all the
objects occurring inD as promoters and all the objects occurringliras inhibitors, respectively. We
remark thatD™ and D~ are sets of objects, hence elementdonwill not be preceded by.. Moreover,
with —D we denote the set obtained by transforming each promoteriirio an inhibitor and viceversa.
As an example, iD = {a, —b, ~c,d} we haveD™ = {a,d}, D~ = {b,c} and—=D = {—a, b, ¢, ~d}.

We can assume that all evolution rules have the followingxforhere{ly,...,l,} is a set of mem-
brane labels idN and D is a set of promoters and inhibitors:

u — (vp, here)(ve, out)(v1,iny, ) ... (vn,ing,)|D -

An evolution rule in a membrane is calleddissolvingif its application causes the disappearance of
m. In this case, the objects in and the child membranes of remain free in the parent membrane of
m, and the evolution rules of are lost. The skin membrane cannot be dissolved. A disspbiolution
rule is denoted by adding to the products the special objeuth thaty ¢ V:

u — (vp, here)(vo, out)(v1,ing, ) ... (vn,ing, )o|p -

Application of evolution rules is done with maximal paréiien, namely at each evolution step a
multiset of instances of evolution rules is chosen non-+detestically such that no other rule can be
applied to the system obtained by removing all the objectes®ary to apply all the chosen rules. The
application of rules consists of removing all the reactafthe chosen rules from the system, adding the
products of the rules by taking into account the target mtiims, and dissolving all the membranes in
which ad message has been produced. Promoters are not consumedapplibation of the correspond-
ing evolution rule. A presence of a single occurrence of anmter can enable the application of more
than one rule in each maximally parallel evolution step. iBiry, the presence of a single occurrence of
a inhibitor forbids the application of all the evolution eslin which it appears.

A P System has a tree—structure in which the skin membrahe bt and the membranes contain-
ing no other membranes are the leaves. The only change ttrdotuse that may happen is the removal
of some nodes of the tree (apart from the root) caused by gootgect produced by evolution rules.
Hence, we assume membranes labels to be unique: they agaeaksit the beginning of the evolution
by counting the membranes encountered during a breadthdfiis of the tree—structure, with as the
label of the skin membrane.

Up to now we described features of P Systems, such as prarandrinhibitors, already known in
the literature [13]. In order to define a general flat form f@ytems we need an additional new feature
of P Systems, nameljnembrane interfacedNVe assume that each membrane of a P System is enriched
with an interface, namely a set of objects representing tig abjects that can be received from an
external membrane. This means that if in the environmentrémbrane there is a rule willing to send
into it some objects that are not in the corresponding iaterfthen such a rule will never be applicable.
Note that this extension is rather conservative, namelyalways possible to find a set of objects large
enough to ensure that the behaviour of a P System extendednigtfaces is the same as the intended
behaviour of the original P System. On the other hand, it ssitde to statically check whether each rule
of a P System might eventually become applicable or not secafinterfaces. As a consequence, if we
assume that the skin membrane of a P System cannot receiabpaty from the external environment,
then a P System with interfaces can be simulated by a P Syst#mouvinterfaces in which the latter
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is obtained from the former by removing those rules that wamdver become applicable because of
interfaces. However, in the following we will construct PsBsms compositionally, and in this case we
cannot assume that the outmost membrane does not receiebjanyfrom the external environment. In
the following we will use interfaces for both the descriptiand the flattening of P Systems.

Now, we formally define P Systems.

Definition 2.1. A P Systenil is given by
II = (V,,u,il,...,in,wl,...,wn,Rl,...,Rn)
where:

e V is analphabetwhose elements are callethjects

u C IN x IN is amembrane structuresuch tha{l;, l2) € p denotes that the membrane labeled by
lo is contained in the membrane labelediby

i; with 1 < j < n are subsets dof representing thaterfacesof the membranes, ..., n of y;

w; with 1 < 5 < n are strings from’* representing multisets ovéf associated with the mem-
branesl, ..., n of u;

R; with 1 < 5 < n are finite sets oévolution rulesassociated with the membrangs. ., n of p.

We show in Figure 1 an example of P System in which all the medtures of the formalism are used.
In the figure, membranes are depicted as boxes containimgtievorules, objects and inner membranes.
The label and the interface of a membrane are at a corner abthesponding box separated by a colon.

2.2. The P Algebra: Syntax and Semantics

In this section we recall th® Algebra the algebraic notation of P Systems we have introduced in
[3]. Actually, we give here an extended version of the P Atgelwhich will allow us to transform
arbitrary systems to an equivalent flat form. Such an exrdesion includes promoters and inhibitors
in evolution rules and membrane interfaces.

Constants of the P Algebra correspond to single objectsngitesievolution rules, and they can be
composed into membrane systems by using operations of wvatainment in a membrane, juxtaposi-
tion of membranes, and so on. Terms of the P Algebra are ttesgifithe LTS.

We assume the usual string notation to represent multisetgects inl/. For instance, to represent
{a,a,b,b,c} we may write eithenabbe, or ab?c, or (ab)?c. We denote wittbet(u) the support of mul-
tisetu, namely the set of all the objects occurringuinWe denote multiset (and set) union as string con-
catenation, hence we writg us for u; Uug. For the sake of readability, we shall write— v,v,{v;, }|p
for the generic non—dissolving evolution rule — (uvp, here)(v,, out)(v1,iny,) - .. (v, ing,)|p, and
u — vpve{vy, }0| p for the similar generic dissolving evolution rule.

The abstract syntax of the P Algebra is defined as follows.
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a — (eb,iny)
b — (b, out)

2:be

b — (b, here)(b, ing)
b — (bb, here)

¢ — 0=

ce — (c, here)

3:b

b — (bb, here)

¢ — (c, here)dl,

Figure 1. Example of P System that may send out of the skin mamelm multiset of objectg” for anyn > 3.

Definition 2.2. (P Algebra)
The abstract syntax shembrane contents membranesn, andmembrane systemss is given by the
following grammar, wheréranges oveiN, a overV andi C V:

c u=(2,0) | (u—vvo{v,}p,2) | (u— vpvofu,}olp, @) | (@,a) | cUC
m == [c]i

ms z=ms|ms | p(m,ms) | F(m) | v

A membrane contenrtrepresents a paifR, ), whereR is a set of evolution rules andis a multiset
of objects. A membrane content is obtained through the upp@nation_ U _ from constants representing
single evolution rules and constants representing singjiects, and can be plugged into a membrane
with labell and interface by means of the operatidp_]! of membranesn. As a consequence, given
a membrane contertrepresenting the paitR, ), [ € IN andi C V, [;c]! represents the membrane
havingl as label; as interfaceR as evolution rules and as objects.

Membrane systems.s have the following meaningns; | msq represents the juxtaposition ofs;
andmss, u(m, ms) represents the hierarchical compositiomoéndms, namely the containment afs
in m, F'(m) represents dat membrangnamely it states that: does not contain any child membrane,
andv represents thdissolved membraneJuxtaposition is used to group sibling membranes, namely
membranes all having the same parent in a membrane struclums operation allows hierarchical
compositionu to be defined as a binary operator on a single membrane (tkatpand a juxtaposition
of membranes (all the children) rather thanor 1 membranes, for any possible number of children
n. Finally, the dissolved membranewill be used in the definition of the LTS to denote the state of a
membrane after the application of one of its dissolvingsule
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In what follows we will often write]; ¢ ]i for F'([; ¢]}). For the sake of simplicity, we shall also often
write (R1R2, U1UQ) fOI’ (Rl ’LL1)U (RQ, UQ), [l ’LL]; for [l (@, ’LL) ]; and[l Uy — vhlvol{vlil}bl, e, U —
Uhnvon{vlm}‘Dnau]; for [l (R, u) ]% if R = {ul — vhlv_ol{vlil}\gl, Lo, U — vhnvon{vlm}\pn}. We
shall use analogous notations wijth|; replaced byf; - ;.

As an example, the P System shown in Figure 1 corresponds foltbwing membrane system:

u( [1a— (eb,ing), b— (bout), a]?
p( [2b — (b, here)(b,ing) , b— (bb, here), ¢ — 8|, ce — (c, here) |5,
[3b — (bb, here), ¢ — (c, here)dy , c]3)).

We give another example in which juxtaposition of membrasesed. Consider a P System similar
to the one shown in Figure 1, but in which membram®ntains also a membrane with ladelontaining,
in turn, an object: and no rules. Such a P System corresponds to the followinghmeema system:

:u( [1 a— (Ebvin2)v b— (b>OUt)7 a]lz ’
w( [2b — (b, here)(b,in3), b — (bb, here) , ¢ — |-, ce — (¢, here) %,
[3b — (bb, here), ¢ — (c,here)dly, c]s | [4a]$)).

The semantics of the P Algebra is given in terms of an LTS, maaériple (S, L, {i |0 e L}),
whereS is a set ofstates £ is a set oflabels andig S x S is atransition relationfor each? € L. As
usual, we writes -5 s’ for (s,8") e, LTS labels can be of the following forms:

o (u,U,v,v',D,M,I,0T, O, describing a computation step performed by a membranewstnt
where:

— u is the multiset of objects consumed by the application ofwgian rules inc, as it results
from the composition, by means ofJ _, of the constants representing these evolution rules.

— U is the set of multisets of objects corresponding to the laftchsides of the evolution rules
in c.
— v is the multiset of objects in offered for the application of the evolution rules, as itules

from the composition, by means ofJ _, of the constants representing these objects. When
operation|; _]! is applied tox, it is required that andu coincide.

— ¢’ is the multiset of objects in that are not used to apply any evolution rule and, therefore,
are not consumed, as it results from the composition, by meénuU _, of the constants
representing these objects. When operafioif is applied ter, it is required that no multiset
in U is contained in/, thus implying that no evolution rule iacan be further applied by
exploiting the available objects. This constraint is maadato ensure maximal parallelism.

— D is a set of promoters and inhibitors required to be presedtadnsent, respectively, by
the application of evolution rules in More precisely,D~ contains all the inhibitors of the
applied evolution rules in, whereasD™ is a subset of the promoters of those rules. Such a
subset contains only those objects that are not present imtiitiset of objects of.
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— M is a set of pairgl, a) wherel is a membrane label andis an object.M contains a pair
(I, a) if some evolution rule ire is not applied since its firing would imply sendiago some
child membrane labelet] but either no child membrane labelkdxists, ora is not present
in the interface of the child membrane labeled

— I is the multiset of objects received as input from the paresmitrane and from the child
membranes.

— O' is the multiset of objects sent as an output to the parent marab

— Ol is a set of pairgl;,v;,) describing the multiset of objects sent as an output to ehitth ¢
membrané;.

o (M, T, 11,07, 0", describing a computation step performed by a membranehere:Z! is a
set containing only the paff, ) wherel is the label ofim and! is the multiset of objects received
by m as input from the parent membrang, is the multisets of objects received from the child
membranes ofr, andM, O andO! are as in the previous case.

e (Z!,0"), describing a computation step performed by a membraneraysts, whereO' is as
in the previous cases arfl differs with respect to the previous case because, wheris a
juxtaposition of membranes, it contains a p@ir7) for each element of the juxtaposition.

Componentd, O, O in labels of the first form, and components, Z!, O, O' in labels of the
second and third forms, describe the input/output behawib® Algebra terms, namely what is usually
considered to be the observable behaviour. Labels of thédira are more complex sinag U, v, v, D
are needed to infer the behaviour of membrane contents citigpally. For the same reasdid is used
in the first two forms of labels.

For the sake of legibility, in transitions with labels of tfiest form we shall write the first five
elements of the label below the arrow denoting the tramsgiod the other four elements over the arrow.
Now, LTS transitions are defined through SOS transitionsr{dé&] of the form 22> where the
premises are a set of transitions, and the conclusion igsiti@. Intuitively, SOS transition rules permit
us to infer transitions performed by P Algebra terms fromditions performed by their subterms. We

assume the standard way to associate a set of transitions\sét of transition rules [1].

The transition rules we give in this paper differ slightlyprn those in [3] as we are describing the
semantics of a version of the P Algebra extended with prorapiehibitors and membrane interfaces.
We give a brief explanation of the transition rules by foogsn particular on the differences with respect

to [3]. We refer to that paper for a more detailed explanatibthe semantics.
We start by giving the transition rules for membrane corstent

eV n €N DN-D=o

2,103 {(li,0])} (mely)
(u = vpvo{vy }|p, @) —————— (u = vavo{uvi }[p, Tvy)
un {u},2,9,D
Ievr neN n>0 DN-D=g
(me2y,)
( { }5| @) Q,I,Ivgvzé,{(li_’v;;)}
— .
u VhVo ’Ul»b D, un7{u},g,g,D
ITeV*
; (mc3)

2,1,0,9
(u — vpvo{uy, }o|p, @) —————— (u — vavo{vy, }d|p, I)
g){u}7g7g7g
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ITeVr [ € Labels({v, }) a €y

{(La).1.0.0 (med)
(u — vpvo{ui, } D, D) R p—— (u — vhvo{uy, }|p, I)
IeVr [ € Labels({v, }) a € (me5)
{(l,a)},1,9,2
(u = vavo{uy, }é[p, ) ovooe T vnvo{vi, }|p, I)
IeV* D' C-D D'+ @ D'Nn-D =o
2.1,0.0 7 (mc6)
(u — vpvo{vy, } D, @) oo oD (u — vpvo{vy, }p, I)
[eV: DC-D D+#2 Dn-D=0
5 2.1,8,0 5 (meT)
(u — vpvo{u, }6|p, @) pp—— (u — vpvo{uy, }6|p, I)
TeV: Dn-D+go
2.1,8,0 (me8)
(u — vpvo{uy, }p, D) P (u — vpvo{uy, }p, 1)
[eV* DN-D+o
5 >.1,0.0 5 (mc9)
(u = vavo{ui, }é|p, D) oooos U vnvo{vi, }o|p, )
IeVv* leVv*
zjg’z ; (mel0) z,I,ez,z ; (mell)
(2,a) 2.,0,0,0,0 (2,1) (2,a) P (2,1a)
IeV*
>,1,9,9 (m612)
(9,9) ———— (2,1)
°.,0,9,0,0

Rule (mcl,,) describes: simultaneous applications of a non—dissolving evolutide for anyn €
IN, and (mc2,,) describes: simultaneous applications of a dissolving evolution ruiéghw. > 0. In
these two cases the set of promoters and inhibiferef the applied evolution rule become part of
the label of the transition. This permits the subsequenfization of the presence (absence) of the
promoters (inhibitors) in the whole membrane content inclrlthe rule is applied. The sétis checked
to be coherent (the same object should not appear at the samad promoter and as inhibitor) by the
requirementD N —D = @. We could omit this checking, provided that the propertyssuaed for all
evolution rules. The use of rulencl,,) with n = 0 describes the case in which promoters and inhibitors
in D are assumed to be present and absent, respectively, buiehie not applied because there are no
objectsu available in the whole membrane content in which the rulaiccThe non—application of a
dissolving rule for the same reason is described by (nule3).

Rules(mc4) and(mcb) describe the case in which a non—dissolving and a dissolxndution rule,
respectively, are not applied because they require serafijggts to a child membrariethat is either
assumed not to exist, or it is assumed to have an interfateldies not include one of the sent objects,
denoteda. In these rules we assume a functibabels from sets of pairs{(vy,iny, ), .., (v, iny,)}
with v; # @, sets usually denotefb;, }, into sets of labels. The functidmabels({v;, }) extracts all the
membrane labels from the given set of pairs, namely it ret{in . . ., [, }.
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Rules (mc6) and (mc7) describe the case in which a non—dissolving and a dissoleimjution
rule, respectively, are not applied because some of thegiszmand inhibitors irD they require to be
present and absent, respectively, are assumed not tyshastequirements. In this case, such promoters
and inhibitors are used as label of the defined transitiogr afegation, namelyp)’ C —D, because
we will subsequently need to verify that the involved proemstand inhibitors are absent and present,
respectively, that is the opposite of what verified when tr@wgion rule is applied. As irfmcl,,) and
(me2,,), the set of promoters and inhibitors used as transitiorl [Bbés checked to be coherent.

Rules(mc8) and(mc9) describe the case in which a non—dissolving and a dissoéxndytion rule,
respectively, are not applied because they have an inaadrseeof promoters and inhibitors. In this case
the membrane content can only receive objects from the@mnwvient.

Rules(mcl10), (mcll) and(mcl2) describe the transitions performed by membrane contemts co

sisting of a single object and the transitions performedrbgrapty membrane content.
Now we give the transition rules allowing us to infer the bebar of unions of membrane contents
from the behaviour of the individual membrane contents.
M,,I;,01,0} Ma,I>,0},0} T A1
Ll — N Ty ————— VY2 5¢0102
ulyUl-,Uly'U/lyDl ug,Ug,’L}g,Ué,Dg
Vil ¥ UL @ Uy Au e V*.((I,a) € MyMa A (I,au) € Of U O3)
(Dl_ @] DQ_) n Set(vlvivwé) =9 Dl N _|D2 = D= (DlDQ) \Set(vlvivgvé)
M Ms,I112,0] 0], 0t un O3
Ty Ugy 21 LN y1 Uy2

’ ’
uiuz,U1®Uz,v1v2,0 vy, D

(ul)

My,1,,0{,0 Mz,12,05,0; 1 1
ry ———————— U1 Tg ———— Y2 5601 5%02
u1,U1,v1,v],D1 uz,Uz,v2,v5,D2

vivh ¥ Uy & Us Aue V*.((1,a) € MM A (I,au) € Of Un O3)
(Dl_ U DQ_) n Set(vlvivwé) =9 Dl N _|D2 = D= (DlDQ) \Set(vlvivgvé)

u2
Mi Ma,I11>,0] O] Objects(y2),0f Un O} (u2)
X1 U i)
uiuz, U1 ®Usz,v1v2,v v, D
M,,1,,01,0} M2,I>,0},0}
x1#>y1 IQ&yQ 5€OIQO;
u1,U1,v1,v],D1 uz,Uz,v2,v5, D2
vivh ¥ Uy & Us Aue V*.((I,a) € MM A (I,au) € Of Ux O3)
(Dl_ U DQ_) n Set(vlvivwé) =9 Dl N _|D2 = D= (DlDQ) \Set(vlvivgvé) ( 3)
u

M, ]\42,]1]2,()I();,Oi’bl]]q()éL

T UIQ T,
uruz,Ur@Uz,v1v2,v1v5,D

Rules(ul), (u2) and(u3) describe the behaviour of a union of membrane contents wheore,
in the first and in both of the composed membrane contentssaldisg rule is applied. We omit the
symmetric rule of(u2) where in the second membrane content a dissolving rule iBedppln these
transition rules we use some auxiliary notations. Given #isetl of objectsu and a set of multisets
of objectsU, we writeu + U if there exists some’ C u such thatu’ € U, and we writeu ¥ U
otherwise. Intuitively, since for eacll € U there is an evolution rule having in the left side, then
u = U means that: can let at least one of these transitions fire. Moreover, \werae a functiorDbjects
from membrane contents to multisets of objects such@hgcts((R,u)) = u. Then, given two sets of
multisetsU; andU,, we write U; & Us to denote the sefu € U Us| Au' € UiUs.w’ C u}. Finally,
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given two sets)} andO; representing two outputs to inner membranes, we Wite) O; to denote
the set{(L,uv) | (I,u) € OF A (I,v) € O} U{(l,u) | (l,u) € OIA Av.(l,v) € O} U{(l,v)|(l,v) €
OIA Pu.(l,u) € O}}.

In (ul), (u2) and(u3) it is checked that the information represented by the paitg;i)/; is coherent
with the information on the objects sent to inner membraepsasented b} Un OJ. As regards pro-
moters and inhibitors, ifu1), (u2) and(u3) itis checked that none of the inhibitors i andD» occurs
in the multisets of objects of the composed membrane cateamely( D UD; )NSet(vivjvavh) = 2,
and that there is no conflict between the requirements of dneposed membrane contents, namely
D1 N —-Dy = @&. Moreover, the label of the transition performed by the nrebthe membrane contents
contains as set of promoters and inhibitors the set obtdiggemoving from the union ob; and D,
the promoters corresponding to objects that occur in anlgeofwo membrane contents.

Now we give the transition rules for individual membranes.

M,1,07,0!
xr —
u,U,u,v’,D
; M,@,1,07,0!
Lz

520! Dt=g

(m1)
[l?/]l

M,I,1,,0",0!
€r—

FE—— §¢0!" Dt=@ Set(l,)Ci I #@

(m2)
. M, {(l,I1)},I2,07,0! )
[hz]; — Lyl
y T ol
M,1,01,0 y 6c0 Dt —o
u,U,u,v’,D (m3)
i M,o,1,0T,01
o] ————v
, T ol
g 01209 5c0l DY=g Set()Ci I #©
w,U,u,v’,D (m4)

A’L{(LI'I)}712a()T7Ol

lix];

Rules(m1) and(m2) describe the transitions performed by a membrane with labetl interface
i when no dissolving rule is applied. In particuléam1) describes the case in which no objects are
received as an input from the external membrane, whil2) describes the case in which a multiset of
objectsl; # @ are received. Irim2) the objects received as an input from the external membrarsé m
be mentioned in the interface of membrdnaamelySet(7;) C i. Notice that, given/, all possible
partitions ofI into I; andl> must be considered. Rulés3) and(m4) are analogous ten1) and(m2)
but describe the transitions performed when a dissolvitgisuiapplied.

In all these transition rules the set of promoters and inbibiD in the label of the transition per-
formed by the membrane content must contain no promotenselyaD ™ = . This ensures that all the
promoters required by the evolution rules applied in theedlesd computation step are present because
they have all been removed by occurrence&udf), (u2) and(u3) in the derivation tree of the transition
performed by the membrane content. Moreover, it is alsoredsihat no object occurs in the membrane
content which is an inhibitor of evolution rules applied liretdescribed computation step. This follows
from the definition of transition ruleg:1), (u2) and(u3) used to derive the transition of the membrane
content.



R. Barbuti et al./ A P Systems Flat Form Preserving Step-tbp-Behaviour 13

Now we give the transition rules that allow us to infer the debur of a flat membrang c]i =
F([;c]}) from the behaviour of membrarfec];.

M1} 2,01 @ 5 §ZOT . M7}, @07 @ y scol
Tl .07 (fml) Tl ot (fm2)
F(z) —— F(y) F(z) ——v

Notice that rules fotF'(z) only require that both the multiset of objects received framd sent to
inner membranes (third and fifth component of the label,eetyely) are empty.

Now we give transition rules allowing us to infer the behawviof juxtapositions of membranes from
the behaviour of their components.

7,,0] 7,,0]
X1 e Y1 T2 2, Yya 0 ¢ OIO; (ju:vl)
7,7,,0] 0}
$1|$C2 - y1|y2
7,,0] 7,,0!]
1 ;) Y1 X2 ﬁ Y2 = OI 1) g O; (’U,CC2)
T1Z2,(0] 0]) -6 J
171|$2 — Y2
7,,0] 75,0
v =y @, —y, §€0[N0] (juz3)

1172,(0] 0})
xp|lxg —————5 v

The three rule$juxl), (juxz2) and(juxz3) deal with the cases in whichoccurs in the label of none,
of the first and of both of the composed membrane systemsecthggly. We omit the symmetric rule
of (juxz2) in which § occurs in the label of the second membrane system. We réed)lity definition
of (m3), (m4) and(fm2), we have thad occurs in the label of the transition of a membrane only when
such a membrane is dissolved (and transformedviptuy the application of some dissolving rule. The
symbols is left in the label of the transition of the juxtapositiondenote dissolution of the whole system
only when both of its components are dissolved.

To conclude with the semantics of the P Algebra we give thesttian rules for hierarchical compo-
sitions of membranes.

My, T}, 1] ,01 0t 7,,0} ot=17, ol=1 s¢0l0]
1————— W T2 — Y2
A(l,a) € M;.(I € Lab(z2) A a € Interface(l, z2)) i
(@1, w2) —— p(y1, y2)
M, zh1l,01,0! 7,,0] Oot=17, ol=1 se0] 6¢0)]
1—————— W T2 — Y2
A(l,a) € M;.(I € Lab(z2) A a € Interface(l, z2))
(h2)
Z},0] -
p(wy, x2) ———— 2
M, z}.11,01,0} 1,,0] Ot=17, Ol-6=11 s6¢0! 6c0)
Ty ———— W1 T2 — Y2
All,a) € M;.(I € Lab(z2) A a € Interface(l, z2))
7},0] (h3)
121

(e, v2) —— F(y1)
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M, T} 1] 01,0t 1,.0} Ot=1, Ol-6=11 se0ln0O)]
r — xro —
! oo Y2 A(1,a) € My.(1 € Lab(a) A a € Interface(l, z2))
7},0] (h4)

plxr, 22) ——v

Rule (h1) deals with the case in which neither the parent membraneheoctild membranes dis-
solve, rule(h2) with the case in which the parent membrane dissolves,(i#ewith the case in which
all the child membranes dissolve (and are transformedvintand rule(h4) with the case in which both
the parent membrane and the child membranes dissolve.theakh transition rules it is checked that the
objects sent from the parent membrane to child membranegieameersa correspond to what is expected
to be received from child membranes and the parent memimesgectively. Moreover, in the premises
of all these transition rules it is required that the assimnpbn the presence and on the interfaces of
child membranes represented bf; are satisfied. Namely, ifl,a) € M, then either no child mem-
brane with label is present or, does not appear in the interface of such a membrane. We assume
be an equivalence relation on sets of pairs) with [ € IN andu € V*, such that, given two such sets
7, andZy, thenZ; = 7, holds if and only if(Z; \ {(I,@) | l € N}) = (Z2 \ {({, @) | | € IN}). We also
assumd.ab(zy | ... | z,,) andlInterface(l,z; | ... | x,) to be the set of labels of the juxtaposition of
membranes, namely the sgt, ..., [, }, and the interface of membrahe= [, respectively, where; is
either[;, R, u]j, orpu(li, R, u]}j,x;).

All the semantics rules satisfy the constraints of the vikelbwnde Simonéormat [8], which ensures
that all the behavioural equivalences considered in [3fargruences. In particular, we recall here the
definition of bisimulation.

Definition 2.3. (Bisimulation)
Let (S, L, {ﬁ |¢ € L}) be an LTS. ArelationR C S x S is abisimulationif for each pair of states
(s1, s2) such thats; R sy the following two conditions hold:

o 515 s} implies that there is a transition 5 s4 such thats} R s} ;
o 555 s5 implies that there is a transition 5 s} such thats} R s}, .

As usual, we denote witky the union of all bisimulations (that is the largest bisintiaia).

3. Some Axioms on Terms of the P Algebra

We give some basic axioms on the commutativity and asseitjyatif the operations of the P Algebra, on
some simple properties of evolution rules with promoterd iahibitors and on membranes with empty
interfaces.
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Definition 3.1. (Basic axioms)
Somebasic axiom®n terms of the P Algebra are the following:

citUeca=cUcC (Ul)
c1 U (02 U Cg) = (Cl U 02) Ucs (Ug)
msy | msa = msg | msy (J1)
msy | (msa | ms3) = msy | (msa | ms3) (I2)
(’LL - ’Uh'Uo{'UliHDa—'a» @) ( @) (proml)
(u — vpvo{vy, }0| Da—a, @) = (D, D) (prom2)
[ au — vpvo{vy Hpa, R, u' ]l = [jau — vpvo{v, Yp, R, v']i  (prom3)
[ au — vpvo{v, Yol pa, R, u']} = [1au — vpvo{v, }Yo|p, R, u']i  (prom4)
1w — vRvo{vr; Hpa s w — vhvofvy Hp-a, R, W' )} = [u — vpvo{v, }p, R, W]} (proms)
[1u — vpvof{vy, }o|pa , © — VRV{V1, }0|Dma s R, u']i [1u— vpvo{u, }olp, R, u']i (prom6)
[ll C]ﬁ = [lz C]g (Zfl)
LR, =Lulf =L2]] (if2)
ms =ms | [[lg]]lg (if3)
Ly eli, = w(fi eliy s 1 217) (if4)
v, £ D
L - - ml
[lw = vpvolvy o, R, W]} =LR, v (fml)
o 72 (fm2)

1w — vpvof{u, }olp, R, u’]]} =R, u’]]f

The first four axioms state commutativity and associatieftyinion of membrane contents and jux-
taposition of membrane systems.

Axioms (prom1) and(prom?2) state that an evolution rule with an incoherent set of premsoand
inhibitors can be removed from a membrane content. Axigmsm3) and (prom4) state that an evo-
lution rule having as a promoter one of the objects it consyroan be simplified by removing such a
promoter. These axioms equate two membranes containing v, v,{v;, }| pe @andau — vpve{v;, }|p
rather than membrane contef@s. — vpv,{vi, }| pa, @) and(au — vyvo{vy, }|p, @) because transitions
performed by these two membrane contents have differenbseromoters as labels. Axionigrom5s)
and(prom6) state that when a membrane contains two rules whose ondreliite is that one contains
a promoter that is an inhibitor of the other, then such a mamdrcan be simplified by replacing these
rules with one consisting of the common part of the two. Agaia define these axioms on membranes
rather than membrane contents in order to ensure that tingtioens performed by the equated terms are
the same.

Axiom (i f1) states that if a membrane has empty interface, then its lalsah be changed intla.
The reason is that the evolution rules of an outer membrameirsg objects td; are never applicable
as the condition on the interface kfis always violated. When the label is changed ibtathen those
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evolution rules continue to be never applicable becausedbied objects to a membrane with label
that is absent. On the other hand, no other rule can sendteh@the new membrang because its
interface is empty. The behaviour of a membrane with empgriamce may consist only of objects sent
out. Actually, if the membrane with empty interface is flatl@montains either some rules but no object or
some objects but no rule, then it is equivalent to an emptyrfiznbrane. This is stated by axidiy2).
Axioms (if3) and (if4) state that an empty flat membrane with an empty interface egoxtaposed
with any membrane system or inserted inside another membran

Axioms (fm1) and(fm2) state that in a flat membrane an evolution rule sending abjetd inner
membranes can be removed both in the case of a non—dissollngnd in the case of a dissolving one.

Now we give some slightly more complex axioms.

Definition 3.2. (Axioms)
Some axioms on terms of the P Algebra are the following:

Au' — vpvg{opp € R sta €

IR, u— vpve{v, }Doa s av]f =R, av]f (az1)
Au' — vyl {vp }p € Rsta e
i , 4 (az2)
IR, u— vpvo{v, }o|p-a, av]} =R, av];
a¢u A —vu{vy}tp € Rstaed
IR, u— vpve{uvy, tDa, av]f :Z[l R, u— vpve{v, } D, av]? (az3)
a¢u Au — v v} p € Rstacd
IR, u— vpve{vy, }é|pa , av]f :L[l R, u— vpve{vy, }0|p , av]f (azd)
adv adi Au' — v vl{vy}p € Rsta e v,
LR, w— vpvo{vy, }pa U]]% =R, v]; (%)
adv adi A — viv{vy}p € Rsta € vy,
R, u— vavo{vy; }d|pa U]]Zf =R, v]; (0)
adv a & vy adi Au' — vvp{vy}p € Rs.t.a € vy,
IR, u— vpve{vy, HDa s v]]} =LR,u —>Lvhvo{vli}|D, U]]; (az7)
adv a & vy, adi Au’ — vyvp{vp Hp € Rs.ta € v, (az8)

LR, u— vpvo{vy, }o|pa, v]i = IR, u— vpvo{v, }o|p, v ]!

Au — vpve{v, }0|p € RA Au — vpve{v, }p € RSt (a € u)V(a€ D)V (—ae€ D)
LR, av]i=LR,v]

(ax9)

Axioms (ax1) and (ax2) state that a membrane containing an objethat is an inhibitor of an
evolution rule (non—dissolving and dissolving, respeaiiy can be simplified by removing such an evo-
lution rule if there are no other non—dissolving rules conislg a. This condition ensures that the object



R. Barbuti et al./ A P Systems Flat Form Preserving Step-tbp-Behaviour 17

2:abc 2:abc
a — (b, out)
c — (c3, here) g

a — (b,out)
c — (c,ing)

3:abc
)
c

Figure 2. An example of flattening of a P System without digisgj rules.

cz — (a,here) ¢4

a will always be present in the membrane, and consequentiytteavolution rule withz as an inhibitor
will never be applied. Moreover, this condition does nobfdrdissolving rules to consume because
after the application of these rules all the evolution raethe membrane are lost.

Axioms (ax3) and(ax4) state that if in a membrane containing an objetitere is an evolution rule
(non—dissolving and dissolving, respectively) promotgd:pthen, if such an evolution rule as well as
all the other rules does not consumethena can be removed from the set of promoters and inhibitors
of the rule. In fact, in this case the applicability of the keNmn rule promoted by: will not depend on
a itself because such an object will always be available.

Axioms (ax5) and(axz6) state that if in a flat membrane there is an evolution rule {a@solving
and dissolving, respectively) that is promoteddgnd if a is not present, is not produced by any rule
and cannot be received from the external membrane (as it imentioned in the interface of the mem-
brane), then the evolution rule promoteddgan be removed as it will never become applicable. Under
similar conditions, axiom$ax7) and(ax8) state that an evolution rule (non—dissolving and dissglvin
respectively) inhibited by: can be simplified by removing from its inhibitors. In these four axioms
the fact that the considered membrane is flat is importardusscotherwise some occurrences afiay
become available by dissolution of inner membranes.

Finally, axiom (az9) states that if in a flat membrane there is an objetitat is not consumed by
any evolution rule and is neither a promoter nor an inhibitbany rule, and if the membrane does not
contain any dissolving rule, then the objeatan be removed from the membrane.

4. Flattening Systems without Dissolving Rules

As shown in [4], any transition P System with a fixed membrangcture (i.e. without dissolving rules)
can be reduced to a flat form in which the membrane structumsists only of one membrane. This
result can be obtained by moving objects and rules of innanimnanes into the external membrane,
after suitable renaming. An example of application of tleishihique is shown in Figure 2. However,
the behaviour of the flat membrane is the same as the behafithe original membrane structure only
under the assumption that the membrane cannot receive gt dlom the external environment. In
fact, if the external environment could send to the flat membran object that is the renaming of some
object originally in an inner membrane, this could enabkeapplication of some rules among those that
have been added to the external membrane by the flattenimgigee. In the example of the figure, if the
environment could send an objegtinside the membrane on the right, this would enable the equjiin
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of rule cs — (a, here) which would result, after one more step, in the output éfthat would not be
sent out by the original system. This problem is solved byialsle use of membrane interfaces. In the
example, interfacebc of membrane 2 ensures thatcannot be received from the environment.

Since the flattening technique we are going to define is basaérmaming of objects, we need to
describe how evolution rules are consequently changedthi=oreason, we define two functiofatin
andFlatOut. The former gives the result of the renaming of the rules efrttembrane that is removed
by the flattening. The latter gives the result of the renanoiftipe rules of the membrane which contains
the one that is removed. In order to avoid ambiguities, indd@nitions ofFlatin andFlatOut we shall
use the notatiom — (vy, here)(v,, out)(vy,,iny, ) ... (v, ,iny, )| p for evolution rules rather than the
more compact notation — v,v,{vy, }|p.

We assume that the alphabiétis partitioned as followsV = V. U (U en+ Vi) U{a | a € Ve,l €
IN}, whereV, is the set of all objects without subscriplg;, is the set of objects obtained by adding
L ¢ IN* as a subscript to each objectdf and objects likey; are special objects each obtained from an
objecta € V, and a membrane labél We denote witd” andV’ the two sets of objects); .+ V2 and
{a; | a € V,1 € IN}, respectively, and it holds th&t, V andV are pairwise disjoint. As an example, if
V. =a,b,c,... thenay,bi.o andes.1.o belong toV, andas, b1 andé, belong tol/.

Let Rid(OLL1 , Ly) denote the object obtained by appendingto the (possibly empty) subscript of an
objectar, € V., UV, namelyRid(ar,, L2) = ar,.1,. We assume thaid does not change objects if
namelyRid(a;, L) = a;. We extend the definition dRid to sets and multisets of objects and to sets of
promoters and inhibitors. For exampRid(aabcee, 3) = azasbscscscs = a3bscd, Rid(aay.2bbe, 3-4) =
(3.401.9.3.4b3.4b9.3.4, andRid(abl—'C—!dg, ) = a3b1 3—cz—de.3. Moreover, glven a set of ObjEQ&C Ve,
let Hat(S, ) denote the sefa; | a € S} C V. For exampleHat({a,b,c},2) = {as,bs,é}. The
functionsFlatln andFlatOut are defined as follows:

Flatin (u — (vp, here)(vo, out)|p , 1) = Rid(u,l) — (Rid(vp,l)v,, here) (D, out))|ria(p,)

FlatOut (u — (uvp, here)(vo, out)(vy,,iny, ) . .. (vy,,ing,) ... (v, i) D, 1) =
u — (vpRid(vy,, 1), here)(vo, out)(vy, ,ing, ) ... (D, iny,) . .. (Ulmmln)|D{dli|a6vli}

Both Flatin andFlatOut take a rule and a membrane label as arguments, and give a leeasra
result. In both cases the membrane label represents thieofathee membrane that is removed by the
flattening. In the first case such a label (dendjeshould not occur in the evolution rule, as the rule is
assumed to be one of those of the inner membrane involvee iffetttening. In the second case the label
certainly occurs in the evolution rule (in fact it is denofgdas the rule is assumed to be one of those of
the outer membrane involved in the flattening.

FunctionFlatln renames objects of the rules to which it is applied, by addiagbscript correspond-
ing to the flattened membrane. Notice that, in the right paith@ rule, only the objects that were origi-
nally sent to the membrane itself are renamed. The objeatsvitre sent out are not renamed, simulating
the fact that, after the application of the rule, they areagragér belonging to the flattened membrane.
Moreover, notice that the rules to whiétatln is applied do not send objects to any child membrane.
This because we assume that the functaatin will be applied to rules belonging to flat membranes,
and rules of a flat membrane sending objects to inner membiEebe removed by applying axioms
(fm1) and(fm?2).

FunctionFlatOut is applied to the rules of the membrane containing the flatterne. FlatOut
replaces in each rule the objects sent to the flattened mambravith objects to which subscrigt is
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ea — (e, here)(b, out)

4:a
e — (e,out)
[

b — (b, out)

ea — (e, here)(a,inz)(a,ing)

Figure 3. An example of P System.

added. It is important to remark the role of the promot@&rswhich are added to the rules given by
FlatOut. Such promoters aim to simulate the interface of the flattémeer membrane. A rule is able to
produce an objeci,.;, (Simulating an object sent into inner membrang) only if the promoter;, is
present. As we will show in the followingy,, is present only if the interface of the flattened membrane
l; containsa.

With abuse of notation we shall writdatIn(R, ) for {FlatIn(r,1) | € R}, andFlatOut(R,!) for
{FlatOut(r,1) | € R}. Now, the flattening technique is expressed by means of tleviog axioms.

Definition 4.1. (Flattening axioms)
Let R; and R, be sets of evolution rules containing no dissolving rulej Bt R, andw«, contain no
objects inVz.;, for any L € IN*. Theflattening axiomsre the following:

ms#v L€ IN* VL.12 NipL =9 FIatOut(Rl, lg) = R/l Flatln(Rg,lg) = R/2
w([n Rayun it [, Rasua 2 | ms) = ([, RyRY, uiHat(ia, lo)Rid(ug, Io) |}, ms)

(f1)

LeIN* Vi,Nig =@ FlatOut(Ry,l2) =R, Flatin(Ra,l2) = R}
N’([ll Ri,u ]ﬁ ) [[l2 Ra,ug ]];2) = [[ll R/lR/ y UlHat(iQ,lg)Rid(u%lQ)]];}

(f2)

Axioms (f1) and(f2) define the flattening of membranes. Axidif2) is applicable to systems with
a unique flat inner membrane, and axigyi1) is applicable when inner membranes are more than one.
Both axioms applyFlatin to the rules of the membrane to be flattened RtdOut to the rules of the
containing membrane. Notice that all the objects in theeftetti membrane are renamed. Moreover, a
set of special objectdat(i2) corresponding to the objects in the interface of the flatteanembrane are
produced. Such special objects might be used as promottrs imles given by the functioflatOut.
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As an example, let us consider the P System in Figure 3 whiglegmonds to the P Algebra term
t = u(my, ma | u(ms, my)) where:

mi = [1 Ri,e]f with Ry = {ea — (e, here)(a,inz)(a,inz), b — (b, out)}
ma = [2 Ra, @5 with Ry = {a — (b, out)}

m3 = [3 R3, @] with R3 = {ea — (e, here) (b, out)}

my = [4 Ry, e With Ry = {e — (e, out)} .

Now, we have that

u(ma,ma) 2 [ FlatOut(Ra, 4)Flatin(Ra, 4) , @Hat(a, 4)Rid (e, 4) [2°
= [3ea — (e, here)(b,out), es — (e, here) , daes |30
Let us denote withfmg the flat membrane we have obtained. Now, we can go on by agpiyioms as
follows:
t = plmi, mo | p(ms,my)) = p(my, me | fms)
=" p([1 FlatOut(Ry,2)Flatin(Re,2), eHat(ab, 2)Rid(2,2) |1,
[3ea — (e, here)(b,out), eq — (e, here), d4e4]]§b)
= u([1ea — (eaz, here)(a,ins)|ay , b — (b,out), ag — (b, here), dglage]‘f,

[3ea — (e, here)(b,out), eq — (e, here), &464]]§b)

(f:2) [[1 ea — (eazas, here)|@2d3 » b — (b,out), az — (b, here),

€3as — (€3b, here) , €43 — (63, here) s d262d363d4€€43 ]]111 .

Note that in the P Systems in Figure 3, rate— (e, here)(a, inz2)(a,ins) in membrane 1 is enabled
because belongs to the interfaces of both membranes 2 and 3. In thedatbrane we have obtained by
applying the axioms, the corresponding rale— (easas, here)|a,a, iS €nabled as well because special
objectsa, andag are present in the content of the membrane: Would not belong to the interface of
either membrane 2 or membrane 3, the corresponding spdjéaite would be absent from the content
of the flat membrane. In this case, neither the original rolethe one given by the flattening would be
enabled.

Proposition 4.1. (soundness)
The portions of the LTS that are rooted in terms equated bynas{ f1) and(f2) are isomorphic.

Proof:

Let us begin with axiom(f1). We prove that the portion of the LTS rooted in the P algebrente
u([l1 Ri,uq ]ﬁ s Lo RQ,UQ]];; | ms) is isomorphic to a part of the portion of the LTS rooted in the
term p([;, R&RIQ,ulHat(ig,lQ)Rid(UQ,lQ)]Z , ms). More precisely, we prove that, given any tran-

sition u([1, Ri,u ]i', [1, Ra,up [i2 | ms) 5 ¢, for an arbitrary terny, then there is a transition
1([1y RARY, uiHat(ig, Io)Rid(ug, I) |}, ms) L. ¢ such thatt and#' are equated by the same axiom

(f1).
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Take any transition frorr/u([l1 Ri,uy ]ﬁ s Lo RQ,UQ]];; | ms). Such a transition must be inferred
from a transition of each of its three components. Thesetimamsitions have the following shape:

M,z 11010}

[ Ry un ) ———— 1, Ra,ui I}t )
Rovus ]2 2225 [, Ro, iy ]2 )
[, R2,u2 ]2 —— [1; R2,us ]2
Lot
ms o, ms’ 3)

Then, transitions (2) and (3) originate transition

izt 0lo" -
: : [[12 Ra, u/2 ]];; ‘ ms' (4)

[[12 R27u2]]§§ ’ ms
through semantic rul€juz1). The transition from([;, Rl,ul];}, I1, Rg,ug]]fj | ms) is inferred
through semantic ruléx1) from (1) and (4) and takes the shape:

. ) 7t.0! ) )
:u([ll Rlﬂul];i ) [[lz R27u2]]g ’ ms) L N([h R17u,1 ];11 ) [[l2 R27u,2]]§§ ‘ ms,) (5)

where:

1. Of = ;T

2. 000, =1]

3. A(l,a) € M. (I =12 Na € i2) V (I € Labels(ms) A a € Interface(l, ms)).
Transition (2) is inferred from

M>,T},2,0},2
_

12 Ra, uz ];;

[12 Ra, u/2 ];2 (6)

2

through the semantic ruleg:1), for someis.

Now, (1) can be inferred throughm2) or (m1l). In the former cas@ll = {(ls, 1)}, for somel, in
the latter caséll = @. Analogously, (6) can be inferred through:2) or (m1). In the former case
7} = {(Is, I)}, for somel, such thaSSet(I,) C i, in the latter cas&; = @. We assume that both (1)
and (6) are inferred fromn{2), the other cases are similar. The transitions originati)gand (6) have

the shape:
My, 1,1],0],0}
LAkt St St TN

R1, R, ! 7

(Ra,u1) v1,U1,01,v],D1 (R U1) ")
M>,I5,0) &

(Ra,ug) ———2= (Ra, ub) (8)

v2,Uz,v2,04,D2

for suitable valuesy, Uy, v}, D1, va, Us, v, Do With D" = DS = @.
Notice that this implies the§et(/;) C i;. Note also thaD! = Z,T implies that there exists sorr@’ll
such that

Ot = {(I2, L)} U O} 9)
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From (7) we infer

My,L1),01,0%
_

(R, u1) (R, uyRid(I2,12)) (10)

v1,U1,01,9],D1{dy,, | a€iz}
By removing inputog from the input of (10), the same transition fires blltdoes not appear i, :

My, 1\o},0l0)

(RY, u1) (R}, (W} Rid(Iy, 1)) \ O}) (11)

v1,U1,v1,0],D1{a1, | a€iz}

From (8) we infer:

M>,&,8,0
_—

(R/Q, Hat(ig,lg)Rid(UQ,lg)) (Ré, Hat(ig,lg)Rid(ué \.[2,[2)0;) (12)

v2,U2,vz,vh,Rid(Da,l2)

wherety, Us, vl, denoteRid(vy, Iz), Rid(Us, I), Rid (v}, I2) U {ay, | a € iy}, respectively.
Through semantic ruléu1), from (11) and (12) we infer

My Mo, 1, 1\O} 01,07

(R’lRé, ulHat(ig, lQ)Rid(UQ, lg)) (Rll /2, u'lHat(z'g, lg)Rid(ulz, lg))

(13)
Notice that all objectg,;, such that € i are not promoters of this transition. They have been removed
since they appear i,.
By applying semantic rulém2), which is applicable sincget(7;) C i;, we infer:

0172,U18Ua2,0103,0} v, D1 Rid (D2, 1)

M Ms {(l1,11)},1{\O},0],0%

[, RARY, urHat(ia, Ip)Rid(uz, 12) ]! [, RARY, ujHat(ia, Ip)Rid(ub, 12) ]!
(14)
We already know tha®t = Z U {(l, Is)}, 010} = 11, Ot = {(I5, 1)} U O} and A(l,a) € M;. (I =
ly Aa € iy) V (I € Labels(ms) A a € Interface(l, ms)). Therefore,0} = 7, 0! = I \ O] and
A(l,a) € M. (I € Labels(ms) A a € Interface(l, ms)). So, we can apply the semantic rifel) to
infer that (3) and (14) originate
! ! . . 11 I%,OI ! 1/ / . . / 11 !
:u([h R1Rs, ulHat(Z% ZQ)RId(u27 l2) ][1 ’ mS) - /L([h R1Rs, ulHat(Z2> lQ)RId(u27 l2) ]11 , Ms )
' 4 (15)
Summarizing, given any transition fropr([l1 Ri,u1 ]}i y [1p Ra, us ]];j | ms), we have a corresponding
transition fromy ([;, RiRY, uiHat(ia, l2)Rid(ug, l2) ];i , ms), Where the two transitions have the same
label and take to terms related by axi@yi1). The converse is similar, with the use of premigg, Ni; =
.
The proof of the case of axiorf)f2) is analogous to that aff1), since basic axioms allow us to
rewrite [[ll Rll /2 R ulHat(ig, lg)Rld(’LLg, lg) ]];11 into ,u([h Rll ,2 , U1 Hat(ig, lg)RId(’LLQ, l2) ];i R [[l @]]F),

and/‘([h Ri,u1 ]ﬁ > [[12 Ra,uz ]]g) into :u([h Ri,u1 ]ﬁ > [[lz Ra, uz ]];; | [[l @le) 0

Theorem 4.1. Any membrane system(m, ms) with multisets of objects and evolution rules built over
V. and without dissolving rules, can be reduced to a flat menerar] such thai(m, ms) = [; c]:.
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2:abc 2:abc

a — (b, out)d a — (b, out)d
c — (c,in3) ¢ — (c3, here)

dabe cz — (a, here)

¢ [c— (a,out)

Figure 4. Example of application of the flattening technigieéned in Section 4 to a P System containing a
dissolving rule.

l:abc

l:abc

a — (b, out)d

b, out)d
¢ — (c.ins) a — (b, out)

c — (es, here)
3:abce

c3 — (a, here
¢ [c— (a,out) 2 (g, )

C

Figure 5. Example of context in which the two membrane systeffrigure 4 behave differently.

Proof:

This can be proved by induction on the number of membraneshsdthe membrane nesting tree of
pu(m,ms). If such a tree contains two membranes, namely., ms) is u([;, c1 ;' [1, c2];2), then the
proof follows immediately from axionif2). If the membrane nesting tree contains more that two mem-
branes, then the proof can be done by resorting to the irmutilypothesis after applying one of the
axioms(f1) to one of the leaves of the tree.

Since the size of a term is always finite (and consequentlynérabrane nesting tree is finite) the flat
form is reached after a finite number of steps. The facts thdigsolving rules are present, that multisets
of objects and evolution rules are built by using objectsrfrid., ensure that the assumptions and the
premises of the axioms are always satisfied. Finally, Pitpnst.1 ensures that all the applications of
the flattening axioms preserve the behaviour, hence thevtoemanf the final flat membrane is equivalent
to the one of the original membrane system. O

5. Flattening Systems with Dissolving Rules

The flattening technique explained in the previous sectaymot be applied if membranes contain dis-
solving rules. As an example, let us consider Figure 4, wHatiening is applied, as defined in the

previous section, to a P System containing a dissolving riléen membrane 2 does not receive any
object from the environment, both the original P System dwedcbrresponding flat system send object
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2:abc 2:abc
a — (b, out)
c— (CS:hETﬁ"Nﬁd ac

a — (b,out)
¢ — (e,ing)

3:abc
ac e — (a,out)d
ac

Figure 6. Example of flattening in which membrane dissotuisosimulated.

cs — (ad, here)|-q gacq

az — (b,out)|q

b to the external environment after two steps and dissolve. ditference between the two cases is that
dissolution of membrane 2 in the original P System leads twnfiguration in which membrane 3 is the
outmost (and only) membrane, while dissolution of membgairethe flat system leads to configuration
in which the whole system disappears. As a consequence,mgraade a context in which the original
membrane system and the flat membrane behave differendy~{gare 5). The point is that the rule of
membrane 1 sending objecto membrane 3 can be eventually applied if and only if menmd@&still
exists after the dissolution of membrane 2.

In general, when a dissolving rule is applied in a membrarehave that (i) the objects of such
a membrane become immediately available to the outer merab(a) the rules of such a membrane
disappear, and (iii) the rules of the outer membrane whickl sdbjects to the membrane that has been
dissolved become no longer applicable.

One possible way of simulating dissolution is by replacigith a special object in every dis-
solving rule and using such a special object as a promotanhibitor of some rules obtained by the
flattening. This would allow (ii) and (iii) to be simulated kngingd as an inhibitor of the rules of the dis-
solved membrane and of the rules sending objects to theldiskmembrane. Objects of the dissolved
membrane can be renamed. Correspondingly, rules of the met@branes are duplicated and changed
in such a way that they can apply to the renamed objects. TWeules haval has a promoter.

We give a simple example of flattening with dissolution oféanmembranes in Figure 6. Here, the
rule causing dissolution of membrane 3 is rewritten intoa nde having objects renamed as described
in the previous section and producidg Now, both the rule originally ir2 and sending objects to 3, and
the rule originally in 3 require thal has not yet been produced. Moreover, a new rule promotedi by
has been introduced to simulate that the objects originallpembrane 3 are available in membrane 2
after its dissolution.

Let us assume the set of objettso be partitioned as follows? = V.UVUV U{d; | i € IN}U{s[, |
L € INt}, whereV,,V andV are as in the previous section, objektindicates that membranehas
been dissolved, and objegt .....;, in membran€ indicates that; is a child ofl, ..., [,_; is a child of
L, Which, in turn, is a child of. We denote the sets of objedtd; | i € IN} and{s, | L € IN"} with D
andS, respectively, and we extend the definitionRifl given in the previous section in such a way that
it changes objects i8 and it does not change objectsIn In other wordsRid(sy,, L2) = sr,.1, and
Rid(d;, L) = d;.

Let us define functionBlatin’ andFlatOut’, having the same role of functiof$atin andFlatOut of
the previous section. Our aim is to flatten all child membsanfea given membrang at the same time,
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by applyingFlatln’ to rules of these membranes afidtOut’ to rules ofl’. Moreover, this flattening is
done only if all child membranes éfare flat.

FunctionFlatln’ has two arguments: a rule contained in the membiame want to flatten, and
itself. We have several cases, depending on the origin ofuflee namely membrankeor a membrane
originally insidel and already flattened, and depending on whether the rulesgslding or not.

Let us consider first the case in which a rule in membriaagginates from a rule in a membrane
1" inside! that has been already flattened. In this case the originalwak already modified biyiatin’
when!” was flattened, and has the fonm— (v, here)|p, whereu has at least one objeat, with
I” € o andd;» ¢ D. All the objects in the rule must be renamed, in order to take account the
structure of membranes. As the rule was not originally, ith should be applicable independently from
the dissolution of. Hence, inhibitord; is not added to the rule and we have:

Flatin’ (u — (s, here)|p , ) = Rid(u, 1) — (Rid(vp, 1), here)|rid(p.)
if da, € u. 3" € o. diw & D.

If the rule corresponds to a rule originally inwe have to distinguish whether the rule is dissolving
or not. Let us begin with a non—dissolving rule— (v, here)(v,, out)|p. Note that the rule does
not send objects to any child membrane, which is a conditaisfeed by all the rules if is flat. We
rename with label all the objects triggering the rule and all the objects poedliby the rule and with
[ as a destination, so that they are not confused with the tshjpahe outer membrane. We do not
rename objects that were sent out, so that if the new ruletfiegsthe outer membrane has these objects
available. The new rule requires thalhas not been dissolved, which is expressed by the inhibditor
Hence, we have

Flatln’ (u — (v, here)(vo, out)|p), 1) = Rid(u, 1) — (Rid(vh,l)’uo,here)\Rid(D’l)ﬁdl
if Va, € u. (0 = eV VIl € 0.dy € D).

The last case deals with a dissolving rule, and requires haoges with respect to the previous case.
First, the new rule produces objadf, expressing that membranhédas dissolved. Second, the objects
that were originally produced by the rule and withs a destination are not renamed, so that they are
available in the outer membrane after the application oftitee Hence, we have

Flatln’ (u — (v, here)(vo, out)d|p), 1) = Rid(u,1) — (vyvedy, here)|rid(p,i)-d,
if Va, € u. (0 = eV VIl € 0.dy € D).

Notice that when a rule obtained througtFlatin’ producesd;, then all rules originally in and
obtained througlfrlatin’ are correctly locked by the inhibitet;. Given any non—dissolving rulé of the
formu — (vy,, here)(v,, out)|p, all objects invy, are marked with by FlatIn’. These objects should be
available in the outer membrane due to the dissolutiohoafused by the firing of. The problem will
be solved by functiorirlatOut’ applied to the outer membrane.

Note that we have not considered rules corresponding te oflthe formu — (vy,, here)d|p origi-
nated by the flattening of inner membranesksIn’ applied to inner membranes repladesith d.

In the following, given a set of ruleR in a membrané, we shall denote wittR; the subset irR of
the rules originally in membrarie
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In order to defind-latOut’ we need the following definition. Lét, = {a;, | L € INT}. Givenarule
r of the formal ... an — vyv.{v;, }|p, and a seO C V, we denote withocc(r, O) the set of the rules

bl...bn — vpvo{vy, } D!
such that:
e bic{ai} U(ONV,)foreachl <i<n;
o D' ={d;|bi =aip,,l € L;,1 <i<n}

Assume that is in a membrané. Any rule inocc(r, {Va;}) requires an objectis, € V,;, instead of
ai, forall 1 < ¢ < n. If all membranes contained irhave been flattened ard # ¢, then objectuiy,
occurs inl if ai occurred originally inside nested membranes containédmd having label ir;. In the
original system, if all these membranes have been dissthert:i was available iri to applyr. Hence,
if all promotersd; with [ € L; are now inl, thenair,, can trigger the rule.

Let us define now functioflatOut’. It has three arguments, namely a rule in a membitgreeset
of objects contained i8 showing the path betwedhand the inner membranes to which the rule sends
objects, and a set of objects of the fotp that can be used to trigger the rule instead aind that are
inherited from child membranes that have dissolved.

FlatOut' (u — (vp, here)(vo, out){(vy,,iny,) |i € I}p, U U U Sl-05,0) =
iel

occ(u — (vp{Rid(vy,, l; - o) | i € I}, here)(vo, OUt)‘DU{_‘dl,L-‘iel}u{dl“eu/iejUi}UUieI{&li|a€vli}7 O)

Assume that we aim to flatten membranes ingide!’. In this case the second argumenfaftOut’
shall be a set of objects describing the original structdrthese membranes. Since the original rule
sends objects to each membrdpwith i € I, the rule was originally applicable only when &fk are
children of!’. Now, the objects;, ., indicate that all membranes whose label isrinwvere originally
between’ and the target membrarig hence the rule was originally applicable only after digsohs
of all these membranes. This is why we add promofel§ [ € | J,.; o;} to all rules obtained through
FlatOut’. Moreover, these rules have inhibitdfd;, |« € I} since the original rule was applicable only
if all I;'s were not dissolved. Finally, all objectsipn remain now in/’, after they have been renamed by
adding the label; - o;. The third argument oflatOut’ shall be a set of objects of the foramy.;; such
thatl; is one of the inner membranes amngis in [;. By applying functiorocc we generate several rules,
where each objeat in « may be replaced by an objeg}.;; such thata, is in an inner membrang.
Functionocc ensures that for each membrane labiel o - lgzthe corresponding promotey; is added to
the rule. In this way we are sure that objects originally imsanembrane insidg, or in; itself, can be
exploited by rules iri’ after dissolution of; and of all other membranes containing them.

Let us extendFlatin’ andFlatOut’ to sets of rules:

Flatin’(R,1) = | J Flatin’(r,1)
reR

FlatOut'(R,0,0") = | | FlatOut'(r,0,0)
reR
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a — (eb, ing)
b — (b, out)

2:be

/ b — (bbs, here)l;, 4.
by — (bb37hem)|53d3ﬁd3
b — (bb, here)

% by — (bb, here)|q,

¢ — 8|

€3 — 5‘613“’ R by — (bgbg’here”ﬁds
) ! c3 — (cads, here)|p,-dq

ce — (¢, here

\Cge — (c, here)la,

Figure 7. The result of the application of the flattening axim the P System of Figure 1

Given membrane systemsnsy, . .., msy } such that eithems; = p(m, ms,) orms;, = F(m), ax-
ioms|; and|, permit us to writems; | - - - | ms,, to denote their juxtaposition, which will be sometimes
denoted J, ,,, ms;.

For a set of rulef, letobj(R) denote the set of the objects appearing in the rules.

Definition 5.1. (Flattening axiom)
Let R and(R;)cr be sets of evolution rules, and [Rtandu contain no objects ifvz.;,. Theflattening

axiomis the following:
L e IN* (UjEI VL-lj) Ni=g FIatIn’(Rj, lj) = R;
FlatOut’ (R7 Ujersor; Ise € ujt U ersy Ujer Set(Rid(ujobj(Rj)),lj)> =R
n <[l R,’LL]; , Ujel[[lj Rj,uj ]];j) = [[l R U UjeIR;'7uUjEI Hat(ij, lj) UjEI Si; UjEI Rid(uj, lj) ]];

The flattening axiom permits us to flatten all flat membranegained inl, into [ itself. The objects
in the second argument &fatOut’ give all needed information about the structurd ;ofAll objects in
u; are renamed by adding the tag since they should not be confused with objects.imhe object
s, is added to the objects &f to represent thatoriginally contained;. If [ is flattened into another
membrané’, thens;, will be renameds;, ;, to represent the origin of membrahe

Let us show an application of the described flattening tepghei Let us consider again the P System
in Figure 1. Membranes 2 and 3 contain dissolving rules. Bang the flattening axiom to membranes
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a — (eabo, here))|
b — (b,out)
bg — (b, out)|d2

bg.g — (b, ouz‘)\dadz

éxbada

S32 Sz a €39 by by €2

by — (babs.a, hf”’)‘bgﬁdpdg
bza — (bobzo, here)liq. g, q,
by — (babs, here)|-q,
baa — (babs, here)|as-d,
co — da|-ey-d,
RI? { cz2 — daldz-er—a,
coey — (c2, here)|
czze2 — (c2, here)|az-d,

bg.g == (bg.gbg.g, h-ET€)|ﬁd3
K Czo — (C3.Qd3, h-ere)\bs.gﬁ%

Figure 8. The result of the application of the flattening axi the P System of Figure 7

2 and 3 we obtain the system in Figure 7, where the rules ireh®;s are obtained by applying function
Flatln’ to the rules of membrane 3, and the rules in the 3gt are obtained by applying function
FlatOut’ to the rules in membrane 2. Note that the second rulggn is never applicable as its set of
promoters and inhibitors is incoherent. This rule coulddraaved by applying axiorfprom1). Finally,
by applying the flattening axiom to membranes 1 and 2 in Figuse obtain the flat system in Figure 8.
Rules inR;, are obtained by applying functidfiatin’ to membrane 2, and rules i, are obtained by
applying functionFlatOut’ to membrane 1.

Theorem 5.1. (soundness)
Let us assume a membrane systemand a flat membranp ¢! such thatns = [ c]; is inferred by
applying the flattening axiom repeatedly in the tree stmactims. If ms cannot perform step in which

its outmost membrane dissolve, thes ~ [; c]:.

Proof:
The theorem follows from property (16) in Lemma 5.1. O

Given a set of objects and a ruler, we writev t/ r if v contains an object that is an inhibitor «af

If a membrane systemus is not a juxtaposition of other membrane systems,det(ms) denote the
label of the outmost membraneins, if any. Formally,root(ms) = [ if either ms = u([; c]i, ms’) or
ms = [ ¢]i, androot(ms) =L, otherwise.
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Lemma5.1. Let us assume a membrane systera and a flat membranf R, v ]! such thatms =
[ R,u ] is inferred by applying the flattening axiom repeatedly ia titee structure afus. It holds that:

Lot - 7lot ,
ms 229 ms' with root(ms’) = Lif and only if [; R, u]; 9, [ R, ]; (16)
wherems’ = [; R,«' ]}, and that:

zt,0tu”

ms 2290 ms' with root(ms') # 1 ifand only if [, R, u[i (17)

where for each set of rulé®, multisets of objects and: and label it holds that:

1. w(FR,u0! ]%,ms’ | ms”)

p([fFlatOut' (R, v’ N'S,u”OTobj(R) \ R;) UR \ Ry, un’O') ]lZ, ms")

2. M([Zﬁa ﬂOT ]% ) ms/)

[; FlatOut' (R, u” N'S,u”OTobj(R) \ R;) UR \ Ry, wu”OT) ]]2:

Before giving the proof, let us explain (17).rbot(ms’) # I, membrané dissolves since some rule
rin [ produces objeci. Analogously, also a rule iR obtained troughrlatOut’ from r produces’, thus
implying that[; R, v ]} dissolves. In this case, it sends out the set of objettthat correspond, after
suitable renaming, to objects in the membranes:ii, plus objects irS plus objets inD. Consider a
system obtained by insertings’ into any membrane. According to (17), flattening such a syssethe
same of applyingrlatOut’ to rules in the outmost membrane and taking ruleRinR;. In fact, this set
of rules has been already obtained by repeatedly applymfdtiening axiom.

Proof:
We reason by induction over the structurena$. The case withns flat is trivial. Hence, let us assume
ms = pu(i R, u' )}, U;e; msi), with root(ms;) = I; for eachi € 1.

We prove (16), the proof of (17) is analogous. We prove thdy‘dticase, the converse is analogous.

. Lot

The transitiory ([ R/, v ]}, U;e; msi) 2.9, s’ must be inferred from a transition of each of the
1| + 1 components of. ([; R',u’ ]}, U;c; ms;). The transition fronj; R’, ' ] has the following shape,
whereI" andO' are suitable sets of objects, and is a suitable set of pairs of membrane labels and
objects:

. L1t ol.o!l .
(R ] S R (18)

Then, there is a partitiod U H of I such that for each € J the transition fromms; has either shape

{(:,1:)},0]
ms; ———

ms,; , with root(ms,) = I; (19)
or shape

) gvoz'T / : N o7
ms; —— ms; , With root(ms;) = I; (20)
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and for eachi € H the transition fromms; has either shape

{(t:,1:)},0]

ms; ————" ms , with root(ms}) # I; (21)
or shape
®7OZT / H /
ms; —— ms; , With root(ms;) # ; (22)

In other wordsH is the set of the labels of the membrames; performing a step in which a dissolving
rule is applied, and is the set of the labels of the membrames; which do not dissolve.

Since cases (20) and (22) are easier to manage than casasdi(@).), we consider only these latter
two cases. We assume that both#z () and H # (). The cases in which eithef or H is empty are
simpler and can be handled in a slightly different way. Idsahat (19) and (21) originate

e {0 L) Y dier OF
UmSi ULEI{( )} UZEI % Ums; (23)

el i€l

through semantic rule§juz1) — (jux3). The transition fromyu ([ R',v'];, U;c; ms;) is inferred
through semantic rul¢:1) from (18) and (23), and takes the shape
AT zh,01 R !
p(E RN, ([ msi) == p(( R, [ ms?) (24)
i€l iel

and it holds that:

1. Ob = U A, 1)}
2. I = U,.; O
3. A(l,a) € M.l € U;c{li} N a € Interface(l;, ms;).

Note that in point number 1 we haverather than= because we have assumed that transitions performed
by eachms; have (19) and (21) as possible shapes.
For eachi € I, let us take the set of ruléi8;, the set of objects; and the set of objectj such that
ms; = [i, Ri,ui]]ff is inferred from the flattening axiom.
For each € J, by the inductive hypothesis it follows that (19) implies

{1, I)},0] .
[ Riyui 1y, IR, 1, Ri Iz, (25)

wherems] = [, Ri, u} ]}
For each € H, by the inductive hypothesis it follows that (21) implies

{(1;,I)Y,00 !
R e (26)
where for eactR, 7, [ andi:

/L([TRvﬂOJ ]%7m8; | ’I’)’LS”)

p([r FlatOut' (R, u/ N S,u/O]obj(R;) \ Ry,) UR: \ Ry, i} O] |}, ms")
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Transition (18) is inferred either throudm1), if Z! = @, or through(m2), if Z} = (1, I) for some
I. The two cases are similar. Let us consider only the ¢asy. The originating transition has the shape

MITTOM ;e {(li 10)}
v,Uv,v' D

(R, ) (R, 0) (27)
for suitablev, U, v" and D. Notice thatSet(I) C i.

Transitions (25) and (26) are inferred through semantiesrtfm1) and (fm?2), respectively, from
transitions having the following shape:

- 2{(:,1)},2,0] 0
[ Riswi ]! [1; Riy ui I (28)

@ {(i,1)},2,0u,

In turn, (28) is inferred througlim?2), and (29) is inferred througtm4). The originating transitions
have the shape

2,1;,0] .2
——

Ri,u; Ri, uj 30

(R, wi) 0;,U3,v:,05, D4 (R, i) (30)
1;,00ul,

(Riyug) 2002, (31)

!
v, U3,0i,05,D;

for suitable values;, U;, v}, D;.

LetR” = FlatOut'(R',U;c/{So-1; | So € wi} U;e 81, Ui Rid(0bj(R4)ui, 1;)). Note that for each tran-
sitionv — wvpvo{vy, }|p IN R/, functionocc generates several transitions of the farm— vy, v}, v,|ppr,
with " andv;, derived fromv and{v;, }, respectively, and’ depending on the’ chosen and ofv;, }.
However, only transitions generated from transitions efftrmv — v,v,{v;, }| p such that each is in
U,cr{li} canfire, since transitions generated from transitionsiagrabjects to membranes contained in
any!; require promoted,,, which is not available. Moreover, for the same reason, antioa transitions
generated from — v,v.{vy, }|p, only the transitiony — vy {Rid(v;,, ;) }vo|pp With v as left side can
fire. In this case, it holds thad’ C {—d;,|i € I} U J;c;{a;]e € V'}. From (27) and the definition of

occ we infer
"o . 2,111,012 v . .
(R, {1, } | Hat(ji, 1)) e DD (R”, o' | J{s1,} | Hat(i, 1) | Rid(Z;, 1;)) (32)

i€l i€l i€l i€l i€l
whereD’ C {—d,;,|7 € I}. Notice thatD’ does not contain any;, with a € I,. In fact, all these objects
are contained imat(j;, ;). By removing aIIOZ.T from I andv’, from (32) we infer

2,1,0T, @

_—

" / . " / . . T
(R , U U{Sli} U Hat(jiﬂ ll)) v U DD (R ) (U U{Sli} U Hat(]i7 ll) U Rld([i7 ll)) \ U Oz)
el el el i€l el el
(33)
For each € I, let R, = Flatln’(R;,1;). For eachi € .J, from (30) and by removing input we infer:

,.2,2,&
e

(R, Rid(us, ;) (RS, OIRid(u} \ I, 1;)) (34)

3, U;, 07,0, Rid(D; 1) ~dy,

wherev;, EJ; denoteRid(v;, ;), Rid(U;, I;), Rid(v}, ;), respectively.
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For each € H, from (31) and by removing input, we infer:

2,2,9,0
e

(R}, Rid(u;, 1;)) (R}, u!O} \ Rid(I;,1;)) (35)

73, U5,7,0},Rid (D i) ~dy,
where@,ﬁi,;gdenoteRid(vi,l,-), Rid(U;, ;), Rid(v, 1;), respectively. Notice that containsd;,.
Through semantic ruléu1), from (33), (34) and (35) we infer

(R" U | Riw | {si,} | Hat(i, 1) | Rid(ws, 1))
1€l 1€l i€l 1€l
2,1,01,2
_—
voT, U UL w01 w0}, DI;e  Rid(Dy 1) {~dy, [i€T}
(R" U |JRi, o | {si} U Hat(is, 1) | Rid(ui, ) | uf)  (36)
1€l i€l 1€l i€J i€

whereUs = Uic; Ui, o1 = Uje; 5 v = Uier V-
Let us observe now th&R"” U J,c; R} = R andu’ U} s1, U;er Hat(Ji, 1) U;ep Rid(ui, ;) = u. Hence,
(36) can be rewritten as

(R, u) &0l (R, o | HatGios 1) | s | Rid(uf, ) | )
vo1,USULwoT,w' vy, D] ;e Rid(Ds,li){~dy; [iel} iel el ieJ et
(37)
By applying semantic rulém2), which is applicable since we already know tBat(7) C i, we infer:
R ul ZEZONZ R o | HatGi, ) | s | Rid(ug, 1) | )i (38)
icl iel Qe icH

Finally, by applying semantic rulef(n1) we obtain

. T .
LR uli 290 R, | Hat(i, 1) | s, | Rid(ud 1) | o/ T (39)

el el e 1€eH

Take now the target terms of (24) and (39). By the inductivedtlyesis over all € J, the target term of
(24) is equated to

p( RN L Ry uf 17w | ms?)
icJ icH
By the hypothesis over alle H, we infer that this is equal to
p(lo B | f 15 D Rl 17
i€H ieJ
whereR* = FlatOut'(R', Uiy v/ NS, Uy 1/ O} 0bj(R;)) Uy Ri- This is equated to
[ RiRs, o | uff | s, | Hat(is, 1) | Rid(uj, 1) T

ieH 1€ ieJ ieJ
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where
1. Ry = FIatOut’(R*,UieJ{so.li |so € u} e st Ues Rid(ujobj(R), 1));
2. R5 = U, Flatin'(R;. I;).

In the target term of (39) we can remove all rule§iroriginally in membrane$l;|i € H} by exploiting
axioms @z1) and @x2). This is possible since! contains{d;,|i € H}. Then, we can remove also the
objects| ;. i s, andJ; i Hat(ji, I;) with axiom (@x9), thus obtaining that in the target terms of (24)
and (39) we can have the same set of objects, modulo axiomsit® show that the same holds for
the set of rules. We have thaf is the union of latOut(R/, U, j{So-1, | So € w} U,y 81, UUjepy w0

S, U, Rid(uwj0bj(R;), 1) UU;e g u;’O;obj(Ri) \Ry;) andFIatOut/(UiGH Ri\ Ry, Uie {801 |80 €
ui } Use s 81> Use s Rid(ujobj(R;),1;)). The first set is equal t&”, provided that fronfR” we remove
promotersd;,, for all i € H, with axioms ¢x3) and @x4). The second set is equal tg,. ; R \ Ry,
namely it is not affected b¥latOut’. So, it suffices to prove that for eachc H we can transform
Flatln’(R;\R;;, ;) into R;\R,,. This holds, since all transitions FatIn’(R;, ;) marked with inhibitors
appearing in:; can be removed with axioma«1) and(ax2). O

6. Conclusions and Future Work

We have faced the problem of defining a flattening techniqu® f8ystems defined by means of axioms
on terms of the algebra of such systems we have introduce8l,ithie P Algebra, and preserving the
behaviour. We have formally defined such a technique firdtenchse of P Systems without dissolving
rules and then in the case of P Systems with dissolving rilileis. has required extending the syntax and
the semantics of the P Algebra with promoters and inhibitoevolution rules, with a notion of interface
and with a notion of flat membrane, defining some axioms andmgdhat these axioms are sound with
respect to bisimulations.

Future work might include studying the cost of our flatteriechnique in terms of number of objects
and evolution rules added to the flat membrane with respdbttaumber of objects and evolution rules
of the original P System.

Our long term aim is to define a normal form of P System. In otdeeach the normal form of a P
System, in addition to apply our flattening technique we @iso need to transform rules and objects
of such a system into some minimal form.
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