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Abstract. Data science is a young and rapidly expanding field, but one which has already experienced several waves of
temporarily-ubiquitous methodological fashions. In this paper we argue that a diversity of ideas and methodologies is cru-
cial for the long term success of the data science community. Towards the goal of a healthy, diverse ecosystem of different
statistical models and approaches, we review how ideas spread in the scientific community and the role of incentives in influ-
encing which research ideas scientists pursue. We conclude with suggestions for how universities, research funders and other
actors in the data science community can help to maintain a rich, eclectic statistical environment.
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1. Introduction

In 2012 the Harvard Business Review declared Data Scientist to be the ‘sexiest job of the 21st cen-
tury’ [9]. The last five years have borne out that pronouncement. As illustrated in Fig. 1, global interest
in data science has increased exponentially, at least as measured by the number of related searches on
Google. There has been a huge increase in the number of universities offering courses in ‘data science’
or ‘data analytics’, led by student demand in response to a rapid growth in the number of well-paid ‘data
scientist’ job positions. Doubtless, some of this is a relabeling of previously extant activities; much of
what we teach our data analytics students has previously been covered in statistics and machine-learning
programs, while some companies advertising data scientist positions would have once advertised for
statisticians. Nonetheless, within these fields there has also been a substantial increase in activity. To
illustrate, the Annual Conference on Neural Information Processing Systems (NIPS), regarded as the
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Fig. 1. The monthly search activity for ‘data science’ as a proportion of all Google search activity, extracted from Google
Trends between October 2006 and October 2016. Activity is normalized to a maximum of 100 over the time period. The

vertical dashed line indicates the date on which The Harvard Business Review declared Data Scientist to be ‘the sexiest job of
the 21st century’ [9]. Raw data available in Supplementary Materials.

leading venue for publishing and discussing research in machine-learning, has seen huge year-on-year
increases in registrations over the past five years, with nearly 4000 delegates attending in 2015. Overall,
it is clear that there has been a step change in the number of individuals and organizations involved in
performing sophisticated analyses of large and complex data. And there is no sign yet that this growth
in data analytics in industry, government and academia is slowing down. Within scientific research, this
huge increase in data analytic capabilities and activity presents us with an important question: how can
we ensure that all this work is creating genuine new knowledge? It may seem natural to assume that if
more people are trained to analyze data using exciting new tools like Random Forests, Deep Neural Net-
works and Gaussian Processes, that we should expect more insightful, robust analyses of data to result,
and therefore obtain more knowledge from our scientific endeavors. However, in many cases these tools
are being applied to data that is statistically troublesome: observational data, often unstructured, sub-
ject to strong selection biases, without controls and with many interacting factors potentially affecting
the outcome of interest. Examples include text and behavior extracted from social media [37], hospi-
tal admission data [25], and store loyalty card records. With rare exceptions [20] these do not permit
anything resembling the classic randomized, controlled trials that are the gold standard of causal infer-
ence. Moreover, many methods typically employed in machine-learning and industrial data analytics are
primarily focused on predictive accuracy, rather than inference and interpretation of underlying causal
structures. Finally, and importantly for this perspective, data analytic techniques are subject to ‘bubbles’
of interest with the scientific community [42]. In the 1980’s artificial neural networks were firmly at
the forefront of machine-learning and artificial intelligence research. The popularity of these waned in
1990’s and 2000’s in favor of Gaussian processes [32], Random Forests [7] and other non-parametric
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methods, before a resurgence led by new techniques for training many-layered neural networks, termed
‘Deep Learning’, in the 2010’s. These waves of interest in one technique or another have a pronounced
effect on the collective scientific enterprise, as they reduce the diversity of statistical models and ap-
proaches being used to investigate similar data sets. As such, any problems inherent to a single type of
statistical model can be amplified if that technique becomes popular within the community. Meanwhile,
the particular advantages of other methods can become lost as their popularity wanes. It is far from clear
that the popularity of one method over another is strictly related only to its analytical power; instead
there are strong undercurrents of fashion and conformism in the methods researchers are expected to
use. Furthermore, conformisms and fashion are further magnified by network effects that give a small
number of researchers and methods exponentially more visibility.

Lack of diversity in analytical approach is a missed opportunity. There is substantial cross-disciplinary
evidence for the important role diversity plays in collective intelligence [29,40]: experimentally in hu-
man [47] and animal behavior [2], in theoretical models of collective behavior [17,24,49], and specif-
ically in the successes of statistical ensemble models (e.g. [4] and see subsequently listed examples).
Ensemble models use combinations of multiple, often very many, different statistical models to perform
data analysis. For example, the popular Random Forests model [7] is an ensemble model: many distinct
decision tree models are generated from a single data set, before being aggregated to make predictions
from new data. The advantage of an ensemble approach is that each model within the ensemble may
identify and utilize different features and patterns within the data. Aggregated together, the errors made
by each model cancel out to some degree, resulting in a collectively accurate prediction. The power of
aggregating distinct models for a given data set became evident to many at the conclusion of the Netflix
Prize competition [5]. This competition set participants the challenge of improving on the accuracy of
Netflix’s own algorithm for predicting future film watching choices by at least 10%. For some time no
single team working with one statistical model was able to achieve this mark. The competition was even-
tually concluded when several teams came together, combining their different models so as to improve
their overall predictions [6,31,41]. This outcome demonstrated that, in statistical modeling, the search
for one ‘true’ or ‘best” model is often misguided. Instead, as a community we should seek the best com-
bination of approaches, especially when faced with complex, multi-dimensional phenomena. Since it is
rarely possible or desirable to centrally coordinate a search for a good collection of statistical models,
we must instead consider how the incentives individuals face and the networks they inhabit influence the
type and variety of statistical research that they perform.

1.1. Collective wisdom, collective madness

The ability of a group to exhibit intelligence superior to any of its constituent members is well es-
tablished. One of the first to study how collective intelligence emerges was Condorcet, who considered
the case of an idealized jury [10]. Consider n jurors, tasked with deciding whether a defendant is guilty
or innocent. Each juror is individually only accurate in making this determination with a relatively low
probability, say 60%. That is little better than guessing at random. However, assuming that the jurors
make up their minds independently, Condorcet showed that collective group decision (determined by a
simple vote) is far more likely to be accurate than a single individual, growing quickly with the number
of jurors, n. Francis Galton made similar observations regarding the accuracy of collective estimation
[13], which is ultimately predicated on the Law of Large Numbers: independent errors made by many
individuals tend to cancel out in aggregate, making the group much “smarter” than a single individual.
As noted above, these early observations have been replicated since within data science, in ensembles of
models and research teams.
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However, collective wisdom is contingent on diversity and independence between members of a group
[40]. The counterpoint to the collective wisdom of Condorcet’s idealized jury is the collective madness
we see when individuals are too strongly influenced by the collective mood. This is exhibited in famous
examples of damaging group think, such as Tulip Fever, the South Sea Bubble and other stock market
booms and busts [14]. We may also observe on a daily level in our own lives instances where social
conformity and peer pressure lead individuals and groups to behave sub-optimally. The community
of researchers in data science, statistics, machine learning and artificial intelligence is also subject to
individual, social and insitutional forces that discourage a diversity of approaches [12,23,26,39,48].
Certain statistical models become fashionable, are accepted as the new big thing and are soon ubiquitous.
Senior researchers train their students in the methods that they know. At any one time, certain types of
model are, generally, more accurate and/or efficient than others, and researchers tend to gravitate towards
these. The culture of benchmarking one’s new method against the state of the art in terms of accuracy
necessitates that researchers utilize the best currently available methodologies if they wish to get their
work published. Previous research has shown that when individuals are rewarded solely on the basis
of the accuracy of their individual predictions, this tends to lead to a severe lack of diversity and a
subsequent catastrophic reduction in collective wisdom, putting the whole collective on a par with a
single individual [17,24].

The examples of successful ensemble approaches above demonstrate that diversity has not been ex-
tinguished in data science (e.g. [5]). However, in the light of incentives and mechanisms that discourage
diversity, and in the knowledge that diversity is critical to the collective wisdom of any community, it
behooves us to consider carefully how ideas spread in the research community, and how the incentives
and structures inherent to the scientific community can be used to encourage a wider variety of research
approaches.

2. Understanding the spread of ideas

Diverse ideas and methods are combined through a decentralized emergent process, as scientists be-
come aware of information, communicate it, “adopt” or use these ideas and create new ones. This pro-
cess is driven by the dynamic and multi-layered structure of interactions between scientists and the
mechanisms via which ideas are taken up. Here we will discuss insights from the study of, complex
networks [3,11,28] and spreading processes on these networks [19,30] that can shed light on how to
structure scientific interactions in a way that sustains a diverse pool of methods in data science and
encourages researchers to combine and integrate them in productive ways.

2.1. Networks of scientific interaction

Analyzing the networks of scientific interaction can reveal important information about the current
divisions between different methods and the groups of researchers that use them. Furthermore, these
network structures also yield a better understanding of the potential for these methods to be better inte-
grated through new interactions. There are many rich sources of data that have recently become available
that can be used to characterize the interaction of scientists in different contexts. For example, the Web of
Science'! or other bibliometric sources can be used to construct citation networks. Although this is only
an imperfect measure of scientific ideas and how they spread, there is quantitative evidence that scientific
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ideas “spread” through citations [21] and that these networks can be used to predict their spread [36].
Using bibliometric data we can also extract the structure of scientific collaborations and co-authorship
networks. Similarly we can reveal collaborations and knowledge transfer in other dimensions, for ex-
ample through the network of user-repository interactions on Github? [18]. These networks can be used
to understand the potential for spread of ideas and methods between researchers. There are of course
other, less formal forms of scientific interaction which are becoming easier to measure. For example,
measurements of face-to-face interactions at conferences [38] and exchange and “friendship” on online
social platforms such as Twitter and ResearchGate can also be used to map the structure of interactions
between scientists.

All of these quantifications of scientific interaction contain different information at different temporal
resolutions. However, two pervasive characteristics are community structure and a high inequality, or
broad distribution of the centrality (most basically measured through connectedness) of different network
components, whether they be researchers or methods.

2.2. Community structure, individual centrality and integrating diverse methods

Modules or communities are, intuitively speaking, the sub units of a network made up of individuals
(e.g. researchers or methods) that interact more strongly with each other than with the rest of the network.
One interesting approach to integrating diverse perspectives would be to combine methods from distant
communities through ensemble methods.

Taking a more decentralized long-term approach, communication channels between researchers oper-
ating in these distant communities also need to be established. However, there are many reasons to be
wary of a naive approach which simply encourages more unstructured interaction. To retain useful diver-
sity, interaction across communities must not compromise a basic degree of isolation and independence
between communities.

The importance of community structure is better understood if we consider the mechanisms that seem
to govern the spreading of ideas and innovations. The best studied model is fractional threshold con-
tagion [43], where the probability that an individual becomes “infected” through an infective contact
is dependent on the fraction of other infected individuals that it interacts with (in network terms, its
neighbors). This rule captures the idea that adoption is a social process: there is pressure to conform,
or there are added synergistic benefits to adopting if others whom we interact with adopt. Given such a
process, communities serve as incubators for new ideas, through local reinforcement. But communities
also have the opposite effect, slowing the adoption ideas that originate outside of them. Increasing con-
nectivity randomly throughout a network could decrease the diversity of ideas, allowing only the most
contagious, or those that start in the most well connected places, to persist.

Theoretical work indicates that networks that have modular structure but sustain intermediate levels of
connectivity between modules provide optimal conditions for the global uptake of ideas [27]. However,
such results do not take into account the hierarchical structure of networks, and how the centrality of
nodes (for instance most simply according to degree) determines how effectively inter-modular connec-
tivity can enable global spread.

The dynamics of contagion through a fractional threshold mechanisms are driven by the inverse rela-
tionship between the connectedness of an individual and its susceptibility to ideas. Thus, more peripheral
individuals are more receptive to new ideas and play a key role in sustaining a rich and diverse set of
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Fig. 2. Three different network topologies that can sustain different diversity of ideas: All networks exhibit stratification, that is,
most individuals have a low degree but there is a small number of highly connected individuals. The network on the left has no
community structure. This network cannot sustain much diversity. The network in the middle has a strong community structure
with inter-community connections through central individuals. In this network the diverse ideas that spark in the different
communities cannot spread globally. The network on the right has strong community structure, but with inter-community
connections through peripheral individuals. This topology offers a promising approach to sustain the global penetration of
diverse ideas that are fostered locally.

scientific ideas. Therefore, in theory ideas can be more effectively transferred from one community to
another through connections between more peripheral individuals rather than highly connected individ-
uals (see Fig. 2 for a schematic of the different network topologies we discuss).

To determine how strongly these theoretical conclusions apply to the spreading of scientific ideas
and methods a more extensive empirical validation of the prevalence of fractional threshold contagion
is needed. Unfortunately, there is a lack of empirical work selecting between plausible information
spreading mechanisms in a statistically principled way, in any context. One of the rare examples [34]
does in fact offer evidence for the prevalence of fractional threshold contagion — it provides the best
fit (from a pool of standard contagion mechanisms) to observed behavioral changes in schooling fish.
However, based on studies of information spread on Twitter microblogging [33,45], we would expect
that multiple contagion mechanisms operate in the spread of scientific ideas, for instance depending on
characteristics of the idea. Interestingly, despite the uncertainty regarding contagion mechanisms, the
key role that peripheral researchers can play in the spreading of ideas due to their sensitivity becomes
more generally applicable if we look beyond models that only consider one idea spreading in isolation.
Ideas are part of an ecosystem, and they interact with each other through their scientific “hosts”, akin to
the dynamics of co-infection and super-infection studied in evolutionary epidemiology [1]. Competition
for limited human time and attention is the most studied interaction [15,16,44]. However, there are also
synergistic effects between ideas. Most obviously, ideas that are similar and consistent with each other
are more likely to be adopted by the same scientist. These interaction effects accentuate rich-get-richer
feedbacks in the system and thus reduce diversity. Furthermore, since the most established scientists
tend to be the most connected, they experience more information overload and therefore the competition
for their attention is greater, and at the same time, they are less likely to adopt novel ideas that contradict
the establishment that has secured their privileged position.

2.3. The role of incentives

The type of research that individuals pursue and the methods they use are influenced by their peers and
networks, as we have seen above. However, the decisions scientists make in this regard should not be
viewed simply as a passive result of community pressure. Instead, these decisions are active choices that
are made both to satisfy the researcher’s curiosity, but also to achieve their professional objectives such as
promotion, funding and recognition. How scientists are rewarded for their research will affect, in positive
or negative ways, the diversity of ideas and therefore the collective wisdom of the scientific community.
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Scientific ideas and publications exist in a quasi-market, where some are accorded a high value and
attract high rewards. A typical researcher is unlikely to pursue highly novel but unpopular ideas if there
is no potential for them to be recognized through the awarding of prizes, promotion or further research
funding if those ideas later turn out to be fruitful. Likewise, if rewards are systematically allocated to
incremental and low-risk research, this will tend to attract more researchers to these areas. Furthermore,
researchers are aware of the high premium placed on clear, statistically unambiguous results, and may
self-censor weaker findings either by not publishing or by not making data freely available [46]. This is
in addition to the external restrictions imposed by journals unwillingness to publish work that does not
report a statistically significant positive finding [48].

When individual rewards are oriented solely towards simple criteria of success this tends to suppress
diversity and risk-taking [17,24]. Conversely, there is recent evidence that useful diversity can be en-
couraged by rewarding accurate minority predictions [24]. These are occasions on which an individual
or a model predicts correctly, while the majority of others predict incorrectly. This creates an incentive
to focus on less exploited sources of information, or more niche features of a data set, since the individ-
ual cannot win any reward by simply imitating what the majority of others are already doing. For the
individual, this may make their model less accurate overall. But it makes their model far more useful to
the community, as it contributes additional information not already presented by others.

Similar ideas are already applied in established methods of ensemble creation. For example, the tech-
nique of boosting [35] is a meta-algorithm for assembling ensembles of weak classifiers that act as a
strong classifier in aggregate. A common way to achieve this is to iteratively add weak classifiers to an
ensemble, re-weighting the data set under consideration after each new classifier is added. Examples
within the data that are currently poorly classified are given higher weights, while those which are al-
ready well classified are given lower weights. In this way, additional weak classifiers are ‘incentivized’
to focus on accurately classifying the examples that are currently poorly modeled.

3. Conclusion

In this paper we have sought to highlight the importance of intellectual diversity in scientific research,
especially in relation to data science. We have discussed how the scientific community structure and
the individual incentives inherent in research work are likely to affect this diversity. Given the great
uncertainty about the mechanisms driving information dynamics in science, we have to be cautious in
suggesting what interaction structures can best sustain diversity of methods in data science and their
productive and eclectic integration. However, some guiding principles are clear.

Fostering the right kind of networks for collaboration and information transfer is key. Diversity thrives
in a network structure that allows communities to work in partial isolation. Work carried out in the bor-
ders between communities and at the periphery of the establishment can lead to important innovations.
Therefore enough funding and other forms of incentives need to be allocated to these regions. This can
take the form, for example, of funding currently unfashionable research, promoting smaller workshops
focused on niche areas or supporting early career researchers who create or utilise non-mainstream
methodologies, rather than pushing them to follow the herd.

Detecting existing communities of methods and promoting their integration is an opportunity to im-
prove the power of methods. This can be successfully achieved through formally bringing together dif-
ferent models in ensembles, as discussed previously. However, these final combinations are often the
end stage of a much less formal process where individuals become aware of the existence and utility of
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other methods. Beyond planned combination of methods, connections that sustain interchange between
separate communities, and from the periphery to the core of the research community are necessary.
However, these connections must be well timed, since premature competition with more established
ideas can be counterproductive. Furthermore, the individuals in the core, who accumulate connections
and prestige, are not necessarily the most effective integrators. These individuals are most embedded
in the currently leading methodologies and they have the most to lose when established approaches are
overturned. Thus, increasing connections between scientists working at the periphery, in communities
that are typically distant, could be a promising new way of fostering a diverse set of ideas and integrating
them for innovative science.

All of these ideas concerning scientific networks are intimately connected to the incentive structures
of the scientific community. Most obviously, the smaller communities of researchers focused on less
fashionable research need support to carry out their work. However, we also must not lose sight of the
fact that the allocation of funding and other scientific rewards such as career progression is not simply
a mechanism for enabling researchers with varied interests, but also acts as a driver of those interests.
Most researchers wish for some degree of recognition and reward for their work, and will gravitate to
areas that offer this. By reforming rewards to encourage diversity, for instance by explicitly favoring
minority research ideas, we can avoid wasteful and potentially damaging group think and maintain the
rich variety of data analytic approaches. In the data science and machine learning communities this
may mean setting less importance on how well a new model is able to predict unseen data, and more
importance on how differently it does so compared to existing methods.

Much research remains ahead of us. We need better mapping of the structure of scientific interactions
by aggregating information from the different sources available. Of special interest is measuring and
characterizing communities that capture the time-varying structure of scientific interaction. This will en-
able a faster and more precise identification of the scientists and methods emerging in new communities
and in community boundaries. This in turn would allow us to foster emerging innovations and identify
ripe areas of research which would benefit from contact with the mainstream. However, we must remem-
ber the limits of predicting scientific innovation [8]. Scientific approaches cannot be evaluated entirely on
their immediate or short-term performance. As first postulated by Kuhn [22], paradigm changing ideas
are accepted because of their yet unverified potential and because the social dynamics support change.
Rather than over-engineering systems for ‘picking winners’ among new ideas, we should instead focus
on removing structures that depress diversity, and embrace the power of collective wisdom.
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