Fundamenta Informaticae 28 (1996) 129-140 129
IOS Press

Automating Algebraic Proofs in Algebraic Logic

Jieh Hsiang*

Department of Compuler Science,
National Taiwan University,
Taipei, Taiwan
hsiang@csie.ntu.edu.tw

Anita Wasilewska!

Department of Computer Science, .
State University of New York at Stony Brook,
Stony Brook, NY, USA
anita@sbcs.sunysb.edu

Abstract. We present here an effective proof theory that allows one to reason within
algebras of algebraic logic in a purely syntactic, algebraic fashion. We demonstrate
the effectiveness of the method by discussing our automated proofs of problems and
theorems taken from Professor Helena Rasiowa’s book An Algebraic Approach to Non-
Classical Logics, Studies in Logic and Fundation of Mathematics, Volume 78, North
Holland Publishing Company, Amsterdam, London - PWN, Warsaw (1974). We include
a detailed proof of a problem presented to us by Professor Helena Rasiowa in June 1993.
Most of these proofs are the first direct proofs ever discovered, and they are produced
by the computer without human assistance.

1. Introduction

The field of algebraic logic studies the relationship between logic and algebra. It starts
from purely logical considerations, abstracts from them, places them into a general algebraic
context, and makes use of other branches of mathematics such as topology and set theory.
It provides a way to investigate symbolic logic from a different perspective, and serves to
clarify problems in logic by establishing connections with ordinary mathematics. Indeed,
one of the goals of algebraic logic is to treat logic algebraically so that the rich variety of
techniques developed in algebra can be put to good use in logic. It allows to study a given
logic by investigating its corresponding algebra. The algebra corresponding to classical logic
is a Boolean algebra. In 1963 Rasiowa and Sikorski provided, in their classic book The
Mathematics of Metamathematic ([13]), an uniform, systematic presentaion of the algebraic
approach to classical, intuitionistic, modal, and positive logic. In 1974 Rasiowa formulated,
in her book An Algebraic Approach to Non-Classical Logics ([14]), an algebraic approach to
a carefully selected, widest possible class of logics which can be approached from algebraic

*Supported in part by grant NSC 95-2221-E-002-009 of the National Science Council of the Republic of
China.
tSupported by Fulbright grant USIA 93-68818 (1993-1994).

130 J. Hsiang and A. Wasilewska [Automating Algebraic Proofs in Algebraic Logic

point of view. The algebras discussed in the book were the following: positive implica-
tion algebras, implication algebras, lattices and distributive lattices, quasi-Boolean algebras,
relatively pseudo complemented, contrapositionally complemented and semi-complemented
lattices, pseudo-Boolean algebras, quasi-pseudo-Boolean algebras, Boolean and topological
Boolean algebras and finally, Post algebras.

It is therefore interesting to note that, despite tremendous progress in algebraic logic over
the past half of century, there has not been any effective proof theory that allows one to
reason within algebras of algebraic logic in a purely syntactic fashion.

In this paper we address this issue by describing a simple equational proof method called
unfailing Knuth-Bendiz completion. This method was developed by the term rewriting com-
munity and is a semi-decision procedure for proving equational theorems of an equational
theory. In addition to being one of the most powerful techniques in automated deduction,
unfailing completion yields direct proofs using equational replacements which are easy to
understand and check by human. We demonstrate the effectiveness of the method by pre-
senting proofs of problems and theorems taken from the book An Algebraic Approach to
Non-Classical Logics ([14]). We remark that most of these proofs are the first direct, syn-
tactic proofs ever discovered, and that they are produced by the computer without human
assistance. Qur experiments suggest that automated proof procedures such as unfailing
completion may be viable candidates for effective algebraic proof methods of algebraic logic.

2. Overview Unfailing Completion

An important goal of automated deduction is to automate proofs in mathematics. Since
generality is an important concern, automated deduction methods are usually syntactic in
nature. The emergence of resolution and its refinements in the sixties pushed the endeav-
our of automatically proving theorems in first order predicate to a new horizon. At about
the same time, a method called Knuth-Bendiz completion procedure [10] was developed for
deduction in equational logic. The most distinctive characteristic of Knuth-Bendix com-
pletion (and other proof systems extended from it) is the incorporation of the concept of
well-founded ordering into the inference mechanism. Given a well-founded ordering! > on
the term algebra, an equation ! = r is treated as a rewrite rule [— r if [> r. Since >
is well-founded, — is an irreflexive, antisymmetric, transitive congruent binary relation on
the term algebra. Furthermore, for every substitution ¢ and terms s and t, if s — ¢, then
so — to. Such a relation — is called a reduction relation. Operationally, let s be a term
with a subterm u at position p (which we denote as s[u],), and | — r be a rewrite rule. If
there is a subsitution ¢ such that u = lo, then s[u}, can be reduced to s[ra]p If Ris a set
of rewrite rules and s cannot be reduced using any rules in R, then s is R-irreducible. An
irreducible term is also said to be in normal form. :

We remark that, since > is well-founded, the reduction relation defined using > is also
well-founded. In other words, a term cannot be reduced indefinitely.

The basic difference between applying a rule to a term and applying an equation is that
in reduction, a term is replaced by the term that it reduces to. Although logically they may
look the same, this difference is very important for automated deduction since, by keeping °
only one term of a class of equivalent terms, the search space can be reduced significantly.

Knuth-Bendix completion was originally designed for transforming a set of equations E
into a canonical set R of rewrite rules, under which the reduction relation yields a unique
normal form for every term. Thus, proving the equivalence of two terms s and ¢ under the

1This ordering is usually a simplification ordering [4]. A simplification ordering on a set of terms is a
binary irreflexive partial order with the following properties: Let s and ¢ be terms and ¢ be a substitution,
if s > t then so > to and u[s], > uft], for every term u. Furthermore, u[s] > s if 5 is not a trivial subterm of
u. By u[s], we mean a term u, whose subterm at position p is 5. The term u[t], is the same term u except
that the subterm at position p is ¢.

J. Hsiang and A. Wasilewska | Automating Algebraic Proofs in Algebraic Logic 131

theory E becomes simply reducing s and ¢ to their respective R-normal forms and check if
they are identical.

The first critical barrier that prohibited extensive use of Knuth-Bendix completion was
that there are important equations which cannot be oriented under any well-founded or-
dering. One typical example is the axiom of commutativity, * y = y % &, which is com-
monplace in algebraic theories. This difficulty was partially overcome with the utilization
of E-unification. Informally speaking, F-unification incorporates some of the axioms (espe-
cially those un-orientable ones) into the unification process. The problem with commutivity
was solved in [12] by building both commutivity and associativity (AC) into the unifica-
tion process. AC-Knuth-Bendix completion was extended considerably to allow building
any axiom set into the unification process as long as the axioms yield a finite and complete
unification algorithm [9].

A complete solution to this problem was presented in [7]. We called this method the
unfailing Knuth-Bendiz completion procedure, or unfailing completion for short. It forms
the basis of the proof theory used in deriving the proofs in this paper. In the following we
describe the method in detail.

A simplification ordering is complete if it is a total order on ground terms. The unfailing
completion method assumes that there is a pre-defined complete simplification ordering >
on the set of terms. Given an equation s = t, an orientable instance of s = t is an instance
s’ = t' such that s’ > t’. If s =t itself is orientable, that is, s > ¢, then we may emphathize
this fact by representing s = t as a rewrite rule s — £. Since rules are just orientable
equations, in the rest of the paper we do not distinguish between equations and rules.

The first inference rule is the inference rule of simplification. Let u[w] = v and s =t be
two equations. If there is a substitution o such that w = so and so > to, then s{w] = v can
be simplified into s[to] = v. Note that even if an equation cannot be oriented, its orientable
instances can still be used to perform simplifications. A slightly more general, but more
complicated, simplification rule can be found in [2].

As an example, let (a * b) x ¢ be a term and z xy = y * z be an (un-orientable) equation.
Assume that * > a > b > ¢ and the left-to-right lexicographic ordering is used, then in our
ordering a *b > b* a and (b#* a) * ¢ > c* (b* a). Thus, the term (a * b) * ¢ can be reduced
first to (b * a) * ¢, then to c* (b* a). We remark, once again, that this reduction relation
using orientable instances of z * y = y * 2 is well-founded.

The second inference rule is the rule of superposition. Let u[w] = v and s = ¢ be two
equations in which w is not a single variable. If there is a most general unifier o between w
and s such that ue £ vo and so £ to, then a critical pair u[tjo = ve, in which both terms
are equivalent to the superposition u[w]o, is produced.

We present unfailing completion as a refutational proof method. It works as follows:
Given a set of equations E and a theorem Vz(s = ¢) to be proved. We first negate and
skolemize the equation into § # where § and { are s and t with variables replaced by
skolem constants. We then repeatedly apply simplification and superposition inference rules
to EU{$ # {}. (Note that the inequality does not play any role in the superposition process.)
The process terminates if either no more inference rule can be applied, or if the inequality
is simplified to one of the form 7 # 7 for some r. In the latter case, we have established
that s = t is a theorem of E. It has been shown that unfailing completion is a semi-decision
procedure for proving universally quantified equations of any equational theory [7].

Several efficiency measures are often employed when performing unfailing completion.
Simplification is usually applied as much as possible before any superposition step is per-
formed. By the same token, once a critical pair is generated, it is also simplified until both
terms are irreducible with respect to the current set of equations. This way the data base
can be kept as compact as possible. Another common optimization involves special-purpose
unification. If an operator is both associative and commutative (AC), one may incorpo- -
rate both axioms into the unification process by declaring the operator to be AC. Then

132 J. Hsiang and A. Wasilewska [Automating Algebraic Proofs in Algebraic Logic

AC-unification instead of regular unification is used. Although AC-unification, as a single
inference step, may be much slower than regular unification, it often provides great savings
as far as search space is concerned. When an operator f has the cancellation axiom, that is,
y = z if f(z,y) = f(z, z), then this axiom can also be incorporated into part of the inference
mechanism to produce smaller critical pairs. For complete sets of inference rules for the

cancellation axioms, see [8].

2.1. Automated Deduction using Unfailing Completion

In addition to being highly effective in producing proofs, there are several other advantages
with choosing unfailing completion and its extensions as the automated proof theory for
algebraic logics.

First of all, unfailing completion is easy to implement. Indeed, there are many implemen-
tations of unfailing completion existing in languages ranging from Prolog to C++. ,
Second, unfailing completion is easy to use, since the inference system is fully automated
and does not need human intervention when being executed. Take Reveal [1] as an example.
To prove an equational theorem in Reveal, one only needs to input the equational theory
(as a set of equations), the equations to be proved, and an ordering on the operators. The
ordering will be extended automatically to a term ordering (ordering on the set of terms)
that the user chooses. Reveal incorporates two most commonly used orderings on terms,

the recursive path ordering and the lezicographic path ordering [5].

We remark that the choice of an appropriate ordering is not as difficult as it may sound
at first glance. The user usually wants some equations to be oriented in a specific way. For
instance, the distributivity law = * (y + 2) = 2 *y + 2 * z is usually ordered from left to right.
Therefore one may declare that * > +, which will orient the equation accordingly in both
path orderings. Unlike the original Knuth-Bendix completion, which may fail if an equation
cannot be oriented, unfailing completion proceeds regardless of how many equations cannot
be oriented. This flexibility relieves the user from the need to have a deep knowledge of the
inner working of the orderings.

Since Reveal implements C-unification, AC-unification, and the cancellation inference
rules, the user may also wish to declare some operators to be commutative, commutative
and associative, or cancellable. The following is a typical input to Reveal.

term

i(i(x,x),y)=y ;

i(x,i(y,2))=i(i(x,y),i(x,2)) ;
i(i(x,y),1i(i(y,x),y))=i(i(y,x),i(i(x,y),x)) ;
i(i(x,y),x)=x;

o(x,y)=i(i(x,y),y);

i(x,x)=d;

i(a,c)=d;
i(b,c)=d;
i(o(a,b),c)'=d;

precd abcio;
sta 11l ;
sta o 1 ;

ukdb

J. Hsiang and A. Wasilewska [Automating Algebraic Proofs in Algebraic Logic 133

The first input term indicates that Reveal is taking input from the terminal. The input
equations end with a single ”. The line “prec d a b ¢ 1 o ;” gives the ordering on the
operators, in increasing order, and the line “sta i 1 ;” indicates that the lexicographic
ordering from left to right is used when two terms with the same outermost operator i are
compared.

The meaning of the above problem is that in an implication algebra (A, d, =) (as defined
by the first group of equations, in which i stands for = and o stands for U), for every s, y
and z,if £ = z =d and y = z =4, then (zUy) = z =d.

The theorem to be proved, after being negated and skolemized, becomes the second group
of the two equations and one inequality. The variables in the theorem, after skolemization,
becomes constants a,b, and c. Incidentally, it took Reveal less tham 1.5 seconds to prove
this problem on a Sparcstation 10/51 with 64MB of memory.

The third advantage we mention here is that the proofs produced by a prover based on
unfailing completion are usually easy for human to read and to check. The first reason is be-
cause unfailing completion works directly on the set of equations without changing them into
a different form?. Secondly, the inference rules of unfailing completion are essentially highly
restricted versions of equational replacement. The superposition inference rule corresponds
to finding an equational lemma from the current set of equations, and simplification is plain
equational replacement using existing equations. These inference rules coincide naturally
with human reasoning. It is fairly easy to reconstruct a proof produced by the prover into a
typical algebraic proof that one sees in a logic or algebra textbook. Indeed, it is even fairly
easy to write a program which does this transformation automatically [6]. In Section 3.1.,
we will show such a proof in detail.

3. Proofs in Peirce Algebras

To demonstrate that unfailing completion is indeed a feasible proof theory for algebraic logic,
we conducted a number of experiments using two of the most popular implementations,
Reveal [1] and Otter [11]. Both provers are written in C. While both of them are very easy
to use, Reveal is implemented for Sparcstations and has the advantage of featuring AC-
unfailing completion as well as inference rules for cancellation. On the other hand, Otter
runs on PC and Sparcstations, and is slightly faster than Reveal. Otter has the additional
advantage of being a first-order theorem prover as well, although its first-order part cannot
yet utilize the concept of ordering to its full benefit.

The problems we tested are all taken from the book “An Algebraic Approach to Non-
Classical Logics” [14]. They include various properties of implication algebras, positive
implication algebras and quasi-Boolean algebras. There has not been any known direct
syntactic proof for most of the problems. In the following we give a proof of a problem in
Peirce algebras in full detail. This proof is a typical example of what unfailing completion
is capable of doing.

In order to fully appreciate the proof, we provide, below, some information concerning
Peirce algebras. Peirce algebras® were first introduced in [14] in the exercise section of page
48. We should remark that many of the exercises in the book are either published results
or open problems, despite their unassuming position in the book. There were four problems
asked about Peirce algebras. They are: :

Problem 1 Prove that every Peirce algebra is a distributive lattice with the unit element V.

2Such a pre-processing transformation is quite common in automated deduction. For example, resolution-
based methods typically require the input to be transformed into clausal form.

3 Another class of algebras bearing the same name appeared in [3]. But these two algebras do not seem
to relate to each other despite their identical name.

134 J. Hsiang and A. Wasilewska [Automating Algebraic Proofs in Algebraic Logic

Problem 2 Prove that the notion of an implicative filter A in Peirce algebra algebra coin-
cides with the notion of a filter.

Problem 3 Let A be a Peirce algebra, prove that the quotient algebra A/V is a Peirce
algebra.

Problem 4 Prove the Representation Theorem for Peirce algebras.

Since the problems were given without any references, we contacted Professor Rasiowa in
order to obtain more detail. She gave us, in June 1993, the following information:

1. Peirce Algebras were defined to provide an algebraic model for a negation-free fragment
of classical logic. The name was derived from the Peirce Law (((a = b) = a) = a)
which holds in the corresponding logic. Let us denote this logic as PL. One can then
prove (using Problem 3 as the essential step) the following Separation Theorem for
Peirce logic.

Let A be a negation free propositional formula, then A is provable in classical
logic if and only if A is provable in Peirce logic.

2. One can then use the implicative filter of Problem 2 to prove the Representation
Theorem mentioned in Problem 4.

3. The solution to the Problem 1 becomes a corollary to the Representation Theorem.
4. A direct proof, not via the Representation Theorem, of the Problem 1 is not known.

Since a conventional solution for Problem 1 depends on successfully solving the other
three problems, it is curious why Rasiowa decided to give it as the first problem as opposed
to be the last one. Unfortunately, we did not obtain an answer for this question.

The approach to Problem 1 suggested by Rasiowa reflects more or less how problems
concerning the expressive power of a logic are solved in algebraic logic; one essentially needs
to prove a representation theorem for each of the algebras in question.

Definition 3.1. A Peirce algebra is an algebra (A, =>,U,N) satisfying

Il (a=a)=>b=),

I2 a=(b=c)=(a=0b)=(a=c),

I3 (a=b)=(b=>a)=b)=(0b=da)=>((a=0b) = a),

P (a=0b)=a=aq,

Pl aUb=(a=b)=b,

P2 (anb)=>a=V,

P8 (anbd)=>b=V,

P{ (a=b)=>({(a=c)=>(a=(bN¢))) =V.

We remark that any algebra that satisfies axioms /1 through I81is called a positive implication
algebra, and that any positive implication algebra with the addition axiom P is called an
implication algebra.

Definition 3.2. An algebra (A,U,N) is a distributed lattice if it satisfies the following ax-
joms:

l.aUb=>bUa,
2.aNb=>bNa,
3.aU(bUc)=(aUb)Uc,
an(ne)=(and)Ne,
(anNbd)Ub=b,
aN(aUb) =a,

S oo

J. Hsiang and A. Wasilewska [Automating Algebraic Proofs in Algebraic Logic 135

7.an(bUc¢)=(aNb)U(aNc),
8. aU(bNec)=(aUb)N(aUec).

Both provers Reveal and Otter proved, automatically, the eight properties of distributed
lattices from the axioms of Peirce algebra. Otter is the faster one, and took 591.57 cpu
seconds on a Sparcstation 10/51. The entire proof generated 160 useful lemmas, and the
most difficult among the proofs is the property is the associativity of U. The number of
lemmas necessary to prove the theorem indicates that it is highly unlikely that such a direct,
algebraic proof can be easily performed by human.

3.1. Commutativity of N in Peirce Algebra — An Example
In the following, we present the proof generated by Otter of

Theorem 3.1. In Peirce algebra, z Ny =y Nz for every and y.

We choose this theorem as an example because the symbol N is not explicitly defined in
Peirce algebra. It is therefore interesting to see how unfailing completion “pulls out” the
symbol via superposition and simplification.

The following is an output script produced by Otter. The proof took 7.63 cpu seconds
on a Sparcstation 10/51 with 64MB RAM.

----> UNIT CONFLICT at 7.63 sec ---->

Level of proof is 14, length is 22.

2 [0 GAEG,x),y) =y).

5,4 [0 GGG,y ,i(x,2)) = i(x,i(y,2))).

6 [1 GGEGE,y),i(idy,x),y)) = i(idy,x),i(i(x,y),x))).

9,8 [1 (i(il(x,y),x) = x).

12 [1 (i(and(x,y),x) = d).

15,14 [] (i(and(x,y),y) = d).

16 [demod,5,5] (i(x,i(y,i(z,and(y,z)))) = d).

19,18 []1 (i(x,x) = d).

20 [] (and(b,a) != and(a,b)).

21 [back_demod,6,demod,9,9] (i(i(x,y),y) = i(i(y,x),x)).

24,23 [back_demod,2,demod,19] (i(d,y) = y).

26,25 [para_into,8,23] (i(x,d) = d).

27 [para_into,8,8] (i(x,i(x,y)) = i(x,y)).

35 [para_into,16,27] (i(x,i(y,and(x,y))) = 4).

55 [para_into,21,14,demod,24] (i(i(x,and(y,x)),and(y,x)) = x).
57 [para_into,21,12,demod,24] (i(i(x,and(x,y)),and(x,y)) = x).
71 [para_into,4,35,demod,24] (i(x,i(i(z,and(x,2)),y)) = i(x,y)).
77 [para_into,4,14,demod,24] (i(and(x,y),i(y,z)) = i(and(x,y),2)).
93 [para_into,4,18,demod,26] (i(x,i(y,x)) = d).

97 [para_into,4,12,demod,26] (i(and(x,y),i(z,x)) = d).

120,119 [para_from,93,4,demod,24] (i(x,i(i(z,x),y)) = i(x,y)).
139 [para_into,97,21] (i(and(x,y),i(i(x,z),z)) = d).

1838,1837 [para_into,71,55] (i(x,and(x,y)) = i(x,y)).

1857 [back.demod,57,demod,1838] (i(i(x,y),and(x,y)) = x).

2017 [para_from,1857,119] (i(x,and(y,x)) = i(x,y)).

136 J. Hsiang and A. Wasilewska/Automating Algebraic Proofs in Algebraic Logic

2032,2031 [para_from,2017,119,demod,120] (i(x,and(z,i(y,x))) = i(x,z)).

2483 [para_into,77,139] (1(and(x i(x,y)),y) = 4d).
2603 [para_from,2483,21,demod,24,2032] (i(i(x,y),and(y,i(y, x))) = x).

2908,2907 [para_into,2603,12,demod,1838,24] (and(x,i(x,y)) = and(x,y)).

2913 [para_into,2603,2017,demod,15,2908,24] (and(y,x) = and(x,y)).
2915 [binary,2913,20]

The proof can be converted easily into a series of lemmas which are easy to read and check.

Given

l.(z=>2)=2>y=y
2.(ze=2y)=>@E=2>2)=z=> (y= 2)

3 (z=y)=>((y=a)=y)=(y=>2)=>(z=y) =)
4. z=2>y)=>z=z

5. (zNy)=>z=d

6. (zNy)=>y=d
Tz=2y=>(z=22)=(x=>(yn2)))=d

8. r=z=

9. bNa#£aNnb

Lemma 3.1. z = (y = (2= (yNz))) =d

Proof:

This equation is obtained by simplifying the left hand side (LHS) of equation (7) by equa-

tion (2) twice.

0

We remark that, since Lemma 3.1. is obtained directly from equation (7) through simpli-
fication by other axioms, it is probably better to use the equation of Lemma 3.1. as one of
the axioms for Peirce algebra instead of the original one - equation (7) - given by Rasiowa.

Lemma 3.2. (z=y)=>y=(y=>z)=>2

Proof:
Obtained by simplifying both sides of equation (3) by equation (4).

Lemma 3.3. d = y‘ =y

Proof:
This lemma is the result of simplifying equation (1) using equation (8)

Lemma 3.4. 2 = d=4d

Proof:
LHS: (d = y) = d = y = d, by equation (4)
RHS: (d = y) = d = d, by Lemma 3.3.

Lemma3.5. 2= (z=2y)=z=y

Proof:
LHS: ((y = w) = y) = (y = w) = y = (y = w) by equation (4)
RHS: ((y = w) = y) = (y = w) = y = w, also by equation (4)

Lemma 3.6. z = (y= (zNy))=d

J. Hsiang and A. Wasilewska | Automating Algebraic Proofs in Algebraic Logic

Proof:
LHS:u= (y= (= (yNz))) =u= (2 = (uNz)) by Lemma 3.5.
RHS: v = (y = (¢ = (yN z))) = d by Lemma 3.1.

Lemma 3.7. (r = (yNz)) = (yNz)==2

Proof:
LHS: (uNv) = v)=v =(v=(xNv)) = (uNv) by Lemma (3.2.)
RHS: ((uNv) = v) = v=d = v by equation (6)

= v by Lemma 3.3.

Lemma 3.8. (z = (zNy)) = (zNy) ==

Proof:
LHS: (uNv) = u) = u = (u= (vNv)) = (uNv) by Lemma (3.2.)
RHS: ((uNv) = u) = u=d = u by equation (5)

= u by Lemma 3.3.

Lemma 3.9. z = ((z= (zNz2))=>y)=z=>y

Proof:
LHS: (z = (v= (zNv)

)) = (z = 2)=2 = ((v= (2 Nv)) = 2) by equation (2)
RHS: (z = (v = (zNv))) =>

T
(z = 2)=d = (z = 2) by Lemma 3.6.
= = 2z by Lemma 3.3.

Lemma 3.10. (zNy) = (y = 2) = (zNy) = 2)

Proof:

LHS: (vuNv) = v) = ((uNv) = z)= (uNv) = (v = z) by equation (2)

RHS: ((uNv) = v) = ((vNv) = 2)=d= ((uNv) = z) by equation (6)
= (uNv) = z by Lemma 3.3.

Lemma 3.11. z = (y=> z)=d

Proof:

LHS: (z = y) = (z = z) = ¢ = (y = z) by equation (2)
RHS: (z = y) = (z = z) = (z = y) = d by equation (8)
d by Lemma 3.4.

hoi

Lemma 3.12. (zNy) => (z = 2)=4d

Proof:
LHS: (vNv) = y)= (uNv) = u)
RHS: (uNv)=>y)= (uNv) = u)

(vNwv) = (y = u) by equation (2)
((uNv) = y) = d by equation (5)
d by Lemma 3.4.

Lemma 3.13. 2= (z =)= y)=c=y

Proof:
LHS: (u = (v = u)) = (u = 2) = u = ((v = u) = z) by equation (2)
RHS: (u = (v = u)) = (u = 2)=d = (u = 2z) by Lemma 3.11.

= u = z by Lemma 3.3.

Lemma 3.14. (zNy)=> ((z = 2) = 2) =d

137

138 J. Hsiang and A. Wasilewska | Automating Algebraic Proofs in Algebraic Logic

Proof:
LHS: (zNy)= ((z=z)=>2)=(zNy) = ((z = z) = z) by Lemma 3.2.
RHS: (zNy) = ((# = z) =) = d by Lemma 3.12. 0
Lemma 3.15. z = (zNy)=z =y
Proof:
"LHS: z = ((z=(zN=z)) = (zNz))=2=(zNz) by Lemma 3.9.
RHS: z = ((z = (zNz)) = (zN2)) =dr = z by Lemma 3.7. O
Lemma 3.16. (z = y) = (zNy)==
Proof: v
The lemma is obtained from simplifying the LHS of Lemma 3.8. using Lemma 3.15.]
Lemma 3.17. z = (yNz) =z =y
Proof: :
LHS: 2= (z = z) = (2Nz) =2 = (2Nz) by Lemma 3.13.
RHS: z = (z = z) = (2 Nz) = 2 = z by Lemma 3.16. O
Lemma 3.18. z = (zN(y=> z)) =z =z
Proof:
LHS: u= (w=u)= (yN(w=>u))) =u= (yN(w = u)) by Lemma 3.13.
RHS:u = (w=u)= (yN(w=u)))=u= ((w=u) = y) by Lemma 3.17.
=u = y by Lemma 3.13. a
Lemma 3.19. (zN(z = y))=>y=d
Proof:
LHS: (zN(z=2)) = ((z = 2) = z)=(zN(z = z)) = 2) by Lemma 3.10.
RHS: (zN(z = 2)) = ((z = z) = z) = d by Lemma 3.14. 0
Lemma 3.20. (z=y)= (yN(y=12)) =
Proof:

LHS: (zN(z=>y))=y)=y=(w=(zN(z=1y)) = (zN(z = y)) by Lemma 3.2.
= (y=)= (zN(z = y)) by Lemma 3.18.
RHS: ((zN(z = y)) = y) = y=d =y by Lemma 3.19.
= y by Lemma 3.3. ‘ O

Lemma 3.21. zN(z=>y)=2Ny

Proof:

LHS: (uNv)=u)= (uN(u= (vNv))) =d= (uN(u = (uNwv))) by equation (5)
=d = (uN(u = v)) by Lemma 3.15.
=uN (u= v) by Lemma 3.3. ‘

RHS: (uNv) = u) = (uN (v = (uNv)))uNv by Lemma 3.20. |

Lemma 3.22. zNy=yN=x

Proof:

LHS: (wNy)=y)= (yN(y = (wNy))) =wNy by Lemma 3.20.

RHS: (wNy)=y)= (yN(y= (wNny))=((wny)=y)= (yN(y = w)) by
Lemma 3.17.
=d = (yN(y = w)) by equation (6)
=d = (yNw) by Lemma 3.21. -
=y Nw by Lemma 3.3. oo

The last lemma implies Theorem 3.1.

J. Hsiang and A. Wasilewska | Automating Algebraic Proofs in Algebraic Logic 139

4. Discussion

Proofs in algebraic logic usually involve the discovery, and proof, of a Representation The-
orem for a given algebra. Proving the Representation Theorem and associated lemmas
involves the use of mathematical techniques which are not purely algebraic in nature.

In this paper we presented a proof method which, we argue, can be used to automate
proofs in algebraic logic. The method, called unfailing completion, is essentially a highly
effective refinement of Birkhoff’s inference rules for equational logic. It presumes a well-
founded ordering on the set of terms, which forms the foundation of all inferences. Through
the rule of superposition, it produces new equations (lemmas). Through the rule of simplifi-
cation, it keeps the terms (and thus the search space) minimal.

In addition to being effective, unfailing completion is easy to implement, its implementa-
tions are easy to use, and the proofs that it produces can be easily reformulated into lemmas
which are, in turn, easy to read and understand.

We have used several different impelementations of unfailing completion to proof-check
a number of theorens and exercises in the book An Algebraic Approach to Non-Classical
Logics of Rasiowa. They include many problems concerning implication algebra, positive
implication algebra, quasi-Boolean algebra, and Peirce algebra. For most of these problems
there had not been any direct algebraic proofs. Since these proofs are often quite long, in
this paper we only included one detailed proof in Peirce algebra. Our experiments show that
unfailing completion is indeed a viable (automated) proof theory for algebraic logic.

References

[1] Anantharaman, S., Hsiang, J., and Mzali, J., SbReve2: A term rewriting laboratory
with (AC)-unfailing completion, in 8rd RTA, Springer-Verlag Lecture Notes in Com-
puter Science, Vol 355, pp 533-537, 1989.

[2] Bachmair, L., Dershowitz, N., and Plaisted, D., Completion without failure. In Reso-
lution of equations in algebraic structures 2, Ait-Kaci and Nivat, eds., Academic Press,
pp 1-30, 19899

[3] Brink, C., On the application of relations, South African Journal of Philosophy,
7(2):105-112, 1988.

[4] Dershowitz, N., Orderings for term-rewriting systems, Theoretical Computer Science
vol 17, pp279-301, 1982.

[5] Dershowitz, N., Termination of rewriting, Journal of Symbolic Computation, Vol 3, pp
69-116, 1987.

[6] Hsiang, J., On the reconstruction of equational proofs, in preparation.

[7] Hsiang, J. and Rusinowitch, M., On word problems in equational theories, in
Th.Ottman (ed.), Proceedings of the Fourteenth International Conference on Au-
tomata, Languages and Programming, Karlsruhe, West Germany, July 1987, Springer
Verlag, Lecture Notes in Computer Science 267, 54 71, 1987.

[8] Hsiang, J.,Rusinowitch, M. and Sakai, K., Complete set of inference rules for the
cancellatlon laws, IJCAI 87, Milan, Italy, 1987

[9] Jouannaud, J. P and Kirchner, H Completion of a set of rules modulo a set of
equations, SIAMJ of Computing, 15(4) pp 1155-1194, 1986.

(10] Knuth, D.E., and Bendix, P., Simple Word Problems in Universal Algebras, in J.Leech
(ed.), Proceedings of the Conference on Computational Problems in Abstract Algebras,
Oxford, England, 1967, Pergamon Press, Oxford, 263-298, 1970.

[11] McCune, W., OTTER 2.0 Users Guide, Technical report, ANL- 90/9 Argonne National
Lab, 1990. '

[12] Peterson G. and Stickel, M, Complete sets of reductions for some equational theories,
JACM 28,2, pp 233-264. 1981,

140 J. Hsiang and A. Wasilewska | Automating Algebraic Proofs in Algebraic Logic

[13] Rasiowa, H., Sikorski, R., The Mathematics of Metamathematics, PWN, Warszawa,
1963.

[14] Rasiowa, H., An Algebraic Approach to Non-Classical Logics, Studies in Logic and the
Fundations of Mathematics, Volume 78, North-Holland Publishing Company, Amster-
dam, London - PWN, Warsaw, 1974.

v

