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The Abstract State Machines Method

Preface

This special issue of Fundamenta Informaticae contains a selection of revised versions of papers pre-
sented to ASM’05 [2], the 12th of a series ofInternational Workshops on Abstract State Machines
(ASMs) dedicated to mathematical techniques and their implementation for high-level system design
and analysis related to ASMs.

What became known as theASM Method[15] is based upon the mathematical definitions ofASM[22],
ASM ground model[9] andASM refinement[10], which were guided by practical applications. The defin-
ition of ASMs in [22] came out of 10 years of extensive research and experimentation with “descriptions
of computational devices”, carried out by the at the time small but fast growing ASM community (see
the survey in the first International ASM Workshop in Hamburg in 1994 [24, Stream C (Evolving Alge-
bras) pp. 377–441]) and solicited to supportA New Thesis[21], which in 1985 was formulated by Yuri
Gurevich in theNotices of the American Mathematical Societyas follows:

Turing’s thesis is that every computable function can be computed by an appropriate Turing
machine. The informal proof of the thesis gives more: every computing device can be sim-
ulated by an appropriate Turing machine. The following much stronger formof the thesis
seems to be very much accepted today: every sequential computing device can be simu-
lated by an appropriate Turing machine in polynomial time. First, we adapt Turing’s thesis
to the case when only devices with bounded resources are considered.Second, we define
a more general kind of abstract computational device, called dynamic structures, and put
forward the following new thesis: Every computational device can be simulated by an ap-
propriate dynamic structure – of appropriately the same size – in real time; a uniform family
of computational devices can be uniformly simulated by an appropriate family ofdynamic
structures in real time. In particular, every sequential computational device can be simu-
lated by an appropriate sequential dynamic structure. A contribution of Andreas Blass is
acknowledged. Descriptions of computational devices are solicited for further confirmation
of the thesis. (Received May 13, 1985) (Sponsored by Andreas Blass) [21]
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Whereas in the technical report preceding the formulation ofA New Thesisthe concept of “dynamic
structures” was still considered as a notion which “is to remain informal” [20,p. 1], its mathematical
definition in [22] had two methodological effects. On the theoretical side it permitted to sharpen the
formulation of the sequential version of the new thesis, namely to “Every sequential algorithm can be
step-by-stepsimulated by an appropriate sequential ASM”, so that it could eventually be turned into a
theorem one can prove from three natural axioms [23]. On the practicalside the definition provided the
basis for the definitions of theASM ground modelconcept [9] and of the generalization of Wirth’s [27]
and related traditional refinement notions [28, 1, 16, 18, 17] to that ofASM refinement[10], both of
which pervade the applications of ASMs since their appearance in the earlywork on ASM models for
the ISO Prolog standard [7, 8] and made the ASM method to become a working tool for design, analysis
and documentation of complex real-life systems, including systems of industrialsize (see the survey in
the history chapter of the AsmBook [15, Ch.9]).

The wide range from theory to practice spanned by the ASM method, reaching from complexity [4]
and logic [3, 5] over verifiable design and implementation of real-life programming languages [25, 19,
13] and hardware architectures [12, 26] to industrial software reengineering [14], is reflected also in
this special issue of FI, which contains papers on the refinement method, on abstract-machine-based
simulation and verification techniques and on mathematical investigations into the concept of timed
computations and a class of PTIME ASMs.

In the paperRefinement, Decomposition, and Instantiation of Discrete Models: Application to Event-
B by Jean-Raymond Abrial and Stefan Hallerstede model refinement is coupled to two further system
construction techniques, namely decomposition and generic instantiation. Theformulations are in terms
of Event-B machines and thereby apply to ASMs via the characterization of Event-B machines by a class
of ASMs [11].

In the paperRetrenching the Purse: The Balance Enquiry Quandardy, and Generalized and (1,1)
Forward Refinementsby Richard Banach, Michael Poppleton, Czeslaw Jeske and Susan Steney the no-
tion of retrenchment, proposed to alleviate some technical difficulties with traditional refinement notions,
is applied to the famous Mondex Purse case study.

In the paperCoreASM: An Extensible ASM Execution Engineby Roozbeh Farahbod, Vincenzo Ger-
vasi and Uwe Gl̈asser an ASM ground model is defined for the design of a new platform-independent
engine to execute ASMs, which comes equipped with a well-defined interfacefor the integration of other
software development, validation and verification tools, including interactivevisualization facilities.

In the paperModel Checking Abstract State Machines with Answer Set Programmingby Calvin Kai
Fan Tang and Eugenia Ternovska it is shown how to solve the bounded model checking problem for
ASMs by computing an answer set for a corresponding logic program.

In the paperTime in State Machinesby Susanne Graf and Andreas Prinz a true concurrency model
for timed (e.g. ASM) computations is defined by enriching event structures with a notion of partially
ordered time, in such a way that by appropriate constraints on event structures and their runs one can
describe the major timed computation models in the literature.

In the paperRAM simulation of BGS model of abstract-state machinesby Comandur Seshadhri, Anil
Seth and Somenath Biswas it is proved that the model of PTIME ASMs definedin [6] can be simulated
by RAMs with at most polynomial overhead.
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We thank the 34 colleagues who helped with reviewing (a) the elaborated fullversions of ASM’05
papers that were submitted in the Fall of 2005 to this special FI issue and (b)in the Spring and Early
Summer of 2006 the revised versions of those selected for publication in this special issue of FI.
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H. Kleine Büning, M. M. Richter, and W. Scḧonfeld, editors,CSL’89. 3rd Workshop on Computer Science
Logic, volume 440 ofLecture Notes in Computer Science, pages 36–64. Springer-Verlag, 1990.

[8] E. Börger. A logical operational semantics of full Prolog. PartII: Built-in predicates for database manipu-
lation. In B. Rovan, editor,Mathematical Foundations of Computer Science, volume 452 ofLecture Notes
in Computer Science, pages 1–14. Springer-Verlag, 1990.

[9] E. Börger. The ASM ground model method as a foundation of requirements engineering. In N.Dershowitz,
editor,Verification: Theory and Practice, volume 2772 ofLNCS, pages 145–160. Springer-Verlag, 2003.

[10] E. Börger. The ASM refinement method.Formal Aspects of Computing, 15:237–257, 2003.



iv

[11] E. Börger. From finite state machines to virtual machines (Illustrating design patterns and event-B models).
In E. Cohors-Fresenborg and I. Schwank, editors,Präzisionswerkzeug Logik–Gedenkschrift zu Ehren von
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