
Fundamenta Informaticae 87 (2008) 1–34 1

IOS Press

A P Systems Flat Form Preserving Step–by–step Behaviour

Roberto Barbuti∗, Andrea Maggiolo-Schettini, Paolo Milazzo

Dipartimento di Informatica, Università di Pisa

Largo Pontecorvo 3, 56127 Pisa, Italy

{barbuti, maggiolo, milazzo}@di.unipi.it

Simone Tini

Dip. di Scienze della Cultura, Politiche e dell’Informazione

Universit̀a dell’Insubria

Via Carloni 78, 22100 Como, Italy

simone.tini@uninsubria.it

Abstract. Starting from a compositional operational semantics of transition P Systems we have
previously defined, we face the problem of developing an axiomatization that is sound and complete
with respect to some behavioural equivalence. To achieve this goal, we propose to transform the
systems into a normal form with an equivalent semantics. As afirst step, we introduce axioms which
allow the transformation of membrane structures into flat membranes. We leave as future work the
further step that leads to the wanted normal form.

Keywords: membrane computing, P systems, normal form, reactive system, behavioral equiva-
lence

1. Introduction

We have recently defined a compositional operational semantics of P Systems [13] as a labeled transition
system (LTS) [3]. The class of P Systems we have considered are the so calledtransition P Systemswith
dissolving rules and with cooperative evolution rules. In the definition of the semantics, P Systems are
seen asreactive systems[10], namely as systems that can receive stimuli from an environment and can

∗Address for correspondence: Dipartimento di Informatica,Università di Pisa, Largo Pontecorvo 3, 56127 Pisa, Italy

2 R. Barbuti et al. / A P Systems Flat Form Preserving Step–by–step Behaviour

react to these stimuli, possibly by sending some reply back to the environment. In particular, membranes
are seen as the entities that can receive stimuli, in terms ofobjects, from an environment. The environ-
ment of a membrane can be another membrane containing it and having some rules which send objects
into it. As an environment of a membrane we consider also other membranes possibly contained in it and
having some rules which send objects out. The objects received by a membrane from the environment
could enable the application of some rules of the membrane that could eventually send some objects back
to the environment, namely to outer and inner membranes.

The LTS we have defined allows us to observe the behaviour of membranes in terms of objects sent to
and received from inner and external membranes. A state of the LTS is a configuration of the considered
P System, and a transition from a state to another describes an execution step of the P System, in which
rules are applied according to maximal parallelism in all the membranes of the system. Transitions are
labeled with the multiset of objects received from the environment, the multiset of objects sent to outer
membrane, and the multisets of objects sent to inner membranes in the described execution step. Other
information carried by labels is needed to build the LTS in a compositional way. This means that the
semantics of a complex system can be inferred from the semantics of its components.

In [3] we have proved that some well–known behavioural equivalences such as trace equivalence and
bisimulation defined on our LTS are congruences. This means that if we can prove that a membrane
system that is a component of some bigger system is behaviourally equivalent to another membrane
system, then the former can be replaced with the latter in thebigger system without changing the global
behaviour. In other words, there exists no environment in which the bigger system with the original
component reacts differently to stimuli with respect to thesame system with the replaced component.

Behavioural equivalences are powerful analysis tools as they allow us to compare the behaviours of
two systems and to verify properties of a system by assessingthe equivalence between such a system
and another one known to satisfy those properties. However,proving behavioural equivalence is not easy
because the semantics of a system often consists of infinite states and infinite transitions. For this reason,
it is usually important to find an axiomatization of some behavioural equivalence, namely a sound and
complete characterization of the equivalence in terms of axioms on the syntax of systems. In this way the
equivalence between two systems could be proved by showing that there exists a sequence of applications
of such axioms that transforms one system into the other. This allows the proof of the equivalence to
be performed without considering the (possibly complex) semantics of the compared systems, and this
usually favors the development of tools for the comparison of systems.

We would like to define a sound and complete axiomatization ofthe equivalences we have given
in [3]. It is not easy to prove soundness and completeness of an axiomatization, namely that axioms
relate behaviourally equivalent systems and that all behaviourally equivalent systems are in the relation
characterized by the axioms. In particular, completeness proof is usually difficult. What can help to
prove this result is a notion of normal form to which all the considered systems can be reduced. This
could allow the set of axioms to be split into two subsets: oneconsisting of the axioms that can be used
to bring the systems into their normal form and the other consisting of axioms that relate systems in
normal form. This, in turn, could allow the proof of completeness to be simplified by considering only
the axioms in the second set.

In this paper we perform the first steps towards the definitionof a normal form for P Systems preserv-
ing behavioural equivalences. In particular, we face the problem of determining the membrane structure
of the normal form of a system. We start by considering P Systems without dissolving rules, and we
show, by giving some axioms, that any P System in this class can be transformed into an equivalent P

R. Barbuti et al. / A P Systems Flat Form Preserving Step–by–step Behaviour 3

System consisting of only one membrane (aflat system). In order to obtain this result we slightly enrich
the membranes of a P System, namely we associate with each membrane aninterface, that is a set of
objects that are allowed to be received by the membrane from an external membrane.

We also consider P Systems with dissolving rules, and we show, by giving one more axiom, that any
P System in this class whose outmost membrane does not contain any dissolving rule, can be transformed
into a flat system. In order to obtain this result we need to consider P Systems in which evolution rules
may have promoters and inhibitors.

These results and the flattening technique we define in order to obtain them, can be used not only
in the context of the definition of an axiomatization of our semantics. For instance, one interested in
developing some analysis or verification technique on P Systems could develop such a technique on flat
systems and use our flattening method to compile general systems into flat ones.

The results we obtain in this paper about the equivalence of aP System and of its corresponding
flat form, are based on the notion ofbisimulation [11, 12]. A bisimulation is an equivalence relation
on states of an LTS that relates states from which transitions with the same labels can be performed,
reaching states that are again related by the bisimulation.This means that bisimilar states of an LTS are
able to simulate each other step–by–step.

We defined bisimulation for our semantics of P Systems in [3].In this case, states of the LTS
correspond to states of the computation of a P System, and transitions correspond to computation steps.
The fact that we use bisimulation to prove the equivalence ofa P System with its corresponding flat form
means that we prove that the flat form preserves the behaviourof the P System at each computation step.
We remark that bisimulation on P Systems is a stronger behavioural equivalence than the commonly used
ones based on the comparison of the generated/accepted languages.

This paper is structured as follows. In Section 2 we recall the definition of P Systems and of the
syntax and the semantics of the P Algebra (the algebraic notation of P Systems we introduced in [3]).
In Section 3 we give some basic axioms on terms of the P Algebra. In Sections 4 and 5 we give our
flattening technique for P Systems without and with dissolving rules, respectively. Finally, in Section 6
we draw some conclusions and discuss possible future developments.

Related work Operational semantics for P Systems have been proposed in [2, 6, 7, 9]. All these
semantics are not compositional and have no notion of observable behaviour. In fact, they have not been
defined with the aim of developing behavioural equivalences. In particular, [2] aims at simplifying the
development of an interpreter of P Systems proved to be correct, [6] aims at proving the decidability
of the divergence problem for the considered variant of P Systems, [7] aims at describing the causal
dependencies occurring between applications of rules of a PSystem, and in [9] a formal framework is
proposed to describe a large number of variants of P Systems.

The flattening result we obtain by considering P Systems without dissolving rules is similar to the
result given in [4], where a notion ofcomputational encodingis introduced and used to show thatn–PBR
Systems (PBR Systems withn > 0 membranes) can be simulated by0–PBR Systems (PBR Systems
with no membranes). We refer the reader to [5] for an introduction to PBR Systems. The difference
between the result given in [4] and ours is that the axioms we give to transform a P System into its
flat form are proved to preserve our compositional semantics, hence they are sound with respect to any
behavioural equivalence. The flat system we obtain can replace the original one in any bigger system
without changing the global behaviour.

4 R. Barbuti et al. / A P Systems Flat Form Preserving Step–by–step Behaviour

Another normal form of P Systems is introduced in [14], whereit is shown that any P System of
degreek (namely, in which the depth of the membrane nesting tree isk) consisting of a composition ofn
membranes can be reduced to an equivalent P System of degree2 with the same number of membranes.
In this case the P System in normal form is equivalent to the original one in the sense that it can generate
the same language, where a word of the language is the concatenation of the objects sent outside the skin
membrane during the execution of the system. This means thatthe original system and the one in normal
form can be considered as equivalent even if one of the two performs additional steps in which no objects
are sent out of the skin. The notion of equivalence we consider here, instead, is stronger. In fact, in order
to ensure that a system in normal form can always replace its original system in any context, we need to
require that the two systems are step–by–step equivalent.

2. P Systems and the P Algebra

In this section we recall the definition of P Systems [13] and of the P Algebra [3]. The class of P Systems
we consider includes cooperative evolution rules, dissolving rules and rule promoters and inhibitors.
Moreover, we extend this class of P Systems with a notion of membrane interface. We shall adapt the
syntax and semantics of the P Algebra with respect to [3] to deal with these features.

2.1. P Systems

A P System consists of ahierarchy of membranesthat do not intersect, with a distinguishable membrane,
called theskin membrane, surrounding them all. As usual, we assume membranes to be labeled by
natural numbers. Given a set of objectsV , a membranem contains a multiset ofobjectsin V , a set of
evolution rules, and possibly other membranes, calledchild membranes (m is also called theparentof
its child membranes). Objects represent molecules swimming in a chemical solution, and evolution rules
represent chemical reactions that may occur inside the membrane containing them. For each evolution
rule there is a multiset of objects representing the reactants, and a multiset of objects representing the
products of the chemical reaction. A rule in a membranem can be applied only to objects inm, meaning
that the reactants should be precisely inm, and not in its child membranes. The rule must contain target
indications, specifying the membranes where the new objects produced by applying the rule are sent. The
new objects either remain inm, or can be sent out ofm, or can be sent into one of its child membranes,
precisely identified by its label. Formally, the products ofa rule are denoted with a multiset ofmessages
of the following forms:

• (v, here), meaning that the multiset of objectsv produced by the rule remain in the same mem-
branem;

• (v, out), meaning that the multiset of objectsv produced by the rule are sent out ofm;

• (v, inl), meaning that the multiset of objectsv produced by the rule are sent into the child mem-
branel.

An evolution rule may have somepromotersand someinhibitors. Promoters are objects that are required
to be present and inhibitors are objects that are required tobe absent in the membranem in order to
enable the application of the rule. Promoters will be denoted simply as objects, namelya, b, c, . . ., while

R. Barbuti et al. / A P Systems Flat Form Preserving Step–by–step Behaviour 5

inhibitors will be denoted as objects preceded by a negationsymbol, namely¬a,¬b,¬c, Given a set
of promoter and inhibitor symbolsD, we denote withD+ andD− the sets of objects containing all the
objects occurring inD as promoters and all the objects occurring inD as inhibitors, respectively. We
remark thatD+ andD− are sets of objects, hence elements onD− will not be preceded by¬. Moreover,
with ¬D we denote the set obtained by transforming each promoter inD into an inhibitor and viceversa.
As an example, ifD = {a,¬b,¬c, d} we haveD+ = {a, d}, D− = {b, c} and¬D = {¬a, b, c,¬d}.

We can assume that all evolution rules have the following form, where{l1, . . . , ln} is a set of mem-
brane labels inIN andD is a set of promoters and inhibitors:

u → (vh, here)(vo, out)(v1, inl1) . . . (vn, inln)|D .

An evolution rule in a membranem is calleddissolvingif its application causes the disappearance of
m. In this case, the objects inm and the child membranes ofm remain free in the parent membrane of
m, and the evolution rules ofm are lost. The skin membrane cannot be dissolved. A dissolving evolution
rule is denoted by adding to the products the special objectδ such thatδ 6∈ V :

u → (vh, here)(vo, out)(v1, inl1) . . . (vn, inln)δ|D .

Application of evolution rules is done with maximal parallelism, namely at each evolution step a
multiset of instances of evolution rules is chosen non–deterministically such that no other rule can be
applied to the system obtained by removing all the objects necessary to apply all the chosen rules. The
application of rules consists of removing all the reactantsof the chosen rules from the system, adding the
products of the rules by taking into account the target indications, and dissolving all the membranes in
which aδ message has been produced. Promoters are not consumed by theapplication of the correspond-
ing evolution rule. A presence of a single occurrence of a promoter can enable the application of more
than one rule in each maximally parallel evolution step. Similarly, the presence of a single occurrence of
a inhibitor forbids the application of all the evolution rules in which it appears.

A P System has a tree–structure in which the skin membrane is the root and the membranes contain-
ing no other membranes are the leaves. The only change to the structure that may happen is the removal
of some nodes of the tree (apart from the root) caused by someδ object produced by evolution rules.
Hence, we assume membranes labels to be unique: they are assigned at the beginning of the evolution
by counting the membranes encountered during a breadth-first visit of the tree–structure, with1 as the
label of the skin membrane.

Up to now we described features of P Systems, such as promoters and inhibitors, already known in
the literature [13]. In order to define a general flat form for PSystems we need an additional new feature
of P Systems, namelymembrane interfaces. We assume that each membrane of a P System is enriched
with an interface, namely a set of objects representing the only objects that can be received from an
external membrane. This means that if in the environment of amembrane there is a rule willing to send
into it some objects that are not in the corresponding interface, then such a rule will never be applicable.
Note that this extension is rather conservative, namely it is always possible to find a set of objects large
enough to ensure that the behaviour of a P System extended with interfaces is the same as the intended
behaviour of the original P System. On the other hand, it is possible to statically check whether each rule
of a P System might eventually become applicable or not because of interfaces. As a consequence, if we
assume that the skin membrane of a P System cannot receive anyobject from the external environment,
then a P System with interfaces can be simulated by a P System without interfaces in which the latter

6 R. Barbuti et al. / A P Systems Flat Form Preserving Step–by–step Behaviour

is obtained from the former by removing those rules that would never become applicable because of
interfaces. However, in the following we will construct P Systems compositionally, and in this case we
cannot assume that the outmost membrane does not receive anyobject from the external environment. In
the following we will use interfaces for both the description and the flattening of P Systems.

Now, we formally define P Systems.

Definition 2.1. A P SystemΠ is given by

Π = (V, µ, i1, . . . , in, w1, . . . , wn, R1, . . . , Rn)

where:

• V is analphabetwhose elements are calledobjects;

• µ ⊂ IN× IN is amembrane structure, such that(l1, l2) ∈ µ denotes that the membrane labeled by
l2 is contained in the membrane labeled byl1;

• ij with 1 ≤ j ≤ n are subsets ofV representing theinterfacesof the membranes1, . . . , n of µ;

• wj with 1 ≤ j ≤ n are strings fromV ∗ representing multisets overV associated with the mem-
branes1, . . . , n of µ;

• Rj with 1 ≤ j ≤ n are finite sets ofevolution rulesassociated with the membranes1, . . . , n of µ.

We show in Figure 1 an example of P System in which all the main features of the formalism are used.
In the figure, membranes are depicted as boxes containing evolution rules, objects and inner membranes.
The label and the interface of a membrane are at a corner of thecorresponding box separated by a colon.

2.2. The P Algebra: Syntax and Semantics

In this section we recall theP Algebra, the algebraic notation of P Systems we have introduced in
[3]. Actually, we give here an extended version of the P Algebra which will allow us to transform
arbitrary systems to an equivalent flat form. Such an extended version includes promoters and inhibitors
in evolution rules and membrane interfaces.

Constants of the P Algebra correspond to single objects or single evolution rules, and they can be
composed into membrane systems by using operations of union, containment in a membrane, juxtaposi-
tion of membranes, and so on. Terms of the P Algebra are the states of the LTS.

We assume the usual string notation to represent multisets of objects inV . For instance, to represent
{a, a, b, b, c} we may write eitheraabbc, or a2b2c, or (ab)2c. We denote withSet(u) the support of mul-
tisetu, namely the set of all the objects occurring inu. We denote multiset (and set) union as string con-
catenation, hence we writeu1u2 for u1∪u2. For the sake of readability, we shall writeu → vhvo{vli}|D
for the generic non–dissolving evolution ruleu → (vh, here)(vo, out)(v1, inl1) . . . (vn, inln)|D, and
u → vhvo{vli}δ|D for the similar generic dissolving evolution rule.

The abstract syntax of the P Algebra is defined as follows.

R. Barbuti et al. / A P Systems Flat Form Preserving Step–by–step Behaviour 7

1:∅

b → (b, out)

a → (eb, in2)

2:be

b → (b, here)(b, in3)

b → (bb, here)

c → δ|¬e

ce → (c, here)

3:b

a

c

c → δ|¬e

c → (c, here)δ|b

b → (bb, here)

Figure 1. Example of P System that may send out of the skin membrane a multiset of objectsb2n

for anyn > 3.

Definition 2.2. (P Algebra)
The abstract syntax ofmembrane contentsc, membranesm, andmembrane systemsms is given by the
following grammar, wherel ranges overIN, a overV andi ⊆ V :

c ::= (∅, ∅)
∣

∣ (u → vhvo{vli}|D, ∅)
∣

∣ (u → vhvo{vli}δ|D, ∅)
∣

∣ (∅, a)
∣

∣ c ∪ c

m ::= [l c]il

ms ::= ms | ms
∣

∣ µ(m,ms)
∣

∣ F (m)
∣

∣ v

A membrane contentc represents a pair(R, u), whereR is a set of evolution rules andu is a multiset
of objects. A membrane content is obtained through the unionoperation ∪ from constants representing
single evolution rules and constants representing single objects, and can be plugged into a membrane
with label l and interfacei by means of the operation[l]il of membranesm. As a consequence, given
a membrane contentc representing the pair(R, u), l ∈ IN andi ⊆ V , [l c]il represents the membrane
havingl as label,i as interface,R as evolution rules andu as objects.

Membrane systemsms have the following meaning:ms1 | ms2 represents the juxtaposition ofms1

andms2, µ(m,ms) represents the hierarchical composition ofm andms, namely the containment ofms

in m, F (m) represents aflat membrane, namely it states thatm does not contain any child membrane,
andv represents thedissolved membrane. Juxtaposition is used to group sibling membranes, namely
membranes all having the same parent in a membrane structure. This operation allows hierarchical
compositionµ to be defined as a binary operator on a single membrane (the parent) and a juxtaposition
of membranes (all the children) rather than onn + 1 membranes, for any possible number of children
n. Finally, the dissolved membranev will be used in the definition of the LTS to denote the state of a
membrane after the application of one of its dissolving rules.

8 R. Barbuti et al. / A P Systems Flat Form Preserving Step–by–step Behaviour

In what follows we will often write[[l c]]il for F ([l c]il). For the sake of simplicity, we shall also often
write (R1R2, u1u2) for (R1 u1)∪(R2, u2), [l u]il for [l (∅, u)]il and[l u1 → vh1vo1{vli1}|D1

, . . . , u1 →
vhnvon{vlin}|Dn , u]il for [l (R, u)]il if R = {u1 → vh1vo1{vli1}|D1

, . . . , u1 → vhnvon{vlin}|Dn}. We
shall use analogous notations with[l]il replaced by[[l]]il .

As an example, the P System shown in Figure 1 corresponds to the following membrane system:

µ([1 a → (eb, in2) , b → (b, out) , a]∅1 ,

µ([2 b → (b, here)(b, in3) , b → (bb, here) , c → δ|¬e , ce → (c, here)]be2 ,

[[3 b → (bb, here) , c → (c, here)δ|b , c]]b3)) .

We give another example in which juxtaposition of membranesis used. Consider a P System similar
to the one shown in Figure 1, but in which membrane2 contains also a membrane with label4 containing,
in turn, an objecta and no rules. Such a P System corresponds to the following membrane system:

µ([1 a → (eb, in2) , b → (b, out) , a]∅1 ,

µ([2 b → (b, here)(b, in3) , b → (bb, here) , c → δ|¬e , ce → (c, here)]be2 ,

[[3 b → (bb, here) , c → (c, here)δ|b , c]]b3 | [[4 a]]a4)) .

The semantics of the P Algebra is given in terms of an LTS, namely a triple (S,L, {
`
−→ | ` ∈ L}),

whereS is a set ofstates, L is a set oflabels, and
`
−→⊆ S × S is atransition relationfor each` ∈ L. As

usual, we writes
`
−→ s′ for (s, s′) ∈

`
−→. LTS labels can be of the following forms:

• (u,U, v, v′,D,M, I,O↑, O↓), describing a computation step performed by a membrane contentc,
where:

– u is the multiset of objects consumed by the application of evolution rules inc, as it results
from the composition, by means of∪ , of the constants representing these evolution rules.

– U is the set of multisets of objects corresponding to the left hand sides of the evolution rules
in c.

– v is the multiset of objects inc offered for the application of the evolution rules, as it results
from the composition, by means of∪ , of the constants representing these objects. When
operation[l]il is applied toc, it is required thatv andu coincide.

– v′ is the multiset of objects inc that are not used to apply any evolution rule and, therefore,
are not consumed, as it results from the composition, by means of ∪ , of the constants
representing these objects. When operation[l]il is applied toc, it is required that no multiset
in U is contained inv′, thus implying that no evolution rule inc can be further applied by
exploiting the available objects. This constraint is mandatory to ensure maximal parallelism.

– D is a set of promoters and inhibitors required to be present and absent, respectively, by
the application of evolution rules inc. More precisely,D− contains all the inhibitors of the
applied evolution rules inc, whereasD+ is a subset of the promoters of those rules. Such a
subset contains only those objects that are not present in the multiset of objects ofc.

R. Barbuti et al. / A P Systems Flat Form Preserving Step–by–step Behaviour 9

– M is a set of pairs(l, a) wherel is a membrane label anda is an object.M contains a pair
(l, a) if some evolution rule inc is not applied since its firing would imply sendinga to some
child membrane labeledl, but either no child membrane labeledl exists, ora is not present
in the interface of the child membrane labeledl.

– I is the multiset of objects received as input from the parent membrane and from the child
membranes.

– O↑ is the multiset of objects sent as an output to the parent membrane.

– O↓ is a set of pairs(li, vli) describing the multiset of objects sent as an output to each child
membraneli.

• (M,I↓, I↑, O↑, O↓), describing a computation step performed by a membranem, where:I↓ is a
set containing only the pair(l, I) wherel is the label ofm andI is the multiset of objects received
by m as input from the parent membrane,I↑ is the multisets of objects received from the child
membranes ofm, andM , O↑ andO↓ are as in the previous case.

• (I↓, O↑), describing a computation step performed by a membrane system ms, whereO↑ is as
in the previous cases andI↓ differs with respect to the previous case because, whenms is a
juxtaposition of membranes, it contains a pair(l, I) for each element of the juxtaposition.

ComponentsI,O↓, O↑ in labels of the first form, and componentsI↑,I↓, O↓, O↑ in labels of the
second and third forms, describe the input/output behaviour of P Algebra terms, namely what is usually
considered to be the observable behaviour. Labels of the first form are more complex sinceu,U, v, v′,D

are needed to infer the behaviour of membrane contents compositionally. For the same reasonM is used
in the first two forms of labels.

For the sake of legibility, in transitions with labels of thefirst form we shall write the first five
elements of the label below the arrow denoting the transition and the other four elements over the arrow.

Now, LTS transitions are defined through SOS transition rules [15] of the form premises
conclusion, where the

premises are a set of transitions, and the conclusion is a transition. Intuitively, SOS transition rules permit
us to infer transitions performed by P Algebra terms from transitions performed by their subterms. We
assume the standard way to associate a set of transitions with a set of transition rules [1].

The transition rules we give in this paper differ slightly from those in [3] as we are describing the
semantics of a version of the P Algebra extended with promoters, inhibitors and membrane interfaces.
We give a brief explanation of the transition rules by focusing in particular on the differences with respect
to [3]. We refer to that paper for a more detailed explanationof the semantics.

We start by giving the transition rules for membrane contents.

I ∈ V ∗ n ∈ IN D ∩ ¬D = ∅

(u → vhvo{vli}|D, ∅)
∅,I,vn

o
,{(li,vn

li
)}

−−−−−−−−−−−→
un,{u},∅,∅,D

(u → vhvo{vli}|D, Ivn
h)

(mc1n)

I ∈ V ∗ n ∈ IN n > 0 D ∩ ¬D = ∅

(u → vhvo{vli}δ|D, ∅)
∅,I,Ivn

o
vn

h
δ,{(li,vn

li
)}

−−−−−−−−−−−−−−→
un,{u},∅,∅,D

v

(mc2n)

I ∈ V ∗

(u → vhvo{vli}δ|D, ∅)
∅,I,∅,∅

−−−−−−−−−→
∅,{u},∅,∅,∅

(u → vhvo{vli}δ|D, I)
(mc3)

10 R. Barbuti et al. / A P Systems Flat Form Preserving Step–by–step Behaviour

I ∈ V ∗ l ∈ Labels({vli}) a ∈ vl

(u → vhvo{vli}|D, ∅)
{(l,a)},I,∅,∅
−−−−−−−−→

∅,∅,∅,∅,∅
(u → vhvo{vli}|D, I)

(mc4)

I ∈ V ∗ l ∈ Labels({vli}) a ∈ vl

(u → vhvo{vli}δ|D, ∅)
{(l,a)},I,∅,∅
−−−−−−−−→

∅,∅,∅,∅,∅
(u → vhvo{vli}δ|D, I)

(mc5)

I ∈ V ∗ D′ ⊆ ¬D D′ 6= ∅ D′ ∩ ¬D′ = ∅

(u → vhvo{vli}|D, ∅)
∅,I,∅,∅

−−−−−−−→
∅,∅,∅,∅,D′

(u → vhvo{vli}|D, I)
(mc6)

I ∈ V ∗ D′ ⊆ ¬D D′ 6= ∅ D′ ∩ ¬D′ = ∅

(u → vhvo{vli}δ|D, ∅)
∅,I,∅,∅

−−−−−−−→
∅,∅,∅,∅,D′

(u → vhvo{vli}δ|D, I)
(mc7)

I ∈ V ∗ D ∩ ¬D 6= ∅

(u → vhvo{vli}|D, ∅)
∅,I,∅,∅

−−−−−−−→
∅,∅,∅,∅,∅

(u → vhvo{vli}|D, I)
(mc8)

I ∈ V ∗ D ∩ ¬D 6= ∅

(u → vhvo{vli}δ|D, ∅)
∅,I,∅,∅

−−−−−−−→
∅,∅,∅,∅,∅

(u → vhvo{vli}δ|D, I)
(mc9)

I ∈ V ∗

(∅, a)
∅,I,∅,∅

−−−−−−−→
∅,∅,a,∅,∅

(∅, I)
(mc10)

I ∈ V ∗

(∅, a)
∅,I,∅,∅

−−−−−−−→
∅,∅,∅,a,∅

(∅, Ia)
(mc11)

I ∈ V ∗

(∅, ∅)
∅,I,∅,∅

−−−−−−−→
∅,∅,∅,∅,∅

(∅, I)
(mc12)

Rule (mc1n) describesn simultaneous applications of a non–dissolving evolution rule for anyn ∈
IN, and(mc2n) describesn simultaneous applications of a dissolving evolution rule with n > 0. In
these two cases the set of promoters and inhibitorsD of the applied evolution rule become part of
the label of the transition. This permits the subsequent verification of the presence (absence) of the
promoters (inhibitors) in the whole membrane content in which the rule is applied. The setD is checked
to be coherent (the same object should not appear at the same time as promoter and as inhibitor) by the
requirementD ∩ ¬D = ∅. We could omit this checking, provided that the property is assured for all
evolution rules. The use of rule(mc1n) with n = 0 describes the case in which promoters and inhibitors
in D are assumed to be present and absent, respectively, but the rule is not applied because there are no
objectsu available in the whole membrane content in which the rule occurs. The non–application of a
dissolving rule for the same reason is described by rule(mc3).

Rules(mc4) and(mc5) describe the case in which a non–dissolving and a dissolvingevolution rule,
respectively, are not applied because they require sendingobjects to a child membranel that is either
assumed not to exist, or it is assumed to have an interface that does not include one of the sent objects,
denoteda. In these rules we assume a functionLabels from sets of pairs{(v1, inl1), . . . , (vn, inln)}
with vi 6= ∅, sets usually denoted{vli}, into sets of labels. The functionLabels({vli}) extracts all the
membrane labels from the given set of pairs, namely it returns {l1, . . . , ln}.

R. Barbuti et al. / A P Systems Flat Form Preserving Step–by–step Behaviour 11

Rules(mc6) and (mc7) describe the case in which a non–dissolving and a dissolvingevolution
rule, respectively, are not applied because some of the promoters and inhibitors inD they require to be
present and absent, respectively, are assumed not to satisfy the requirements. In this case, such promoters
and inhibitors are used as label of the defined transition after negation, namelyD′ ⊆ ¬D, because
we will subsequently need to verify that the involved promoters and inhibitors are absent and present,
respectively, that is the opposite of what verified when the evolution rule is applied. As in(mc1n) and
(mc2n), the set of promoters and inhibitors used as transition label D′ is checked to be coherent.

Rules(mc8) and(mc9) describe the case in which a non–dissolving and a dissolvingevolution rule,
respectively, are not applied because they have an incoherent set of promoters and inhibitors. In this case
the membrane content can only receive objects from the environment.

Rules(mc10), (mc11) and(mc12) describe the transitions performed by membrane contents con-
sisting of a single object and the transitions performed by an empty membrane content.

Now we give the transition rules allowing us to infer the behaviour of unions of membrane contents
from the behaviour of the individual membrane contents.

x1
M1,I1,O

↑
1
,O

↓
1−−−−−−−−→

u1,U1,v1,v′
1
,D1

y1 x2
M2,I2,O

↑
2
,O

↓
2−−−−−−−−→

u2,U2,v2,v′
2
,D2

y2 δ 6∈ O
↑
1O

↑
2

v′1v
′
2 0 U1 ⊕ U2 6 ∃u ∈ V ∗.((l, a) ∈ M1M2 ∧ (l, au) ∈ O

↓
1 ∪IN O

↓
2)

(D−
1 ∪ D−

2) ∩ Set(v1v
′
1v2v

′
2) = ∅ D1 ∩ ¬D2 = ∅ D = (D1D2) \ Set(v1v

′
1v2v

′
2)

x1 ∪ x2
M1M2,I1I2,O

↑
1
O

↑
2
,O

↓
1
∪INO

↓
2−−−−−−−−−−−−−−−−−−→

u1u2,U1⊕U2,v1v2,v′
1
v′
2
,D

y1 ∪ y2

(u1)

x1
M1,I1,O

↑
1
,O

↓
1−−−−−−−−→

u1,U1,v1,v′
1
,D1

y1 x2
M2,I2,O

↑
2
,O

↓
2−−−−−−−−→

u2,U2,v2,v′
2
,D2

y2 δ ∈ O
↑
1 δ 6∈ O

↑
2

v′1v
′
2 0 U1 ⊕ U2 6 ∃u ∈ V ∗.((l, a) ∈ M1M2 ∧ (l, au) ∈ O

↓
1 ∪IN O

↓
2)

(D−
1 ∪ D−

2) ∩ Set(v1v
′
1v2v

′
2) = ∅ D1 ∩ ¬D2 = ∅ D = (D1D2) \ Set(v1v

′
1v2v

′
2)

x1 ∪ x2
M1M2,I1I2,O

↑

1
O

↑

2
Objects(y2),O

↓

1
∪INO

↓

2−−−−−−−−−−−−−−−−−−−−−−−−→
u1u2,U1⊕U2,v1v2,v′

1
v′
2
,D

v

(u2)

x1
M1,I1,O

↑
1
,O

↓
1−−−−−−−−→

u1,U1,v1,v′
1
,D1

y1 x2
M2,I2,O

↑
2
,O

↓
2−−−−−−−−→

u2,U2,v2,v′
2
,D2

y2 δ ∈ O
↑
1 ∩ O

↑
2

v′1v
′
2 0 U1 ⊕ U2 6 ∃u ∈ V ∗.((l, a) ∈ M1M2 ∧ (l, au) ∈ O

↓
1 ∪IN O

↓
2)

(D−
1 ∪ D−

2) ∩ Set(v1v
′
1v2v

′
2) = ∅ D1 ∩ ¬D2 = ∅ D = (D1D2) \ Set(v1v

′
1v2v

′
2)

x1 ∪ x2
M1M2,I1I2,O

↑
1
O

↑
2
,O

↓
1
∪INO

↓
2−−−−−−−−−−−−−−−−−−→

u1u2,U1⊕U2,v1v2,v′
1
v′
2
,D

v

(u3)

Rules(u1), (u2) and(u3) describe the behaviour of a union of membrane contents when in none,
in the first and in both of the composed membrane contents a dissolving rule is applied. We omit the
symmetric rule of(u2) where in the second membrane content a dissolving rule is applied. In these
transition rules we use some auxiliary notations. Given a multiset of objectsu and a set of multisets
of objectsU , we write u ` U if there exists someu′ ⊆ u such thatu′ ∈ U , and we writeu 0 U

otherwise. Intuitively, since for eachu′ ∈ U there is an evolution rule havingu′ in the left side, then
u ` U means thatu can let at least one of these transitions fire. Moreover, we assume a functionObjects

from membrane contents to multisets of objects such thatObjects((R, u)) = u. Then, given two sets of
multisetsU1 andU2, we writeU1 ⊕ U2 to denote the set{u ∈ U1U2| 6 ∃u′ ∈ U1U2.u

′ ⊂ u}. Finally,

12 R. Barbuti et al. / A P Systems Flat Form Preserving Step–by–step Behaviour

given two setsO↓
1 andO

↓
2 representing two outputs to inner membranes, we writeO

↓
1 ∪IN O

↓
2 to denote

the set{(l, uv) | (l, u) ∈ O
↓
1 ∧ (l, v) ∈ O

↓
2} ∪ {(l, u) | (l, u) ∈ O

↓
1∧ 6 ∃v.(l, v) ∈ O

↓
2} ∪ {(l, v) | (l, v) ∈

O
↓
2∧ 6 ∃u.(l, u) ∈ O

↓
1}.

In (u1), (u2) and(u3) it is checked that the information represented by the pairs inM1M2 is coherent
with the information on the objects sent to inner membranes represented byO↓

1 ∪IN O
↓
2. As regards pro-

moters and inhibitors, in(u1), (u2) and(u3) it is checked that none of the inhibitors inD1 andD2 occurs
in the multisets of objects of the composed membrane contents, namely(D−

1 ∪D−
2)∩Set(v1v

′
1v2v

′
2) = ∅,

and that there is no conflict between the requirements of the composed membrane contents, namely
D1 ∩ ¬D2 = ∅. Moreover, the label of the transition performed by the union of the membrane contents
contains as set of promoters and inhibitors the set obtainedby removing from the union ofD1 andD2

the promoters corresponding to objects that occur in any of the two membrane contents.
Now we give the transition rules for individual membranes.

x
M,I,O↑,O↓

−−−−−−−→
u,U,u,v′,D

y δ 6∈ O↑ D+ = ∅

[l x]il
M,∅,I,O↑,O↓

−−−−−−−−−→ [l y]il

(m1)

x
M,I1I2,O↑,O↓

−−−−−−−−−→
u,U,u,v′,D

y δ 6∈ O↑ D+ = ∅ Set(I1) ⊆ i I1 6= ∅

[l x]il
M,{(l,I1)},I2,O↑,O↓

−−−−−−−−−−−−−→ [l y]il

(m2)

x
M,I,O↑,O↓

−−−−−−−→
u,U,u,v′,D

y δ ∈ O↑ D+ = ∅

[l x]il
M,∅,I,O↑,O↓

−−−−−−−−−→ v
(m3)

x
M,I1I2,O↑,O↓

−−−−−−−−−→
u,U,u,v′,D

y δ ∈ O↑ D+ = ∅ Set(I1) ⊆ i I1 6= ∅

[l x]il
M,{(l,I1)},I2,O↑,O↓

−−−−−−−−−−−−−→ v

(m4)

Rules(m1) and(m2) describe the transitions performed by a membrane with labell and interface
i when no dissolving rule is applied. In particular,(m1) describes the case in which no objects are
received as an input from the external membrane, while(m2) describes the case in which a multiset of
objectsI1 6= ∅ are received. In(m2) the objects received as an input from the external membrane must
be mentioned in the interface of membranel, namelySet(I1) ⊆ i. Notice that, givenI, all possible
partitions ofI into I1 andI2 must be considered. Rules(m3) and(m4) are analogous to(m1) and(m2)
but describe the transitions performed when a dissolving rule is applied.

In all these transition rules the set of promoters and inhibitors D in the label of the transition per-
formed by the membrane content must contain no promoters, namely D+ = ∅. This ensures that all the
promoters required by the evolution rules applied in the described computation step are present because
they have all been removed by occurrences of(u1), (u2) and(u3) in the derivation tree of the transition
performed by the membrane content. Moreover, it is also ensured that no object occurs in the membrane
content which is an inhibitor of evolution rules applied in the described computation step. This follows
from the definition of transition rules(u1), (u2) and(u3) used to derive the transition of the membrane
content.

R. Barbuti et al. / A P Systems Flat Form Preserving Step–by–step Behaviour 13

Now we give the transition rules that allow us to infer the behaviour of a flat membrane[[l c]]il =
F ([l c]il) from the behaviour of membrane[l c]il.

x
M,I↓,∅,O↑,∅
−−−−−−−−−→ y δ 6∈ O↑

F (x)
I↓,O↑

−−−−→ F (y)
(fm1)

x
M,I↓,∅,O↑,∅
−−−−−−−−−→ y δ ∈ O↑

F (x)
I↓,O↑

−−−−→ v

(fm2)

Notice that rules forF (x) only require that both the multiset of objects received fromand sent to
inner membranes (third and fifth component of the label, respectively) are empty.

Now we give transition rules allowing us to infer the behaviour of juxtapositions of membranes from
the behaviour of their components.

x1
I1,O

↑

1−−−−→ y1 x2
I2,O

↑

2−−−−→ y2 δ 6∈ O
↑
1O

↑
2

x1|x2
I1I2,O

↑

1
O

↑

2−−−−−−−→ y1|y2

(jux1)

x1
I1,O

↑
1−−−−→ y1 x2

I2,O
↑
2−−−−→ y2 δ ∈ O

↑
1 δ 6∈ O

↑
2

x1|x2
I1I2,(O↑

1
O

↑
2
)−δ

−−−−−−−−−−→ y2

(jux2)

x1
I1,O

↑
1−−−−→ y1 x2

I2,O
↑
2−−−−→ y2 δ ∈ O

↑
1 ∩ O

↑
2

x1|x2
I1I2,(O↑

1
O

↑
2
)

−−−−−−−−→ v

(jux3)

The three rules(jux1), (jux2) and(jux3) deal with the cases in whichδ occurs in the label of none,
of the first and of both of the composed membrane systems, respectively. We omit the symmetric rule
of (jux2) in which δ occurs in the label of the second membrane system. We recall that, by definition
of (m3), (m4) and(fm2), we have thatδ occurs in the label of the transition of a membrane only when
such a membrane is dissolved (and transformed intov) by the application of some dissolving rule. The
symbolδ is left in the label of the transition of the juxtaposition todenote dissolution of the whole system
only when both of its components are dissolved.

To conclude with the semantics of the P Algebra we give the transition rules for hierarchical compo-
sitions of membranes.

x1
M1,I↓

1
,I

↑
1

,O
↑
1
,O

↓
1−−−−−−−−−−−→ y1 x2

I2,O
↑
2−−−−→ y2

O
↓
1 l I2 O

↑
2 = I

↑
1 δ 6∈ O

↑
1O

↑
2

6 ∃(l, a) ∈ M1.(l ∈ Lab(x2) ∧ a ∈ Interface(l, x2))

µ(x1, x2)
I↓
1
,O

↑
1−−−−→ µ(y1, y2)

(h1)

x1
M1,I↓

1
,I

↑
1

,O
↑
1
,O

↓
1−−−−−−−−−−−→ y1 x2

I2,O
↑
2−−−−→ y2

O
↓
1 l I2 O

↑
2 = I

↑
1 δ ∈ O

↑
1 δ 6∈ O

↑
2

6 ∃(l, a) ∈ M1.(l ∈ Lab(x2) ∧ a ∈ Interface(l, x2))

µ(x1, x2)
I↓
1
,O

↑
1
−δ

−−−−−−→ y2

(h2)

x1
M1,I↓

1
,I

↑
1

,O
↑
1
,O

↓
1−−−−−−−−−−−→ y1 x2

I2,O
↑
2−−−−→ y2

O
↓
1 l I2 O

↑
2 − δ = I

↑
1 δ 6∈ O

↑
1 δ ∈ O

↑
2

6 ∃(l, a) ∈ M1.(l ∈ Lab(x2) ∧ a ∈ Interface(l, x2))

µ(x1, x2)
I↓
1
,O

↑
1−−−−→ F (y1)

(h3)

14 R. Barbuti et al. / A P Systems Flat Form Preserving Step–by–step Behaviour

x1
M1,I↓

1
,I

↑
1

,O
↑
1
,O

↓
1−−−−−−−−−−−→ y1 x2

I2,O
↑
2−−−−→ y2

O
↓
1 l I2 O

↑
2 − δ = I

↑
1 δ ∈ O

↑
1 ∩ O

↑
2

6 ∃(l, a) ∈ M1.(l ∈ Lab(x2) ∧ a ∈ Interface(l, x2))

µ(x1, x2)
I↓
1
,O

↑
1−−−−→ v

(h4)

Rule (h1) deals with the case in which neither the parent membrane nor the child membranes dis-
solve, rule(h2) with the case in which the parent membrane dissolves, rule(h3) with the case in which
all the child membranes dissolve (and are transformed intov), and rule(h4) with the case in which both
the parent membrane and the child membranes dissolve. In allthese transition rules it is checked that the
objects sent from the parent membrane to child membranes andviceversa correspond to what is expected
to be received from child membranes and the parent membrane,respectively. Moreover, in the premises
of all these transition rules it is required that the assumption on the presence and on the interfaces of
child membranes represented byM1 are satisfied. Namely, if(l, a) ∈ M1, then either no child mem-
brane with labell is present ora does not appear in the interface of such a membrane. We assumel to
be an equivalence relation on sets of pairs(l, u) with l ∈ IN andu ∈ V ∗, such that, given two such sets
I1 andI2, thenI1 l I2 holds if and only if(I1 \ {(l, ∅) | l ∈ IN}) = (I2 \ {(l, ∅) | l ∈ IN}). We also
assumeLab(x1 | . . . | xn) andInterface(l, x1 | . . . | xn) to be the set of labels of the juxtaposition of
membranes, namely the set{l1, . . . , ln}, and the interface of membranelj = l, respectively, wherexj is
either[[lj R, u]]ilj or µ([lj R, u]ilj , x

′
j).

All the semantics rules satisfy the constraints of the well–knownde Simoneformat [8], which ensures
that all the behavioural equivalences considered in [3] arecongruences. In particular, we recall here the
definition of bisimulation.

Definition 2.3. (Bisimulation)
Let (S,L, {

`
−→ | ` ∈ L}) be an LTS. A relationR ⊆ S × S is abisimulationif for each pair of states

(s1, s2) such thats1 Rs2 the following two conditions hold:

• s1
`
−→ s′1 implies that there is a transitions2

`
−→ s′2 such thats′1 R s′2 ;

• s2
`
−→ s′2 implies that there is a transitions1

`
−→ s′1 such thats′1 R s′2 .

As usual, we denote with≈ the union of all bisimulations (that is the largest bisimulation).

3. Some Axioms on Terms of the P Algebra

We give some basic axioms on the commutativity and associativity of the operations of the P Algebra, on
some simple properties of evolution rules with promoters and inhibitors and on membranes with empty
interfaces.

R. Barbuti et al. / A P Systems Flat Form Preserving Step–by–step Behaviour 15

Definition 3.1. (Basic axioms)
Somebasic axiomson terms of the P Algebra are the following:

c1 ∪ c2 = c2 ∪ c1 (∪1)

c1 ∪ (c2 ∪ c3) = (c1 ∪ c2) ∪ c3 (∪2)

ms1 | ms2 = ms2 | ms1 (|1)

ms1 | (ms2 | ms3) = ms1 | (ms2 | ms3) (|2)

(u → vhvo{vli}|Da¬a, ∅) = (∅, ∅) (prom1)

(u → vhvo{vli}δ|Da¬a, ∅) = (∅, ∅) (prom2)

[l au → vhvo{vli}|Da , R , u′]il = [l au → vhvo{vli}|D , R , u′]il (prom3)

[l au → vhvo{vli}δ|Da , R , u′]il = [l au → vhvo{vli}δ|D , R , u′]il (prom4)

[l u → vhvo{vli}|Da , u → vhvo{vli}|D¬a , R , u′]il = [l u → vhvo{vli}|D , R , u′]il (prom5)

[l u → vhvo{vli}δ|Da , u → vhvo{vli}δ|D¬a , R , u′]il = [l u → vhvo{vli}δ|D , R , u′]il (prom6)

[l1 c]∅l1 = [l2 c]∅l2 (if1)

[[l R, ∅]]∅l = [[l u]]∅l = [[l ∅]]∅l (if2)

ms = ms | [[l ∅]]∅l (if3)

[[l1 c]]il1 = µ
(

[l1 c]il1 , [[l2 ∅]]∅l2
)

(if4)

vli 6= ∅

[[l u → vhvo{vli}|D , R , u′]]il = [[l R , u′]]il
(fm1)

vli 6= ∅

[[l u → vhvo{vli}δ|D , R , u′]]il = [[l R , u′]]il
(fm2)

The first four axioms state commutativity and associativityof union of membrane contents and jux-
taposition of membrane systems.

Axioms (prom1) and(prom2) state that an evolution rule with an incoherent set of promoters and
inhibitors can be removed from a membrane content. Axioms(prom3) and(prom4) state that an evo-
lution rule having as a promoter one of the objects it consumes, can be simplified by removing such a
promoter. These axioms equate two membranes containingau → vhvo{vli}|Da andau → vhvo{vli}|D
rather than membrane contents(au → vhvo{vli}|Da, ∅) and(au → vhvo{vli}|D, ∅) because transitions
performed by these two membrane contents have different sets of promoters as labels. Axioms(prom5)
and(prom6) state that when a membrane contains two rules whose only difference is that one contains
a promoter that is an inhibitor of the other, then such a membrane can be simplified by replacing these
rules with one consisting of the common part of the two. Again, we define these axioms on membranes
rather than membrane contents in order to ensure that the transitions performed by the equated terms are
the same.

Axiom (if1) states that if a membrane has empty interface, then its labell1 can be changed intol2.
The reason is that the evolution rules of an outer membrane sending objects tol1 are never applicable
as the condition on the interface ofl1 is always violated. When the label is changed intol2, then those

16 R. Barbuti et al. / A P Systems Flat Form Preserving Step–by–step Behaviour

evolution rules continue to be never applicable because they send objects to a membrane with labell1
that is absent. On the other hand, no other rule can send objects to the new membranel2 because its
interface is empty. The behaviour of a membrane with empty interface may consist only of objects sent
out. Actually, if the membrane with empty interface is flat and contains either some rules but no object or
some objects but no rule, then it is equivalent to an empty flatmembrane. This is stated by axiom(if2).
Axioms (if3) and(if4) state that an empty flat membrane with an empty interface can be juxtaposed
with any membrane system or inserted inside another membrane.

Axioms (fm1) and(fm2) state that in a flat membrane an evolution rule sending objects into inner
membranes can be removed both in the case of a non–dissolvingrule and in the case of a dissolving one.

Now we give some slightly more complex axioms.

Definition 3.2. (Axioms)
Some axioms on terms of the P Algebra are the following:

6 ∃u′ → v′hv′o{vl′i
}|D′ ∈ R s.t.a ∈ u′

[l R , u → vhvo{vli}|D¬a , av]il = [l R , av]il
(ax1)

6 ∃u′ → v′hv′o{vl′i
}|D′ ∈ R s.t.a ∈ u′

[l R , u → vhvo{vli}δ|D¬a , av]il = [l R , av]il
(ax2)

a 6∈ u 6 ∃u′ → v′hv′o{vl′
i
}|D′ ∈ R s.t. a ∈ u′

[l R , u → vhvo{vli}|Da , av]il = [l R , u → vhvo{vli}|D , av]il
(ax3)

a 6∈ u 6 ∃u′ → v′hv′o{vl′i
}|D′ ∈ R s.t. a ∈ u′

[l R , u → vhvo{vli}δ|Da , av]il = [l R , u → vhvo{vli}δ|D , av]il
(ax4)

a 6∈ v a 6∈ i 6 ∃u′ → v′hv′o{vl′i
}|D′ ∈ R s.t.a ∈ v′h

[[l R , u → vhvo{vli}|Da , v]]il = [[l R , v]]il
(ax5)

a 6∈ v a 6∈ i 6 ∃u′ → v′hv′o{vl′i
}|D′ ∈ R s.t.a ∈ v′h

[[l R , u → vhvo{vli}δ|Da , v]]il = [[l R , v]]il
(ax6)

a 6∈ v a 6∈ vh a 6∈ i 6 ∃u′ → v′hv′o{vl′i
}|D′ ∈ R s.t.a ∈ v′h

[[l R , u → vhvo{vli}|D¬a , v]]il = [[l R , u → vhvo{vli}|D , v]]il
(ax7)

a 6∈ v a 6∈ vh a 6∈ i 6 ∃u′ → v′hv′o{vl′i
}|D′ ∈ R s.t.a ∈ v′h

[[l R , u → vhvo{vli}δ|D¬a , v]]il = [[l R , u → vhvo{vli}δ|D , v]]il
(ax8)

6 ∃u → vhvo{vli}δ|D ∈ R∧ 6 ∃u → vhvo{vli}|D ∈ R s.t. (a ∈ u) ∨ (a ∈ D) ∨ (¬a ∈ D)

[[l R , av]]il = [[l R , v]]il
(ax9)

Axioms (ax1) and (ax2) state that a membrane containing an objecta that is an inhibitor of an
evolution rule (non–dissolving and dissolving, respectively) can be simplified by removing such an evo-
lution rule if there are no other non–dissolving rules consuminga. This condition ensures that the object

R. Barbuti et al. / A P Systems Flat Form Preserving Step–by–step Behaviour 17

Figure 2. An example of flattening of a P System without dissolving rules.

a will always be present in the membrane, and consequently that the evolution rule witha as an inhibitor
will never be applied. Moreover, this condition does not forbid dissolving rules to consumea, because
after the application of these rules all the evolution rulesof the membrane are lost.

Axioms (ax3) and(ax4) state that if in a membrane containing an objecta there is an evolution rule
(non–dissolving and dissolving, respectively) promoted by a, then, if such an evolution rule as well as
all the other rules does not consumea, thena can be removed from the set of promoters and inhibitors
of the rule. In fact, in this case the applicability of the evolution rule promoted bya will not depend on
a itself because such an object will always be available.

Axioms (ax5) and(ax6) state that if in a flat membrane there is an evolution rule (non–dissolving
and dissolving, respectively) that is promoted bya and if a is not present, is not produced by any rule
and cannot be received from the external membrane (as it is not mentioned in the interface of the mem-
brane), then the evolution rule promoted bya can be removed as it will never become applicable. Under
similar conditions, axioms(ax7) and(ax8) state that an evolution rule (non–dissolving and dissolving,
respectively) inhibited bya can be simplified by removinga from its inhibitors. In these four axioms
the fact that the considered membrane is flat is important because otherwise some occurrences ofa may
become available by dissolution of inner membranes.

Finally, axiom(ax9) states that if in a flat membrane there is an objecta that is not consumed by
any evolution rule and is neither a promoter nor an inhibitorof any rule, and if the membrane does not
contain any dissolving rule, then the objecta can be removed from the membrane.

4. Flattening Systems without Dissolving Rules

As shown in [4], any transition P System with a fixed membrane structure (i.e. without dissolving rules)
can be reduced to a flat form in which the membrane structure consists only of one membrane. This
result can be obtained by moving objects and rules of inner membranes into the external membrane,
after suitable renaming. An example of application of this technique is shown in Figure 2. However,
the behaviour of the flat membrane is the same as the behaviourof the original membrane structure only
under the assumption that the membrane cannot receive any object from the external environment. In
fact, if the external environment could send to the flat membrane an object that is the renaming of some
object originally in an inner membrane, this could enable the application of some rules among those that
have been added to the external membrane by the flattening technique. In the example of the figure, if the
environment could send an objectc3 inside the membrane on the right, this would enable the application

18 R. Barbuti et al. / A P Systems Flat Form Preserving Step–by–step Behaviour

of rule c3 → (a, here) which would result, after one more step, in the output of ab that would not be
sent out by the original system. This problem is solved by a suitable use of membrane interfaces. In the
example, interfaceabc of membrane 2 ensures thatc3 cannot be received from the environment.

Since the flattening technique we are going to define is based on renaming of objects, we need to
describe how evolution rules are consequently changed. Forthis reason, we define two functionsFlatIn

andFlatOut. The former gives the result of the renaming of the rules of the membrane that is removed
by the flattening. The latter gives the result of the renamingof the rules of the membrane which contains
the one that is removed. In order to avoid ambiguities, in thedefinitions ofFlatIn andFlatOut we shall
use the notationu → (vh, here)(vo, out)(vl1 , inl1) . . . (vln , inln)|D for evolution rules rather than the
more compact notationu → vhvo{vli}|D.

We assume that the alphabetV is partitioned as follows:V = Vε ∪
(
⋃

L∈IN+ VL

)

∪ {âl | a ∈ Vε, l ∈
IN}, whereVε is the set of all objects without subscripts,VL is the set of objects obtained by adding
L ∈ IN+ as a subscript to each object ofVε, and objects likêal are special objects each obtained from an
objecta ∈ Vε and a membrane labell. We denote withV andV̂ the two sets of objects

⋃

L∈IN+ VL and
{âl | a ∈ Vε, l ∈ IN}, respectively, and it holds thatVε, V andV̂ are pairwise disjoint. As an example, if
Vε = a, b, c, . . ., thena1, b1·2 andc3·1·2 belong toV , andâ2, b̂1 andĉ2 belong toV̂ .

Let Rid(aL1
, L2) denote the object obtained by appendingL2 to the (possibly empty) subscript of an

objectaL1
∈ Vε ∪ V , namelyRid(aL1

, L2) = aL1·L2
. We assume thatRid does not change objects in̂V ,

namelyRid(âl, L) = âl. We extend the definition ofRid to sets and multisets of objects and to sets of
promoters and inhibitors. For example,Rid(aabccc, 3) = a3a3b3c3c3c3 = a2

3b3c
3
3, Rid(aa1·2bb2, 3 ·4) =

a3·4a1·2·3·4b3·4b2·3·4, andRid(ab1¬c¬d2, 3) = a3b1·3¬c3¬d2·3. Moreover, given a set of objectsS ⊆ Vε,
let Hat(S, l) denote the set{âl | a ∈ S} ⊆ V̂ . For example,Hat({a, b, c}, 2) = {â2, b̂2, ĉ2}. The
functionsFlatIn andFlatOut are defined as follows:

FlatIn (u → (vh, here)(vo, out)|D , l) = Rid(u, l) → (Rid(vh, l)vo, here)(∅, out))|Rid(D,l)

FlatOut (u → (vh, here)(vo, out)(vl1 , inl1) . . . (vli , inli) . . . (vln , inln)|D , li) =

u → (vhRid(vli , li), here)(vo, out)(vl1 , inl1) . . . (∅, inli) . . . (vln , inln)|D{âli
|a∈vli

}

Both FlatIn andFlatOut take a rule and a membrane label as arguments, and give a new rule as a
result. In both cases the membrane label represents the label of the membrane that is removed by the
flattening. In the first case such a label (denotedl) should not occur in the evolution rule, as the rule is
assumed to be one of those of the inner membrane involved in the flattening. In the second case the label
certainly occurs in the evolution rule (in fact it is denotedli) as the rule is assumed to be one of those of
the outer membrane involved in the flattening.

FunctionFlatIn renames objects of the rules to which it is applied, by addinga subscript correspond-
ing to the flattened membrane. Notice that, in the right part of the rule, only the objects that were origi-
nally sent to the membrane itself are renamed. The objects that were sent out are not renamed, simulating
the fact that, after the application of the rule, they are no longer belonging to the flattened membrane.
Moreover, notice that the rules to whichFlatIn is applied do not send objects to any child membrane.
This because we assume that the functionFlatIn will be applied to rules belonging to flat membranes,
and rules of a flat membrane sending objects to inner membranes can be removed by applying axioms
(fm1) and(fm2).

FunctionFlatOut is applied to the rules of the membrane containing the flattened one. FlatOut

replaces in each rule the objects sent to the flattened membrane li with objects to which subscriptli is

R. Barbuti et al. / A P Systems Flat Form Preserving Step–by–step Behaviour 19

Figure 3. An example of P System.

added. It is important to remark the role of the promotersâli which are added to the rules given by
FlatOut. Such promoters aim to simulate the interface of the flattened inner membrane. A rule is able to
produce an objectaL·li (simulating an objecta sent into inner membraneli) only if the promoter̂ali is
present. As we will show in the following,̂ali is present only if the interface of the flattened membrane
li containsa.

With abuse of notation we shall writeFlatIn(R, l) for {FlatIn(r, l) | r ∈ R}, andFlatOut(R, l) for
{FlatOut(r, l) | r ∈ R}. Now, the flattening technique is expressed by means of the following axioms.

Definition 4.1. (Flattening axioms)
Let R1 andR2 be sets of evolution rules containing no dissolving rule, and let R1 andu1 contain no
objects inVL·l2 for anyL ∈ IN∗. Theflattening axiomsare the following:

ms 6= v L ∈ IN∗ VL·l2 ∩ i1 = ∅ FlatOut(R1, l2) = R′
1 FlatIn(R2, l2) = R′

2

µ
(

[l1 R1, u1]i1l1 , [[l2 R2, u2]]i2l2 | ms
)

= µ
(

[l1 R
′
1R

′
2, u1Hat(i2, l2)Rid(u2, l2)]i1l1 , ms

) (f1)

L ∈ IN∗ VL·l2 ∩ i1 = ∅ FlatOut(R1, l2) = R′
1 FlatIn(R2, l2) = R′

2

µ
(

[l1 R1, u1]i1l1 , [[l2 R2, u2]]i2l2
)

= [[l1 R
′
1R

′
2 , u1Hat(i2, l2)Rid(u2, l2)]]i1l1

(f2)

Axioms(f1) and(f2) define the flattening of membranes. Axiom(f2) is applicable to systems with
a unique flat inner membrane, and axiom(f1) is applicable when inner membranes are more than one.
Both axioms applyFlatIn to the rules of the membrane to be flattened andFlatOut to the rules of the
containing membrane. Notice that all the objects in the flattened membrane are renamed. Moreover, a
set of special objectsHat(i2) corresponding to the objects in the interface of the flattened membrane are
produced. Such special objects might be used as promoters inthe rules given by the functionFlatOut.

20 R. Barbuti et al. / A P Systems Flat Form Preserving Step–by–step Behaviour

As an example, let us consider the P System in Figure 3 which corresponds to the P Algebra term
t = µ(m1 , m2 | µ(m3,m4)) where:

m1 = [1 R1, e]a1 with R1 = {ea → (e, here)(a, in2)(a, in3) , b → (b, out)}

m2 = [[2 R2, ∅]]ab
2 with R2 = {a → (b, out)}

m3 = [3 R3, ∅]ab
3 with R3 = {ea → (e, here)(b, out)}

m4 = [[4 R4, e]]a4 with R4 = {e → (e, out)} .

Now, we have that

µ(m3,m4)
(f2)
= [[3 FlatOut(R3, 4)FlatIn(R4, 4) , ∅Hat(a, 4)Rid(e, 4)]]ab

3

= [[3 ea → (e, here)(b, out) , e4 → (e, here) , â4e4]]ab
3 .

Let us denote withfm3 the flat membrane we have obtained. Now, we can go on by applying axioms as
follows:

t = µ(m1 , m2 | µ(m3,m4)) = µ(m1 , m2 | fm3)

(f1)
= µ([1 FlatOut(R1, 2)FlatIn(R2, 2) , eHat(ab, 2)Rid(∅, 2)]a1 ,

[[3 ea → (e, here)(b, out) , e4 → (e, here) , â4e4]]ab
3)

= µ([1 ea → (ea2, here)(a, in3)|â2
, b → (b, out) , a2 → (b, here) , â2b̂2e]a1 ,

[[3 ea → (e, here)(b, out) , e4 → (e, here) , â4e4]]ab
3)

(f2)
= [[1 ea → (ea2a3, here)|â2 â3

, b → (b, out) , a2 → (b, here) ,

e3a3 → (e3b, here) , e43 → (e3, here) , â2b̂2â3b̂3â4ee43]]a1 .

Note that in the P Systems in Figure 3, ruleea → (e, here)(a, in2)(a, in3) in membrane 1 is enabled
becausea belongs to the interfaces of both membranes 2 and 3. In the flatmembrane we have obtained by
applying the axioms, the corresponding ruleea → (ea2a3, here)|â2â3

is enabled as well because special
objectsâ2 andâ3 are present in the content of the membrane. Ifa would not belong to the interface of
either membrane 2 or membrane 3, the corresponding special objects would be absent from the content
of the flat membrane. In this case, neither the original rule nor the one given by the flattening would be
enabled.

Proposition 4.1. (soundness)
The portions of the LTS that are rooted in terms equated by axioms(f1) and(f2) are isomorphic.

Proof:
Let us begin with axiom(f1). We prove that the portion of the LTS rooted in the P algebra term
µ
(

[l1 R1, u1]i1l1 , [[l2 R2, u2]]i2l2 | ms
)

is isomorphic to a part of the portion of the LTS rooted in the

term µ
(

[l1 R
′
1R

′
2, u1Hat(i2, l2)Rid(u2, l2)]i1l1 , ms

)

. More precisely, we prove that, given any tran-

sition µ
(

[l1 R1, u1]i1l1 , [[l2 R2, u2]]i2l2 | ms
) `

→ t, for an arbitrary termt, then there is a transition

µ
(

[l1 R
′
1R

′
2, u1Hat(i2, l2)Rid(u2, l2)]i1l1 , ms

) `
→ t′ such thatt and t′ are equated by the same axiom

(f1).

R. Barbuti et al. / A P Systems Flat Form Preserving Step–by–step Behaviour 21

Take any transition fromµ
(

[l1 R1, u1]i1l1 , [[l2 R2, u2]]i2l2 | ms
)

. Such a transition must be inferred
from a transition of each of its three components. These three transitions have the following shape:

[l1 R1, u1]i1l1
M1,I↓

1
,I

↑
1
,O

↑
1
,O

↓
1−−−−−−−−−−→ [l1 R1, u

′
1]i1l1 (1)

[[l2 R2, u2]]i2l2
I↓
2
,O

↑
2−−−−→ [[l2 R2, u

′
2]]i2l2 (2)

ms
I↓,O↑

−−−−→ ms′ (3)

Then, transitions (2) and (3) originate transition

[[l2 R2, u2]]i2l2 | ms
I↓
2
I↓,O

↑
2
O↑

−−−−−−−→ [[l2 R2, u
′
2]]i2l2 | ms′ (4)

through semantic rule(jux1). The transition fromµ
(

[l1 R1, u1]i1l1 , [[l2 R2, u2]]i2l2 | ms
)

is inferred
through semantic rule(h1) from (1) and (4) and takes the shape:

µ
(

[l1 R1, u1]i1l1 , [[l2 R2, u2]]i2l2 | ms
) I↓

1
,O

↑
1−−−−→ µ

(

[l1 R1, u
′
1]i1l1 , [[l2 R2, u

′
2]]i2l2 | ms′

)

(5)

where:

1. O
↓
1 l I↓

2I
↓

2. O↑O
↑
2 = I

↑
1

3. 6 ∃(l, a) ∈ M1. (l = l2 ∧ a ∈ i2) ∨ (l ∈ Labels(ms) ∧ a ∈ Interface(l,ms)).

Transition (2) is inferred from

[l2 R2, u2]i2l2
M2,I↓

2
,∅,O

↑
2
,∅

−−−−−−−−−→ [l2 R2, u
′
2]i2l2 (6)

through the semantic rules (fm1), for someM2.
Now, (1) can be inferred through(m2) or (m1). In the former caseI↓

1 = {(l1, I1)}, for someI1, in
the latter caseI↓

1 = ∅. Analogously, (6) can be inferred through(m2) or (m1). In the former case
I↓

2 = {(l2, I2)}, for someI2 such thatSet(I2) ⊆ i2, in the latter caseI↓
2 = ∅. We assume that both (1)

and (6) are inferred from (m2), the other cases are similar. The transitions originating(1) and (6) have
the shape:

(R1, u1)
M1,I1I

↑
1
,O

↑
1
,O

↓
1−−−−−−−−−→

v1,U1,v1,v′
1
,D1

(R1, u
′
1) (7)

(R2, u2)
M2,I2,O

↑
2
,∅

−−−−−−−→
v2,U2,v2,v′

2
,D2

(R2, u
′
2) (8)

for suitable valuesv1, U1, v
′
1,D1, v2, U2, v

′
2,D2 with D+

1 = D+
2 = ∅.

Notice that this implies thatSet(I1) ⊆ i1. Note also thatO↓
1 l I2I implies that there exists someO′↓

1

such that
O

↓
1 = {(l2, I2)} ∪ O

′↓
1 (9)

22 R. Barbuti et al. / A P Systems Flat Form Preserving Step–by–step Behaviour

From (7) we infer

(R′
1, u1)

M1,I1I
↑
1
,O

↑
1
,O

′↓
1−−−−−−−−−−→

v1,U1,v1,v′
1
,D1{âl2

| a∈i2}
(R′

1, u
′
1Rid(I2, l2)) (10)

By removing inputO↑
2 from the input of (10), the same transition fires butO

↑
2 does not appear inu′

1:

(R′
1, u1)

M1,I1I
↑
1
\O↑

2
,O

↑
1
,O

′↓
1−−−−−−−−−−−−→

v1,U1,v1,v′
1
,D1{âl2

| a∈i2}
(R′

1, (u
′
1Rid(I2, l2)) \ O

↑
2) (11)

From (8) we infer:

(R′
2,Hat(i2, l2)Rid(u2, l2))

M2,∅,∅,∅
−−−−−−→

v2,U2,v2,v′
2
,Rid(D2,l2)

(R′
2,Hat(i2, l2)Rid(u′

2 \ I2, l2)O
↑
2) (12)

wherev2, U2, v
′
2 denoteRid(v2, l2), Rid(U2, l2), Rid(v′2, l2) ∪ {âl2 | a ∈ i2}, respectively.

Through semantic rule(u1), from (11) and (12) we infer

(R′
1R

′
2, u1Hat(i2, l2)Rid(u2, l2))

M1M2,I1I
↑
1
\O↑

2
,O

↑
1
,O

′↓
1−−−−−−−−−−−−−−→

v1v2,U1⊕U2,v1v2,v′
1
v′
2
,D1Rid(D2,l2)

(R′
1R

′
2, u

′
1Hat(i2, l2)Rid(u′

2, l2))

(13)
Notice that all objectŝal2 such thata ∈ i2 are not promoters of this transition. They have been removed
since they appear inv′2.
By applying semantic rule(m2), which is applicable sinceSet(I1) ⊆ i1, we infer:

[l1 R
′
1R

′
2, u1Hat(i2, l2)Rid(u2, l2)]i1l1

M1M2,{(l1,I1)},I
↑
1
\O↑

2
,O

↑
1
,O

′↓
1−−−−−−−−−−−−−−−−−−−→ [l1 R

′
1R

′
2, u

′
1Hat(i2, l2)Rid(u′

2, l2)]i1l1
(14)

We already know thatO↓
1 l I ∪ {(l2, I2)}, O↑O

↑
2 = I

↑
1 , O

↓
1 = {(l2, I2)} ∪ O

′↓
1 and 6 ∃(l, a) ∈ M1. (l =

l2 ∧ a ∈ i2) ∨ (l ∈ Labels(ms) ∧ a ∈ Interface(l,ms)). Therefore,O′↓
1 l I, O↑ = I

↑
1 \ O

↑
2 and

6 ∃(l, a) ∈ M1. (l ∈ Labels(ms) ∧ a ∈ Interface(l,ms)). So, we can apply the semantic rule(h1) to
infer that (3) and (14) originate

µ
(

[l1 R
′
1R

′
2, u1Hat(i2, l2)Rid(u2, l2)]i1l1 , ms

) I↓
1
,O

↑
1−−−−→ µ

(

[l1 R
′
1R

′
2, u

′
1Hat(i2, l2)Rid(u′

2, l2)]i1l1 , ms′
)

(15)
Summarizing, given any transition fromµ

(

[l1 R1, u1]i1l1 , [[l2 R2, u2]]i2l2 | ms
)

, we have a corresponding

transition fromµ
(

[l1 R
′
1R

′
2, u1Hat(i2, l2)Rid(u2, l2)]i1l1 , ms

)

, where the two transitions have the same
label and take to terms related by axiom(f1). The converse is similar, with the use of premiseVL·l2∩i1 =
∅.

The proof of the case of axiom(f2) is analogous to that of(f1), since basic axioms allow us to
rewrite [[l1 R

′
1R

′
2 , u1Hat(i2, l2)Rid(u2, l2)]]i1l1 into µ

(

[l1 R
′
1R

′
2 , u1Hat(i2, l2)Rid(u2, l2)]i1l1 , [[l ∅]]∅l

)

,

andµ
(

[l1 R1, u1]i1l1 , [[l2 R2, u2]]i2l2
)

into µ
(

[l1 R1, u1]i1l1 , [[l2 R2, u2]]i2l2 | [[l ∅]]∅l
)

. ut

Theorem 4.1. Any membrane systemµ(m,ms) with multisets of objects and evolution rules built over
Vε and without dissolving rules, can be reduced to a flat membrane [[l c]]il such thatµ(m,ms) ≈ [[l c]]il .

R. Barbuti et al. / A P Systems Flat Form Preserving Step–by–step Behaviour 23

Figure 4. Example of application of the flattening techniquedefined in Section 4 to a P System containing a
dissolving rule.

Figure 5. Example of context in which the two membrane systems of Figure 4 behave differently.

Proof:
This can be proved by induction on the number of membrane nodes in the membrane nesting tree of
µ(m,ms). If such a tree contains two membranes, namelyµ(m,ms) is µ([l1 c1]i1l1 , [[l2 c2]]i2l2), then the
proof follows immediately from axiom(f2). If the membrane nesting tree contains more that two mem-
branes, then the proof can be done by resorting to the induction hypothesis after applying one of the
axioms(f1) to one of the leaves of the tree.

Since the size of a term is always finite (and consequently themembrane nesting tree is finite) the flat
form is reached after a finite number of steps. The facts that no dissolving rules are present, that multisets
of objects and evolution rules are built by using objects from Vε, ensure that the assumptions and the
premises of the axioms are always satisfied. Finally, Proposition 4.1 ensures that all the applications of
the flattening axioms preserve the behaviour, hence the behaviour of the final flat membrane is equivalent
to the one of the original membrane system. ut

5. Flattening Systems with Dissolving Rules

The flattening technique explained in the previous section cannot be applied if membranes contain dis-
solving rules. As an example, let us consider Figure 4, whereflattening is applied, as defined in the
previous section, to a P System containing a dissolving rule. When membrane 2 does not receive any
object from the environment, both the original P System and the corresponding flat system send object

24 R. Barbuti et al. / A P Systems Flat Form Preserving Step–by–step Behaviour

Figure 6. Example of flattening in which membrane dissolution is simulated.

b to the external environment after two steps and dissolve. The difference between the two cases is that
dissolution of membrane 2 in the original P System leads to a configuration in which membrane 3 is the
outmost (and only) membrane, while dissolution of membrane2 in the flat system leads to configuration
in which the whole system disappears. As a consequence, we can provide a context in which the original
membrane system and the flat membrane behave differently (see Figure 5). The point is that the rule of
membrane 1 sending objectc to membrane 3 can be eventually applied if and only if membrane 3 still
exists after the dissolution of membrane 2.

In general, when a dissolving rule is applied in a membrane, we have that (i) the objects of such
a membrane become immediately available to the outer membrane, (ii) the rules of such a membrane
disappear, and (iii) the rules of the outer membrane which send objects to the membrane that has been
dissolved become no longer applicable.

One possible way of simulating dissolution is by replacingδ with a special objectd in every dis-
solving rule and using such a special object as a promoter or inhibitor of some rules obtained by the
flattening. This would allow (ii) and (iii) to be simulated byusingd as an inhibitor of the rules of the dis-
solved membrane and of the rules sending objects to the dissolved membrane. Objects of the dissolved
membrane can be renamed. Correspondingly, rules of the outer membranes are duplicated and changed
in such a way that they can apply to the renamed objects. The new rules haved has a promoter.

We give a simple example of flattening with dissolution of inner membranes in Figure 6. Here, the
rule causing dissolution of membrane 3 is rewritten into a new rule having objects renamed as described
in the previous section and producingd. Now, both the rule originally in2 and sending objects to 3, and
the rule originally in 3 require thatd has not yet been produced. Moreover, a new rule promoted byd

has been introduced to simulate that the objects originallyin membrane 3 are available in membrane 2
after its dissolution.

Let us assume the set of objectsV to be partitioned as follows:V = Vε∪V ∪V̂ ∪{di | i ∈ IN}∪{sL |
L ∈ IN+}, whereVε, V and V̂ are as in the previous section, objectdi indicates that membranei has
been dissolved, and objectsl1·····ln in membranel indicates thatl1 is a child ofl2, . . . , ln−1 is a child of
ln, which, in turn, is a child ofl. We denote the sets of objects{di | i ∈ IN} and{sL | L ∈ IN+} with D

andS, respectively, and we extend the definition ofRid given in the previous section in such a way that
it changes objects inS and it does not change objects inD. In other words,Rid(sL1

, L2) = sL1·L2
and

Rid(dl, L) = dl.
Let us define functionsFlatIn′ andFlatOut′, having the same role of functionsFlatIn andFlatOut of

the previous section. Our aim is to flatten all child membranes of a given membranel′ at the same time,

R. Barbuti et al. / A P Systems Flat Form Preserving Step–by–step Behaviour 25

by applyingFlatIn′ to rules of these membranes andFlatOut′ to rules ofl′. Moreover, this flattening is
done only if all child membranes ofl′ are flat.

FunctionFlatIn′ has two arguments: a rule contained in the membranel we want to flatten, andl
itself. We have several cases, depending on the origin of therule, namely membranel or a membrane
originally insidel and already flattened, and depending on whether the rule is dissolving or not.

Let us consider first the case in which a rule in membranel originates from a rule in a membrane
l′′ insidel that has been already flattened. In this case the original rule was already modified byFlatIn′

when l′′ was flattened, and has the formu → (vh, here)|D , whereu has at least one objectaσ with
l′′ ∈ σ anddl′′ 6∈ D. All the objects in the rule must be renamed, in order to take into account the
structure of membranes. As the rule was not originally inl, it should be applicable independently from
the dissolution ofl. Hence, inhibitordl is not added to the rule and we have:

FlatIn′ (u → (vh, here)|D , l) = Rid(u, l) → (Rid(vh, l), here)|Rid(D,l)

if ∃aσ ∈ u.∃l′′ ∈ σ.dl′′ 6∈ D .

If the rule corresponds to a rule originally inl, we have to distinguish whether the rule is dissolving
or not. Let us begin with a non–dissolving ruleu → (vh, here)(vo, out)|D. Note that the rule does
not send objects to any child membrane, which is a condition satisfied by all the rules ifl is flat. We
rename with labell all the objects triggering the rule and all the objects produced by the rule and with
l as a destination, so that they are not confused with the objects in the outer membrane. We do not
rename objects that were sent out, so that if the new rule firesthen the outer membrane has these objects
available. The new rule requires thatl has not been dissolved, which is expressed by the inhibitordl.
Hence, we have

FlatIn′ (u → (vh, here)(vo, out)|D) , l) = Rid(u, l) → (Rid(vh, l)vo, here)|Rid(D,l)¬dl

if ∀aσ ∈ u. (σ = ε ∨ ∀l′ ∈ σ.dl′ ∈ D) .

The last case deals with a dissolving rule, and requires two changes with respect to the previous case.
First, the new rule produces objectdl, expressing that membranel has dissolved. Second, the objects
that were originally produced by the rule and withl as a destination are not renamed, so that they are
available in the outer membrane after the application of therule. Hence, we have

FlatIn′ (u → (vh, here)(vo, out)δ|D) , l) = Rid(u, l) → (vhvodl, here)|Rid(D,l)¬dl

if ∀aσ ∈ u. (σ = ε ∨ ∀l′ ∈ σ.dl′ ∈ D) .

Notice that when a ruler obtained throughFlatIn′ producesdl, then all rules originally inl and
obtained throughFlatIn′ are correctly locked by the inhibitordl. Given any non–dissolving ruler′ of the
form u → (vh, here)(vo, out)|D, all objects invh are marked withl by FlatIn′. These objects should be
available in the outer membrane due to the dissolution ofl caused by the firing ofr. The problem will
be solved by functionFlatOut′ applied to the outer membrane.

Note that we have not considered rules corresponding to rules of the formu → (vh, here)δ|D origi-
nated by the flattening of inner membranes asFlatIn′ applied to inner membranes replacesδ with d.

In the following, given a set of rulesR in a membranel, we shall denote withRl the subset inR of
the rules originally in membranel.

26 R. Barbuti et al. / A P Systems Flat Form Preserving Step–by–step Behaviour

In order to defineFlatOut′ we need the following definition. LetVa = {aL | L ∈ IN+}. Given a rule
r of the forma1 . . . an → vhvo{vli}|D, and a setO ⊂ V , we denote withocc(r,O) the set of the rules

b1 . . . bn → vhvo{vli}|DD′

such that:

• bi ∈ {ai} ∪ (O ∩ Vai) for each1 ≤ i ≤ n;

• D′ = {dl | bi = aiLi
, l ∈ Li, 1 ≤ i ≤ n}.

Assume thatr is in a membranel. Any rule in occ(r, {Vai}) requires an objectaiLi
∈ Vai, instead of

ai, for all 1 ≤ i ≤ n. If all membranes contained inl have been flattened andLi 6= ε, then objectaiLi

occurs inl if ai occurred originally inside nested membranes contained inl and having label inLi. In the
original system, if all these membranes have been dissolvedthenai was available inl to applyr. Hence,
if all promotersdl with l ∈ Li are now inl, thenaiLi

can trigger the rule.
Let us define now functionFlatOut′. It has three arguments, namely a rule in a membranel′, a set

of objects contained inS showing the path betweenl′ and the inner membranes to which the rule sends
objects, and a set of objects of the formaσ that can be used to trigger the rule instead ofa and that are
inherited from child membranes that have dissolved.

FlatOut′
(

u → (vh, here)(vo, out){(vli , inli) | i ∈ I}|D , U ∪
⋃

i∈I

sli·σi
, O

)

=

occ
(

u → (vh{Rid(vli , li · σi) | i ∈ I}, here)(vo, out)|D∪{¬dli
|i∈I}∪{dl|l∈
�

i∈I σi}∪
�

i∈I{âli
|a∈vli

}, O
)

Assume that we aim to flatten membranes insidel′ to l′. In this case the second argument ofFlatOut′

shall be a set of objects describing the original structure of these membranes. Since the original rule
sends objects to each membraneli with i ∈ I, the rule was originally applicable only when allli’s are
children of l′. Now, the objectssli·σi

indicate that all membranes whose label is inσi were originally
betweenl′ and the target membraneli, hence the rule was originally applicable only after dissolutions
of all these membranes. This is why we add promoters{dl | l ∈

⋃

i∈I σi} to all rules obtained through
FlatOut′. Moreover, these rules have inhibitors{dli | i ∈ I} since the original rule was applicable only
if all li’s were not dissolved. Finally, all objects invli remain now inl′, after they have been renamed by
adding the labelli · σi. The third argument ofFlatOut′ shall be a set of objects of the formaσ·l′i

such
thatl′i is one of the inner membranes andaσ is in l′i. By applying functionocc we generate several rules,
where each objecta in u may be replaced by an objectaσ·l′

i
such thataσ is in an inner membranel′i.

Functionocc ensures that for each membrane labell in σ · l′i the corresponding promoterdl is added to
the rule. In this way we are sure that objects originally in some membrane insidel′i, or in l′i itself, can be
exploited by rules inl′ after dissolution ofl′i and of all other membranes containing them.

Let us extendFlatIn′ andFlatOut′ to sets of rules:

FlatIn′(R, l) =
⋃

r∈R

FlatIn′(r, l)

FlatOut′(R,O,O′) =
⋃

r∈R

FlatOut′(r,O,O′)

R. Barbuti et al. / A P Systems Flat Form Preserving Step–by–step Behaviour 27

Figure 7. The result of the application of the flattening axiom to the P System of Figure 1

Given membrane systems{ms1, . . . ,msn} such that eithermsi = µ(m,ms′i) or msi = F (m), ax-
ioms|1 and|2 permit us to writems1 | · · · | msn to denote their juxtaposition, which will be sometimes
denoted

⋃

1≤i≤n msi.
For a set of rulesR, let obj(R) denote the set of the objects appearing in the rules.

Definition 5.1. (Flattening axiom)
LetR and(Ri)i∈I be sets of evolution rules, and letR andu contain no objects inVL·li . Theflattening
axiomis the following:

L ∈ IN∗ (
⋃

j∈I VL·lj) ∩ i = ∅ FlatIn′(Rj , lj) = R′
j

FlatOut′
(

R,
⋃

j∈I{sσ·lj | sσ ∈ uj}
⋃

j∈I slj ,
⋃

j∈I Set(Rid(ujobj(Rj)), lj)
)

= R′

µ
(

[l R, u]il ,
⋃

j∈I [[lj Rj , uj]]
ij
lj

)

= [[l R′ ∪
⋃

j∈I R
′
j , u

⋃

j∈I Hat(ij , lj)
⋃

j∈I slj

⋃

j∈I Rid(uj , lj)]]il

The flattening axiom permits us to flatten all flat membranes contained inl, into l itself. The objects
in the second argument ofFlatOut′ give all needed information about the structure oflj . All objects in
uj are renamed by adding the taglj, since they should not be confused with objects inl. The object
slj is added to the objects ofl, to represent thatl originally containedlj. If l is flattened into another
membranel′, thenslj will be renamedslj ·l, to represent the origin of membranelj .

Let us show an application of the described flattening technique. Let us consider again the P System
in Figure 1. Membranes 2 and 3 contain dissolving rules. By applying the flattening axiom to membranes

28 R. Barbuti et al. / A P Systems Flat Form Preserving Step–by–step Behaviour

Figure 8. The result of the application of the flattening axiom to the P System of Figure 7

2 and 3 we obtain the system in Figure 7, where the rules in the setRI3 are obtained by applying function
FlatIn′ to the rules of membrane 3, and the rules in the setRO2

are obtained by applying function
FlatOut′ to the rules in membrane 2. Note that the second rule inRO2

is never applicable as its set of
promoters and inhibitors is incoherent. This rule could be removed by applying axiom(prom1). Finally,
by applying the flattening axiom to membranes 1 and 2 in Figure7 we obtain the flat system in Figure 8.
Rules inRI2 are obtained by applying functionFlatIn′ to membrane 2, and rules inRO1

are obtained by
applying functionFlatOut′ to membrane 1.

Theorem 5.1. (soundness)
Let us assume a membrane systemms and a flat membrane[[l c]]il such thatms = [[l c]]il is inferred by
applying the flattening axiom repeatedly in the tree structure ofms. If ms cannot perform step in which
its outmost membrane dissolve, thenms ≈ [[l c]]il .

Proof:
The theorem follows from property (16) in Lemma 5.1. ut

Given a set of objectsv and a ruler, we writev 6` r if v contains an object that is an inhibitor ofr.
If a membrane systemms is not a juxtaposition of other membrane systems, letroot(ms) denote the

label of the outmost membrane inms, if any. Formally,root(ms) = l if either ms = µ([l c]il ,ms′) or
ms = [[l c]]il , androot(ms) =⊥, otherwise.

R. Barbuti et al. / A P Systems Flat Form Preserving Step–by–step Behaviour 29

Lemma 5.1. Let us assume a membrane systemms and a flat membrane[[l R, u]]il such thatms =
[[l R, u]]il is inferred by applying the flattening axiom repeatedly in the tree structure ofms. It holds that:

ms
I↓,O↑

−−−−→ ms′ with root(ms′) = l if and only if [[l R, u]]il
I↓,O↑

−−−−→ [[l R, u′]]il (16)

wherems′ = [[l R, u′]]il, and that:

ms
I↓,O↑

−−−−→ ms′ with root(ms′) 6= l if and only if [[l R, u]]il
I↓,O↑u′′

−−−−−→ v (17)

where for each set of rulesR, multisets of objectsu andi and labell it holds that:

1. µ([l R, uO↑]i
l
,ms′ | ms′′)

=
µ([l FlatOut′(R, u′′ ∩ S, u′′O↑obj(R) \ Rl) ∪R \ Rl, uu′′O↑)]i

l
,ms′′)

2. µ([l R, uO↑]i
l
,ms′)

=
[[l FlatOut′(R, u′′ ∩ S, u′′O↑obj(R) \ Rl) ∪R \ Rl, uu′′O↑)]]i

l

Before giving the proof, let us explain (17). Ifroot(ms′) 6= l, membranel dissolves since some rule
r in l produces objectδ. Analogously, also a rule inR obtained troughFlatOut′ from r producesδ, thus
implying that [[l R, u]]il dissolves. In this case, it sends out the set of objectsu′′ that correspond, after
suitable renaming, to objects in the membranes inms′, plus objects inS plus objets inD. Consider a
system obtained by insertingms′ into any membrane. According to (17), flattening such a system is the
same of applyingFlatOut′ to rules in the outmost membrane and taking rules inR \Rl. In fact, this set
of rules has been already obtained by repeatedly applying the flattening axiom.

Proof:
We reason by induction over the structure ofms. The case withms flat is trivial. Hence, let us assume
ms ≡ µ([l R

′, u′]il,
⋃

i∈I msi), with root(msi) = li for eachi ∈ I.
We prove (16), the proof of (17) is analogous. We prove the “only if” case, the converse is analogous.

The transitionµ
(

[l R
′, u′]il ,

⋃

i∈I msi

) I↓,O↑

−−−−→ ms′ must be inferred from a transition of each of the
|I|+ 1 components ofµ

(

[l R
′, u′]il ,

⋃

i∈I msi

)

. The transition from[l R
′, u′]il has the following shape,

whereI↑ andO↓ are suitable sets of objects, andM is a suitable set of pairs of membrane labels and
objects:

[l R
′, u′]il

M,I↓,I↑,O↑,O↓

−−−−−−−−−→ [l R
′, v′]il (18)

Then, there is a partitionJ ∪ H of I such that for eachi ∈ J the transition frommsi has either shape

msi

{(li,Ii)},O
↑
i−−−−−−−→ ms′i , with root(ms′i) = li (19)

or shape

msi

∅,O
↑
i−−−→ ms′i , with root(ms′i) = li (20)

30 R. Barbuti et al. / A P Systems Flat Form Preserving Step–by–step Behaviour

and for eachi ∈ H the transition frommsi has either shape

msi

{(li,Ii)},O
↑
i−−−−−−−→ ms′i , with root(ms′i) 6= li (21)

or shape

msi

∅,O
↑
i−−−→ ms′i , with root(ms′i) 6= li (22)

In other wordsH is the set of the labels of the membranesmsi performing a step in which a dissolving
rule is applied, andJ is the set of the labels of the membranesmsi which do not dissolve.

Since cases (20) and (22) are easier to manage than cases (19)and (21), we consider only these latter
two cases. We assume that bothJ 6= ∅ andH 6= ∅. The cases in which eitherJ or H is empty are
simpler and can be handled in a slightly different way. It holds that (19) and (21) originate

⋃

i∈I

msi

�
i∈I{(li,Ii)},
�

i∈I O
↑
i

−−−−−−−−−−−−−→
⋃

i∈I

ms′i (23)

through semantic rules(jux1) − (jux3). The transition fromµ
(

[l R
′, u′]il ,

⋃

i∈I msi

)

is inferred
through semantic rule(h1) from (18) and (23), and takes the shape

µ([l R
′, u′]il ,

⋃

i∈I

msi)
I↓,O↑

−−−−→ µ([l R
′, v′]il ,

⋃

i∈I

ms′i) (24)

and it holds that:

1. O↓ =
⋃

i∈I{(li, Ii)};

2. I↑ =
⋃

i∈I O
↑
i ;

3. 6 ∃(l, a) ∈ M. l ∈
⋃

i∈I{li} ∧ a ∈ Interface(li,msi).

Note that in point number 1 we have= rather thanl because we have assumed that transitions performed
by eachmsi have (19) and (21) as possible shapes.

For eachi ∈ I, let us take the set of rulesRi, the set of objectsui and the set of objectsji such that
msi = [[li Ri, ui]]ji

li
is inferred from the flattening axiom.

For eachi ∈ J , by the inductive hypothesis it follows that (19) implies

[[li Ri, ui]]
ji

li

{(li,Ii)},O
↑
i−−−−−−−→ [[li Ri, u

′
i]]ji

li
(25)

wherems′i = [[li Ri, u
′
i]]ji

li
.

For eachi ∈ H, by the inductive hypothesis it follows that (21) implies

[[li Ri, ui]]ji

li

{(li,Ii)},O
↑
i u′′

i−−−−−−−−−→ v (26)

where for eachR, u, l andi:
µ([l R, uO

↑
i]i

l
,ms′i | ms′′)

=
µ([l FlatOut′(R, u′′

i ∩ S, u′′
i O

↑
i obj(Ri) \ Rli) ∪Ri \ Rli , uu′′

i O
↑
i]i

l
,ms′′)

R. Barbuti et al. / A P Systems Flat Form Preserving Step–by–step Behaviour 31

Transition (18) is inferred either through(m1), if I↓ = ∅, or through(m2), if I↓ = (l, I) for some
I. The two cases are similar. Let us consider only the case(m2). The originating transition has the shape

(R′, u′)
M,I I↑,O↑,
�

i∈I{(li,Ii)}
−−−−−−−−−−−−−−−→

v,U,v,v′,D
(R′, v′) (27)

for suitablev, U , v′ andD. Notice thatSet(I) ⊆ i.
Transitions (25) and (26) are inferred through semantic rules (fm1) and (fm2), respectively, from
transitions having the following shape:

[li Ri, ui]
ji

li

∅,{(li,Ii)},∅,O
↑
i ,∅

−−−−−−−−−−−→ [li Ri, u
′
i]ji

li
(28)

[li Ri, ui]ji

li

∅,{(li,Ii)},∅,O
↑
i u′′

i ,∅
−−−−−−−−−−−−−→ v (29)

In turn, (28) is inferred through(m2), and (29) is inferred through(m4). The originating transitions
have the shape

(Ri, ui)
∅,Ii,O

↑
i ,∅

−−−−−−→
vi,Ui,vi,v

′
i,Di

(Ri, u
′
i) (30)

(Ri, ui)
∅,Ii,O

↑
i u′′

i ,∅
−−−−−−−−→
vi,Ui,vi,v

′
i,Di

v (31)

for suitable valuesvi, Ui, v
′
i,Di.

LetR′′ = FlatOut′(R′,
⋃

i∈I{sσ·li | sσ ∈ ui}
⋃

i∈I sli ,
⋃

i∈I Rid(obj(Ri)ui, li)). Note that for each tran-
sition v → vhvo{vli}|D in R′, functionocc generates several transitions of the formv′ → vhv′hvo|DD′ ,
with v′ andv′h derived fromv and{vli}, respectively, andD′ depending on thev′ chosen and on{vli}.
However, only transitions generated from transitions of the formv → vhvo{vli}|D such that eachli is in
⋃

i∈I{li} can fire, since transitions generated from transitions sending objects to membranes contained in
anyli require promoterdli , which is not available. Moreover, for the same reason, among the transitions
generated fromv → vhvo{vli}|D, only the transitionv → vh{Rid(vli , li)}vo|DD′ with v as left side can
fire. In this case, it holds thatD′ ⊆ {¬dli |i ∈ I} ∪

⋃

i∈I{âli |a ∈ V }. From (27) and the definition of
occ we infer

(R′′, u′
⋃

i∈I

{sli}
⋃

i∈I

Hat(ji, li))
∅,I I↑,O↑,∅
−−−−−−−→
v,U,v,v′,DD′

(R′′, v′
⋃

i∈I

{sli}
⋃

i∈I

Hat(ji, li)
⋃

i∈I

Rid(Ii, li)) (32)

whereD′ ⊆ {¬dli |i ∈ I}. Notice thatD′ does not contain anŷali with a ∈ Ii. In fact, all these objects
are contained inHat(ji, li). By removing allO↑

i from I↑ andv′, from (32) we infer

(R′′, u′
⋃

i∈I

{sli}
⋃

i∈I

Hat(ji, li))
∅,I,O↑,∅
−−−−−−→

v,U,v,v′,DD′
(R′′, (v′

⋃

i∈I

{sli}
⋃

i∈I

Hat(ji, li)
⋃

i∈I

Rid(Ii, li)) \
⋃

i∈I

O
↑
i)

(33)
For eachi ∈ I, letR′

i = FlatIn′(Ri, li). For eachi ∈ J , from (30) and by removing inputIi we infer:

(R′
i,Rid(ui, li))

∅,∅,∅,∅
−−−−−→

v̂i,Ui,vi,v
′
i,Rid(Di,li)¬dli

(R′
i, O

↑
i Rid(u′

i \ Ii, li)) (34)

wherevi, Ui, v
′
i denoteRid(vi, li), Rid(Ui, li), Rid(v′i, li), respectively.

32 R. Barbuti et al. / A P Systems Flat Form Preserving Step–by–step Behaviour

For eachi ∈ H, from (31) and by removing inputIi we infer:

(R′
i,Rid(ui, li))

∅,∅,∅,∅
−−−−−→

vi,Ui,vi,v
′
i,Rid(Di,li)¬dli

(R′
i, u

′′
i O

↑
i \ Rid(Ii, li)) (35)

wherevi, Ui, v
′
i denoteRid(vi, li), Rid(Ui, li), Rid(v′i, li), respectively. Notice thatu′′

i containsdli .
Through semantic rule(u1), from (33), (34) and (35) we infer

(R′′ ∪
⋃

i∈I

R′
i, u

′
⋃

i∈I

{sli}
⋃

i∈I

Hat(ji, li)
⋃

i∈I

Rid(ui, li))

∅,I,O↑,∅
−−−−−−→

vv1,U⊕U1,vv1,v′v′
1
,D
�

i∈I Rid(Di,li){¬dli
|i∈I}

(R′′ ∪
⋃

i∈I

R′
i, v

′
⋃

i∈I

{sli}
⋃

i∈I

Hat(ji, li)
⋃

i∈J

Rid(u′
i, li)

⋃

i∈H

u′′
i) (36)

whereU1 =
⋃

i∈I Ui, v1 =
⋃

i∈I vi, v′1 =
⋃

i∈I v′i.
Let us observe now thatR′′ ∪

⋃

i∈I R
′
i = R andu′

⋃

i∈I sli

⋃

i∈I Hat(ji, li)
⋃

i∈I Rid(ui, li) = u. Hence,
(36) can be rewritten as

(R, u)
∅,I,O↑,∅
−−−−−−→

vv1,U⊕U1,vv1,v′v′
1
,D
�

i∈I Rid(Di,li){¬dli
|i∈I}

(R, v′
⋃

i∈I

Hat(ji, li)
⋃

i∈I

sli

⋃

i∈J

Rid(u′
i, li)

⋃

i∈H

u′′
i)

(37)
By applying semantic rule(m2), which is applicable since we already know thatSet(I) ⊆ i, we infer:

[l R, u]il
∅,I,∅,O↑,∅
−−−−−−−→ [l R, v′

⋃

i∈I

Hat(ji, li)
⋃

i∈I

sli

⋃

i∈J

Rid(u′
i, li)

⋃

i∈H

u′′
i]il (38)

Finally, by applying semantic rule (fm1) we obtain

[[l R, u]]il
I↓,O↑

−−−−→ [[l R, v′
⋃

i∈I

Hat(ji, li)
⋃

i∈I

sli

⋃

i∈J

Rid(u′
i, li)

⋃

i∈H

u′′
i]]il (39)

Take now the target terms of (24) and (39). By the inductive hypothesis over alli ∈ J , the target term of
(24) is equated to

µ([l R
′, v′]il ,

⋃

i∈J

[[li Ri, u
′
i]]

ji

li
∪

⋃

i∈H

ms′i)

By the hypothesis over alli ∈ H, we infer that this is equal to

µ([l R
∗, v′

⋃

i∈H

u′′
i]il,

⋃

i∈J

[[li Ri, u
′
i]]ji

li
)

whereR∗ = FlatOut′(R′,
⋃

i∈H u′′
i ∩ S,

⋃

i∈H u′′
i O

↑
i obj(Ri)) ∪

⋃

i∈H Ri. This is equated to

[[l R
∗
1R

∗
2, v

′
⋃

i∈H

u′′
i

⋃

i∈J

sli

⋃

i∈J

Hat(ji, li)
⋃

i∈J

Rid(u′
i, li)]]il

R. Barbuti et al. / A P Systems Flat Form Preserving Step–by–step Behaviour 33

where

1. R∗
1 = FlatOut′(R∗,

⋃

i∈J{sσ·li | sσ ∈ u′
i}

⋃

i∈J sli ,
⋃

i∈J Rid(u′
iobj(Ri), li));

2. R∗
2 =

⋃

i∈J FlatIn′(Ri, li).

In the target term of (39) we can remove all rules inR originally in membranes{li|i ∈ H} by exploiting
axioms (ax1) and (ax2). This is possible sinceu′′

i contains{dli |i ∈ H}. Then, we can remove also the
objects

⋃

i∈H sli and
⋃

i∈H Hat(ji, li) with axiom (ax9), thus obtaining that in the target terms of (24)
and (39) we can have the same set of objects, modulo axioms. Weaim to show that the same holds for
the set of rules. We have thatR∗

1 is the union ofFlatOut′(R′,
⋃

i∈J{sσ·li | sσ ∈ u′
i}

⋃

i∈J sli ∪
⋃

i∈H u′′
i ∩

S,
⋃

i∈J Rid(u′
iobj(Ri), li)∪

⋃

i∈H u′′
i O

↑
i obj(Ri) \ Rli) andFlatOut′(

⋃

i∈H Ri \Rli ,
⋃

i∈J{sσ·li | sσ ∈
u′

i}
⋃

i∈J sli ,
⋃

i∈J Rid(u′
iobj(Ri), li)). The first set is equal toR′′, provided that fromR′′ we remove

promotersdli , for all i ∈ H, with axioms (ax3) and (ax4). The second set is equal to
⋃

i∈H Ri \ Rli ,
namely it is not affected byFlatOut′. So, it suffices to prove that for eachi ∈ H we can transform
FlatIn′(Ri\Rli , li) intoRi\Rli . This holds, since all transitions inFlatIn′(Ri, li) marked with inhibitors
appearing inu′′

i can be removed with axioms (ax1) and(ax2). ut

6. Conclusions and Future Work

We have faced the problem of defining a flattening technique for P Systems defined by means of axioms
on terms of the algebra of such systems we have introduced in [3], the P Algebra, and preserving the
behaviour. We have formally defined such a technique first in the case of P Systems without dissolving
rules and then in the case of P Systems with dissolving rules.This has required extending the syntax and
the semantics of the P Algebra with promoters and inhibitorsin evolution rules, with a notion of interface
and with a notion of flat membrane, defining some axioms and proving that these axioms are sound with
respect to bisimulations.

Future work might include studying the cost of our flatteningtechnique in terms of number of objects
and evolution rules added to the flat membrane with respect tothe number of objects and evolution rules
of the original P System.

Our long term aim is to define a normal form of P System. In orderto reach the normal form of a P
System, in addition to apply our flattening technique we would also need to transform rules and objects
of such a system into some minimal form.

Acknowledgments

This research has been partially supported by MiUR PRIN 2006Project “Biologically Inspired Systems
and Calculi and their Applications (BISCA)”. We thank Pierluigi Frisco for interesting discussions.

References

[1] L. Aceto, W. J. Fokkink and C. Verhoef: Structural Operational Semantics. In: J.A. Bergstra, A. Ponse and
S.A. Smolka (Eds.), Handbook of Process Algebra, Elsevier,Amsterdam, 2001, 197–292.

[2] O. Andrei, G. Ciobanu and D. Lucanu: A Rewriting Logic Framework for Operational Semantics of Mem-
brane Systems. Theoret. Comp. Sci. 373, 2007, 163–181.

34 R. Barbuti et al. / A P Systems Flat Form Preserving Step–by–step Behaviour

[3] R. Barbuti, A. Maggiolo–Schettini, P. Milazzo and S.Tini: Compositional Semantics and Behavioral Equiv-
alences for P Systems. Theoret. Comput. Sci. 395, 2008, 77–100.

[4] L. Bianco and V. Manca: Encoding–Decoding TransitionalSystems for Classes of P Systems. Proc. Work-
shop on Membrane Computing (WMC 2005), Lecture Notes in Computer Science 3850, Springer, Berlin,
2006, 134–143.

[5] L. Bianco, F. Fontana, G. Franco and V. Manca: P Systems for Biological Dynamics. Proc. Applications of
Membrane Computing, Springer, Berlin, 2006, 83–128.

[6] N. Busi: Using Well–structured Transition Systems to Decide Divergence for Catalytic P Systems. Theoret.
Comput. Sci. 372, 2007, 125–135.

[7] N. Busi: Causality in Membrane Systems. Proc. Workshop on Membrane Computing (WMC 2007), Lec-
ture Notes in Computer Science 4860, Springer, Berlin, 2007, 160–171.

[8] R. de Simone: High Level Synchronization Devices in Meije-SCCS. Theoret. Comput. Sci. 37, 1985, 245–
267.

[9] R. Freund and S. Verlan: A Formal Framework for Static (Tissue) P Systems. Proc. Workshop on Membrane
Computing (WMC 2007), Lecture Notes in Computer Science 4860, Springer, Berlin, 2007, 271–284.

[10] D. Harel and A. Pnueli: On the Development of Reactive Systems. In: K.R. Apt (editor), Logic and Models
of Concurrent Systems, NATO, ASI-13, Springer, New York, 1985, 477–498.

[11] R. Milner: Communication and Concurrency. Prentice-Hall, London, 1989.

[12] D. Park: Concurrency and Automata on Infinite Sequences. Proc. Proc. Theoretical Computer Science:5th

GI conference, Lecture Notes in Computer Science 104, Springer, Berlin, 1981, 167–183.

[13] G. Pǎun: Membrane computing. An introduction, Springer, 2002.

[14] I. Petre: A Normal Form for P-Systems. Bulletin of the EATCS 67 1999, 165–172.

[15] G. Plotkin: A Structural Approach to Operational Semantics. J. Log. Algebr. Program. 60–61, 2004, 17–
139.

