
Computability 1 (2012) 45–57
DOI 10.3233/COM-2012-002
IOS Press

45

Tree Representations via Ordinal Machines

Philipp Schlicht
Mathematical Institute, University of Bonn
Endenicher Allee 60, 53115 Bonn, Germany
schlicht@math.uni-bonn.de

Benjamin Seyfferth
Mathematical Institute, University of Bonn
Endenicher Allee 60, 53115 Bonn, Germany
seyfferth@math.uni-bonn.de

Abstract. We study sets of reals computable by ordinal Turing machines with a tape of length the ordinals that are steered by a
standard Turing program. The machines halt at some ordinal time or diverge. We construct tree representations for ordinal semi-
decidable sets of reals from ordinal computations. The aim is to generalize uniformization results to classes of sets which are
semi-decidable by computations with input-dependent bounds on the halting time. We further briefly examine the jump structure
and nondeterminism.

Keywords: ordinal machines, tree representations, uniformization, nondeterministic ordinal computations

1. Introduction
Ordinal computability studies generalized computability theory by means of classical machine models that operate
on ordinals instead of natural numbers. Starting with Joel Hamkins’ and Andy Lewis’ Infinite Time Turing Machines
(ITTM) [3], recent years have seen several of those models which provided alternate approaches and new aspects
for various ideas from logic, set theory and classical areas of generalized computability theory. With ITTMs, the
machine may carry out a transfinite ordinal number of steps while writing 0s and 1s on tapes of length ω. This is
achieved by the addition of a limit rule that governs the behavior of the machine at limit times. The 0s and 1s on
the ω-long tape are interpreted as subsets of ω (reals). It turns out that the sets of reals semi-decidable by these
machines form a subset of ∆1

2. Similar studies have been carried out for infinite time register machines (ITRMs),
whose computable reals are exactly the reals in LωCK

ω
[8].

Another direction of ordinal computability lifts classical computability to study not the subsets of ω, but of an
arbitrary ordinal α, or even the class Ord of all ordinals. In this case, both space and time are set to that ordinal α,
i.e. in the Turing context, we deal with machines that utilize a tape of length α and either stop in less than α many
steps or diverge. The computation is steered by a standard Turing program and a finite number of ordinal parameters
less than α so the machines can talk about ordinals below α in much the same fashion as classical Turing machines
can about natural numbers. This approach unveils strong connections to Gödels universe of constructible sets and
the classical work on α-recursion theory [9].

In the present paper, we aim between these two approaches by analyzing the computable sets of reals of Turing
machines with Ord space and time but without allowing arbitrary ordinal parameters. Omission of the parameters
leads to a model in which all computational information is contained in the real input, the finite Turing program and
the limit rules. We work with ordinal Turing machines (OTMs), the machine model introduced in [7]. Let us briefly
review the basic features, for more detail and background the reader is referred to the original paper.

An OTM uses the binary alphabet on a one-sided infinite tape whose cells are indexed by ordinal numbers. At
any ordinal point in time, the machine head is located on one of these cells and the machine is in one of finitely
many machine states indexed by natural numbers. Since we utilize both Ord space and time, there is no need to use
multiple tapes in our definition; any fixed finite number of tapes can be simulated by interleaving the tapes into one.

2211-3568/12/$27.50 © 2012 – IOS Press and the authors. All rights reserved

46 P. Schlicht and B. Seyfferth / Tree Representations via Ordinal Machines

A typical program instruction has the form (c, s, c′, s′, d) ∈ {0, 1} × ω × {0, 1} × ω × {−1, 1} and is interpreted as
the instruction “If the symbol currently read by the machine’s read-write head is c and the machine is currently in
state s, then overwrite c with the symbol c′, change the machine state to s′, and move the head according to d either
to the left or to the right”. At successor times in the course of the computation, the machine behaves like a standard
Turing machine, with the following exception: If the machine head rests on a cell indexed by a limit ordinal or 0
and a “move left”-instruction is carried out, then the head is set to position 0. The machine accesses the transfinite
by the following rule, known as the lim inf-rule:

At a limit time λ, the machine state is set to the lim inf of the states of previous time, i.e., the least state that
was assumed cofinally often in the previous steps. Similarly, we set the tape content for each cell individually to the
lim inf of the previous cell contents; in other words, a cell contains a 0 at time λ if it contained a 0 cofinally often
before λ, and it contains a 1 at time λ otherwise. We also set the head position to the cell indexed by the lim inf over
the indices of the cells visited at previous steps in which the machine’s state matched the limit stage.

These ordinal machines may be used to describe sets of reals. In order to input a real number into an ordinal
Turing machine, we start the computation with an initial tape content coding the real; so the initial tape contents is a
sequence of the numbers 0 and 1 written in the cells with finite index. Note that our basic definitions do not involve
ordinal parameters as in [7, Definition 2.5], hence our main results refer to pointclasses defined without parameters.
Since elements of ωω can be coded in ω2 via Gödel pairing, we can have elements of ωω as input as well. Thus we
will also refer to elements of ωω as real numbers. Let us denote the OTM computation by a program P on input x as
P(x) and abbreviate the statement “P(x) halts” as P(x) ↓. The notions of input and output of an OTM computations
are defined as in [7]. We will say that a partial function f : X ⇀ Y is OTM computable if there is a program P that
halts on input x ∈ dom f with output f (x) ∈ Y , given a suitable coding of elements of X and Y into OTM tapes.

Definition 1.1. A set of reals A ⊆ ωω is called OTM semi-decidable if there is an ordinal Turing machine that halts
if and only if the initial tape content was an element of A. A is called OTM decidable if both A and ωω \ A are OTM
semi-decidable.

Our motivation is to use ordinal machines to refine uniformization results in descriptive set theory. In [2] it is
shown that many results in descriptive set theory have simple proofs using admissible sets; we go further than [2] in
providing explicit algorithms for the constructions.

In section 2, we shall define an algorithm for searching for infinite branches in the Shoenfield tree. This implies
that the Σ1

2 sets of reals are exactly the OTM semi-decidable sets of reals. As a consequence, we will re-establish
Shoenfield’s absoluteness theorem from the perspective of ordinal computability. The fact that the Σ1

2 sets of reals
are exactly the OTM semi-decidable sets of reals may be alternatively obtained from Σ1

2 absoluteness and the fact
that bounded truth in L is an OTM computable relation (for the latter see [7]).

In section 3, we shall introduce a tree representation for Σ1
2 sets that is based on finite fragments of OTM

computations. We will apply the algorithm in section 2 to this tree representation to obtain our main result:
Uniformization for classes of sets OTM semi-decidable by computations with input-dependent upper bounds on
the halting time.

Section 4 introduces a notion of nondeterministic OTM computations and establishes that nondeterministically
OTM decidable sets are already deterministically so. We shall then show that the jump structure of our machines
depends on set theoretic assumptions.

2. Computing the Shoenfield Tree
In this section, we define an OTM algorithm searching for branches in the Shoenfield tree. To assist in the
computations, let us fix the following OTM computable functions. The Gödel pairing function is a bijection
〈·, ·〉 : Ord× Ord→ Ord. Elements of Baire space can be represented as subsets of ω by coding their graph via
Gödel pairing. The function o : ω → <ωω is a computable bijection providing a computable enumeration of the
basic open sets O(i) of the Baire space ωω, where O(i) denotes the basic open set defined by the sequence o(i).
Let us recall some basic notation commonly used in classical descriptive set theory: If T is a tree on kω × α and
x ∈ k(ωω), let Tx = {u ∈ nα : (x � n, u) ∈ T , n ∈ ω}. If s ∈ k(mω), let Ts = {u ∈ nα : (s � n, u) ∈ T , n < m}.

P. Schlicht and B. Seyfferth / Tree Representations via Ordinal Machines 47

We will make use of the standard tree representation for Π1
1 sets due to Luzin and Sierpiński. Recall that a set

B ⊆ k(ωω) is Π1
1 if there is a tree T on kω × ω such that the relation {(x, i) | o(i) ∈ Tx} is computable and x ∈ B

if and only if Tx is well-founded. Let us call T the Luzin-Sierpiński tree for B. The tree Tx is well-founded if and
only if there is an order-preserving embedding of Tx into some countable ordinal α. Hence, to check whether x ∈ B,
we can look for a suitable infinite branch in the tree S on kω × ω1 of all pairs (s, u) with s ∈ k(nω) and u ∈ nω1
for some n ∈ ω where u codes an order-preserving map fu : Ts ∩ {o(i) | i < length(u)} → ω1. This is the Shoenfield
tree projecting to B.

Let us first define an algorithm searching the Shoenfield tree for a Π1
1 set B ⊆ ωω. Let T be the Luzin-Sierpiński

tree for B. We would like the algorithm to halt on input x ∈ ωω if and only if x ∈ B. Depth-first-search (DFS) is
employed to find an infinite branch in the subtree of S that consists of the pairs (s, u), where s = x � n for some
n ∈ ω. In other words, we will search Sx, which is a tree on ω1. Clearly, membership in S of any given pair (s, u) is
OTM decidable inside every admissible set, as the property o(i) ∈ Ts is computable in the classical sense. Note that
ω may be used as a constant, since the constant function with value ω is OTM computable.

Algorithm 2.1.

set α = 0

MAIN:
set u = ();
set n = 0;
call DFS(u);
increment α;
call MAIN;

DFS(u):
if n = ω then stop;
if (x � n, u) ∈ S then increment n and set u = u a 0 and call DFS(u) and decrement n and set u = u � n;
if u(n) < α increment u(n) and call DFS(u);

The algorithm starts with the empty sequence u = () in stage α = 0. Whenever DFS(u) is called, all possible
extensions of u by a single ordinal β < α are considered. When all β < α have been tried, DFS(u) ends. If a
extension u a β ∈ Sx is found, the recursion will immediately try to extend it further and DFS(u a β) is called.
Whenever the algorithm tries an extension u a β that is not in Sx, this extension is not followed further and u a
(β + 1) is tried next. If the length n of u has reached ω, a branch is found, i.e., u codes an order preserving embedding
of Tx into the ordinal α. If no branch can be found, the recursion eventually breaks down, α is incremented, and the
algorithm starts over with the empty sequence.

Throughout the algorithm, the variable u is stored in an extra tape whose n-th cell contains a 1 if and only if
n = 〈p, q〉 and u(p) ≥ q and 0 otherwise. Therefore, the variable also contains the desired value at limit times.

Lemma 2.2. The algorithm will find the lexicographically least infinite branch through Sx, if there is one.

Proof. It is clear that if the algorithm finds a branch, it will find the lexicographically least. So we have to show that
this branch is eventually found. Let v ∈ ωω1 be the lexicographically least branch of Sx and let γ be the supremum
of the ordinals in v. The tree Sx ∩ <ωγ is countable. Observe that the algorithm visits exactly the nodes of Sx ∩ <ωγ
in the stages α < γ and that every node is visited only once. Since this subtree contains no infinite branches, the
algorithm sets α = γ after countably many steps. Note that in stage γ, the algorithm will first visit the countably
many sequences w ∈ Sx that are lexicographically smaller than v � length(w). No node w that is lexicographically
greater than v � length(w) is visited before the algorithm examines every initial segment of v, so the algorithm
eventually finds the branch in countable time. �

Now consider a Σ1
2 set A ⊆ ωω and a Π1

1 set B ⊆ ωω × ωω such that p(B) = A. We will modify the previous
algorithm to semi-decide the set A. Let T ⊆ (2ω × ω)<ω be the Luzin-Sierpiński tree for B. The Shoenfield tree S

48 P. Schlicht and B. Seyfferth / Tree Representations via Ordinal Machines

for B is the tree of all (s, t, u) where u codes an order-preserving embedding fu : Ts,t → Ord. Since B = p([S]) and
A = p(B), we have x ∈ A if and only if the tree Sx (on ω × ω1) has an infinite branch. In order to find such a branch
for a given x, the algorithm proceeds in stages α ∈ Ord. In each stage α, depth-first-search is employed to find an
infinite branch in the subtree of Sx which consists of the pairs (t, u) where u is a tuple of ordinals below α.

Algorithm 2.3.

set α = 0;

MAIN:
set t = ();
set u = ();
set n = 0;
call DFS(t, u);
increment α;
call MAIN;

DFS(t, u):
if n = ω then stop;
if u(n) = α then set u(n) = 0 and increment t(u);
if t(n) = ω then decrement n and set t = t � n and set u = u � n;
if (x � n, t, u) ∈ S then increment n and set t = t a 0 and set u = u a 0 and call DFS(t, u) and decrement n and set
t = t � n and set u = u � n;
increment u(n) and call DFS(t, u);

Here in every call of DFS(t, u), the algorithm tries to extend t and u simultaneously by all pairs (m,β) with m ∈ ω
and β < α. Again, if (t a m, u a β) ∈ Sx, the sequence is immediately extended further and DFS(t a m, u a β) is
called. Otherwise, (t a m, u a β + 1) is tried next. If for all β < α (t a m, u a β) cannot be extended further, then
(t a m + 1, u a 0) is tried next, and so on.

Lemma 2.4. The algorithm will find the lexicographically least z such that Sx,z has a branch, and the
lexicographically least branch v through Sx,z, if such a real z exists.

Proof. Assume z and v are as required. As in Lemma 2.2, we can see that before stage γ (where γ is the supremum
of the range of the embedding coded by v), only countably many nodes are visited. In stage γ, only countably many
nodes are visited before the branch (z, v) is found. �

It is straightforward to generalize this algorithm to semi-decide Σ1
2 subsets of k(ωω).

Remark 2.5. Notice that the halting time of any halting OTM computation with input a real x is countable: If we
collapse a countable elementary substructure of some Lα[x] which contains the computation as an element, the
collapsing function maps the computation to an initial segment, since OTM computations are absolute between
transitive models of KP (see [7, Lemma 2.6]). So the computation in fact halts at a countable time.

Proposition 2.6. The OTM semi-decidable subsets of k(ωω) are exactly the Σ1
2 sets. The OTM decidable sets are

the ∆1
2 sets.

Proof. The Shoenfield tree and Lemma 2.4 prove that all Σ1
2 sets are OTM semi-decidable. On the other hand, OTM

semi-decidable sets are easily seen to be Σ1
2 definable. The second statement follows. �

If one wants to prove Shoenfield absoluteness without referring to the Shoenfield tree (which is defined in terms
of descriptive set theory), it can be replaced with a tree defined by only computational means. We will describe such
a tree in Remark 3.6. It also can replace the Shoenfield tree in all following proofs.

From the algorithms, we obtain short proofs of several results in classical descriptive set theory (cf. [5, 6]).

P. Schlicht and B. Seyfferth / Tree Representations via Ordinal Machines 49

Corollary 2.7. Suppose M is a transitive model of KP with ω1 ⊆ M. Then Σ1
2 relations are absolute between

M and V.

Proof. Since OTM computations are absolute between transitive models of KP, so is membership in Σ1
2 sets. �

Corollary 2.8. Every Σ1
2 binary relation on the reals has a Σ1

2 uniformization and every Π1
1 binary relation on the

reals has a Π1
1 uniformization.

Proof. Suppose A ⊆ ωω × ωω is a Σ1
2 set. The algorithm semi-deciding (x, y) ∈ A can be modified to search for a

y given x as input. As we added the search for sequences t ∈ <ωω to Algorithm 2.1 to obtain Algorithm 2.3, we
may also add another search for s ∈ <ωω with (s, t, u) ∈ Sx. An argument analogous to Lemmas 2.2 and 2.4 proves
that the lexicographically least branch (y, z, v) through Sx is found. This corresponds to the lexicographically least
branch through Sx,y, therefore (x, y) ∈ A. For any Π1

1 binary relation, a similar modification of Algorithm 2.1 yields
an algorithm semi-deciding a uniformization such that for any pair (x, y) in the uniformizing function, the algorithm
halts before the least (x, y)-admissible ordinal ωx,y

1 above ω. Hence the uniformization is Π1
1 by the Spector-Gandy

theorem. �

This immediately implies:

Corollary 2.9. Every nonempty Σ1
2 set of reals has a Σ1

2 member, i.e. some x such that {x} is a Σ1
2 set, and every

nonempty Π1
1 set of reals has a Π1

1 member.

Remark 2.10. The proof of Corollary 2.8 shows that any function from the reals to the reals with OTM semi-
decidable graph is OTM computable. This is false in general, e.g. when we consider OTM programs P such that
P(x) halts before ωx

1 for all x with P(x) ↓. Let us consider a Π1
1 function f , obtained via Π1

1 uniformization, mapping
a real x to a code for a wellfounded countable model containing x of the theory T , where T is the extension of KP
requiring that there is an admissible ordinal. Although its graph is semi-decidable by such a program, it is easy to
see that f is not OTM computable by a program of this type.

Corollary 2.11. Every Σ1
2 set is the union of ω1 many Borel sets.

Proof. Given a Σ1
2 set A, let P be an OTM which terminates on input x if and only if x ∈ A. Let Aβ denote the set of

reals x such that P(x) terminates before stage β. Then A is the union of the sets Aβ . To see that each Aβ is Borel, let
aβ be a real coding the supremum γβ over the halting times of the algorithm if restricted to at most β stages.1 Then a
real x is an element of Aβ if and only if for some (for every) real c coding a computation along aβ , this computation
halts. This shows that Aβ is ∆1

1 and hence Borel by Suslin’s theorem. �

Corollary 2.12. Every Σ1
2 set has a Σ1

2 norm.

Proof. Let A be a Σ1
2 set and let P be an algorithm semi-deciding A. The desired norm is given by the map φ where

P halts at time φ(x) on input x. Let x ≤ y (x < y) if P(x) halts (strictly) before P(y), or P(x) halts and P(y) does not
halt. Then y ∈ A and x ≤ y imply x ∈ A. Using the algorithm, it is easy to see that the relations ≤ and < are OTM
semi-decidable, hence Σ1

2. We can define a Π1
2 relation ≤′ by x ≤′ y↔ ¬y < x which coincides with ≤ on A and

again y ∈ A and x ≤′ y implies x ∈ A . Hence φ is a Σ1
2 norm on A. �

Note that we cannot obtain a Σ1
2 norm whose initial segments are uniformly Borel. This would imply the

existence of an uncountable sequence of distinct Borel sets of bounded rank, but it is known that this does not
follow from ZF [4, Theorem 4.5].

In order to describe the supremum of the ordinals appearing as the halting time of some OTM program, let δ1
2

denote the supremum of lengths of ∆1
2 wellorders on sets of natural numbers. Let δ1

2(x) denote the supremum of the
length of ∆1

2 wellorders in the parameter x on sets of natural numbers. Note that a real x is ∆1
2 if and only if {x} is

∆1
2 or even just Σ1

2.

1If the algorithm terminates in stage β, the machine halts after at most (ωω · βω) · β many steps.

50 P. Schlicht and B. Seyfferth / Tree Representations via Ordinal Machines

Corollary 2.13. The supremum of halting times of OTMs with input x is δ1
2(x).

Proof. Suppose y codes a ∆1
2 wellorder in the parameter x of type γ. Since y is OTM computable, we consider the

algorithm which searches through the well-order given by y. The algorithm halts at a time at least γ.
Conversely, let us consider the Π1

1 set in the parameter x of pairs (y, z) such that y codes a wellorder w with a
maximal element l and domain the natural numbers and z codes a halting computation along w on input x which
halts at l. This set contains a Π1

1 singleton (y, z) in the parameter x by Corollary 2.8. Then y codes a ∆1
2 wellorder in

the parameter x whose order type is the length of the computation. �

3. Tree Representations from Computations
In this section, we construct a tree representation for an OTM semi-decidable set of reals from finite fragments of
OTM computations. The tape content over an entire halting OTM computation on countable input by a program P
can be viewed as an ω1 × ω1 matrix filled with zeroes and ones. Every row represents the tape content at a given
time. If we add a state and a head position per row, the computation is entirely captured in the resulting diagram:

tape→

time ↓

state head 0 1 2 3 4 5 6 7 8 9 · · · ω · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0 · · ·
1 1 1 1 0 0 0 0 0 0 0 0 0 · · · 0 · · ·
2 0 2 1 0 0 0 0 0 0 0 0 0 · · · 0 · · ·
3 1 3 1 0 1 0 0 0 0 0 0 0 · · · 0 · · ·
4 0 4 1 0 1 0 0 0 0 0 0 0 · · · 0 · · ·
5 1 5 1 0 1 0 0 0 0 0 0 0 · · · 0 · · ·
6 0 6 1 0 1 0 1 0 0 0 0 0 · · · 0 · · ·
7 1 7 1 0 1 0 1 0 0 0 0 0 · · · 0 · · ·
8 0 8 1 0 1 0 1 0 1 0 0 0 · · · 0 · · ·
9 1 9 1 0 1 0 1 0 1 0 0 0 · · · 0 · · ·
...

...
...

...
...

...
...

...
...

...
...

...
...

...
ω 0 ω 1 0 1 0 1 0 1 0 1 0 · · · 0 · · ·
ω + 1 1 ω + 1 1 0 1 0 1 0 1 0 1 0 · · · 1 · · ·

...
...

...
...

...
...

...
...

...
...

...
...

...
...

We will approximate similar diagrams by adding single bits of information. A tape bit (α,β, c,λ) will consist of:

(1) a coordinate (α,β) in the ω1 × ω1 matrix representing time α and tape cell β
(2) the cell content c ∈ {0, 1}
(3) a countable limit ordinal (or zero) λ – this number will be used to control the limit behavior.

Per row we also need a machine bit [α, s, γ,λ] containing the following information:

(1) some time α, corresponding to the row in the matrix
(2) a machine state s of P
(3) a head position γ ∈ ω1
(4) a countable limit ordinal (or zero) λ – this number will be used to control the limit behavior.

We will use the symbol ‘·’ if we do not want to specify a certain component of a tape or machine bit in the
argument at hand (i.e. (0, n, c, ·)). A finite set of tape and machine bits can be coded into a countable ordinal; fix
such a coding. We will now define the tree T , depending on the program P, on ω × ω1: A pair (t, u) ∈ kω × kω1 is
in T if and only if:

P. Schlicht and B. Seyfferth / Tree Representations via Ordinal Machines 51

(1) The set coded by uj contains the bits coded by ui for 0 ≤ i ≤ j < n.
(2) Every ui contains at most one machine bit for each α and at most one tape bit for every pair of α and β.
(3) For every tape bit (0, n, c, ·) of ui with n < k, we have that t = sk, i.e. t serves as the initial segment of the

initial tape contents of the partial computation.
(4) u0 contains a machine bit of the form [0, 0, ·, ·] and a tape bit of the form (0, 0, 0, ·). Also it contains a machine

bit [α, s, γ, ·] plus a tape bit (α, γ, c, ·) where P does not contain an instruction for machine state s and currently
read symbol c, i.e. α is a halting time. So the beginning and the end of the partial computation are fixed.

(5) As soon as we have information about a tape cell at time α, we also know the machine state and head position:
If ui contains a tape bit (α, ·, ·, ·), it also contains a machine bit [α, ·, ·, ·].

(6) We always know the tape cell to be read by the read-write head: If ui contains a machine bit [α, ·, γ, ·], it
contains a tape bit (α, γ, ·, ·).

(7) If ui contains a tape bit (α,β, c, ·), ui+1 contains bits immediately above (only if α is a successor ordinal) and
below along the time axis: Let [α, s, γ, ·] be the corresponding machine bit given by rule 5. If β = γ we require
ui+1 to contain a tape bit (α+ 1, γ, ·, ·) and a machine bit [α+ 1, ·, ·, ·] as required by the program P. If α is a
successor, we also similarly require the tape and machine bit of the form [α− 1, ·, ·, ·] that P implies. Except
for those tape bits, all the other tape cells should not change their content, so we add tape bits (α+ 1,β, c, ·)
if β 6= γ. Again, if α is a successor, we add such tape bits (α− 1,β, c, ·) for all β but the one for which we
already added such a bit according to P.

(8) For tape bits of limit times we have to ensure that the tape contents are inferior limits over earlier times: If λ is
a limit ordinal, and (λ,β, c, ·) is a tape bit of ui. Suppose c = 0. Then there is a tape bit (α,β, 0, ·) with α < λ
in ui+1 and α > α′ for all bits (α′,β, ·, ·) in ui with α′ < λ. If c = 1 then there is a tape bit (α,β, 1,λ) in ui+1
with α < λ and where α is larger than any time of a similar bit in ui. Let α′ be minimal such that ui+1 contains
a tape bit of the form (α′,β, 1,λ). Then every tape bit for tape cell β and time ᾱ between α and λ in ui+1 must
be of the form (ᾱ,β, 1, ·).

(9) We also want the machine state at limit times to be a lim inf: If λ is a limit ordinal and ui contains a machine bit
[λ, s, ·, ·], ui+1 contains a machine bit [α, s, ·,λ] where α < λ and where α is larger than any time of a similar
bit in ui. Let α′ be minimal such that ui+1 contains a machine bit of the form [α′, s, ·,λ]. Then every machine
bit for time ᾱ between α and λ in ui+1 must be of the form [ᾱ, s′, ·, ·] where s′ ≥ s.

(10) Finally, we want to make the head position at limit times a lim inf as in the definition of OTMs. If λ is a
limit ordinal, then for every machine bit [λ, s, γ, ·] of ui one of the following conditions hold: Either there is a
machine bit [α, s, γ,λ] in ui+1 with α < λ where α is larger than any time of a similar bit in ui and for every
machine bit in ui+1 of the form [α′, s, γ′, ·] where α′ is between α and γ we have γ′ ≥ γ. Or, alternatively,
ui+1 does not contain a bit of the form [α, s, γ,λ], then we require that there is a bit [α, s, γ′,λ] in ui+1 that is
not in ui where γ′ < γ and γ′ is greater or equal to any γ′′ < γ in any bit of ui+1.

This means that every entry of the matrix given by ui is extended both up- and downwards along the time axis
in ui+1 while respecting the behavior of the program P and the limit rules involved in the definition of OTMs.

Let us, in the following, write dom(ui) for the set of α such that ui contains a bit of the form (α, ·, ·, ·). Moreover,
let dom(u) =

⋃
i∈ω dom(ui).

Lemma 3.1. T projects to the set of reals semi-decided by P.

Proof. First let x be semi-decidable by P, i.e. P(x) ↓. We will show how to use the halting computation C to find a
branch of Tx. Let (λi)i∈ω be an enumeration of the limit times involved in C. Let [λi, si, γi, ·] be the corresponding
machine bits, and (λi, γi, ci, ·) the corresponding tape bits according to C, for i ∈ ω. We can make sure that ui

contains both [λi, si, γi, ·] and (λi, γi, ci, ·) and tape and machine bits [α, ·, γ, ·], (α, γ, ·, ·) with λm < α < λn for
any m < n < i. Let us close (ui)i<ω under above rules using bits compatible with C. It is clear that for any two
consecutive limits λk and λl, there is some ui which contains bits (α, ·, γ, ·), [α, γ, ·, ·] with λk < α < λl. Since all
bits are chosen from C, the gaps between the λi can be filled and (ui)i<ω forms a branch in Tx.

52 P. Schlicht and B. Seyfferth / Tree Representations via Ordinal Machines

Now let (ui)i∈ω be a branch of Tx. We need to prove that the computation C by P on input x halts. Let (λi)i∈ω
be an enumeration of the limits in dom(u).

Claim. The ordinals in dom(u) are exactly the ordinals λj + n for j, n ∈ ω.

Proof of Claim. By the rules above it is clear that every ordinal of the form λj + n is in dom(u). Suppose that µ
is a limit and µ+ n ∈ dom(ui) where µ 6= λj for all j ∈ ω. Then it follows from the rules that µ ∈ dom(ui+n), a
contradiction. �

The set of bits in (ui)i∈ω induce a partial matrix U of the type pictured above. We call a submatrix according to P,
if the machine state, head position, and tape contents change only as dictated by P.

Claim. For λ ∈ (λi)i∈ω the submatrix of U induced by the rows λ+ n for all n ∈ ω is according to P.

Proof of Claim. Let n ∈ ω and choose i minimal such that ∃mλ+ m ∈ dom(ui). The rules dictate that, for any
m ∈ ω, ui+|n−m| contains unique machine bits for all rows between λ+ m and λ+ n. Those machine bits and also
the tape contents covered by bits present in ui are changed only according to P. Of course, new tape cells might have
been introduced by tape bits in uj, j > i. But for any such given tape cell β, its content is kept constant except for
actions of P. If at any stage a new bit would have been required to be added that conflicts with bits already present
in u, the branch would not have been extended further. �

It remains to show that at limit times, machine state, head positions, and tape contents are inferior limits.

Claim. Let λ be in (λi)i∈ω . Let (αj)j<ν be an increasing enumeration of dom(u) ∩ λ. Then:

(i) For every tape bit (λ,β, c, ·), c is the lim inf over the d in tape bits of the form (αj,β, d, ·) in
⋃

i∈ω ui.
(ii) For every machine bit [λ, s, ·, ·], s is the lim inf over the r in machine bits of the form [αj, r, ·, ·]

in
⋃

i∈ω ui.
(iii) For every machine bit [λ, s, γ, ·], γ is the lim inf over the δ in machine bits of the form [αj, s, δ, ·] in⋃

i∈ω ui, if this lim inf is a head position occurring in
⋃

i∈ω ui, or γ is the least head position occurring
in

⋃
i∈ω ui that is greater than the lim inf .

Proof of Claim.
(i) Choose ui such that (λ,β, c, ·) is in ui. Let ((αk,β, dk, ·))k∈µ be an increasing (in αk) enumeration of the

tape bits in (uj)i<j<ω where αj < λ. First consider c = 0. The rules imply that (dk)k∈µ contains an unbounded
sequence of 0s, hence c is in fact the inferior limit. Now suppose c = 1. In ui+1 a tape bit of the form (α,β, 1,λ)
is added and all dk where αk > α are ≥ 1.

(ii) Choose ui such that [λ, s, ·, ·] is in ui. Let ([αk, sk, ·, ·])k∈µ be an increasing (in αk) enumeration of the machine
bits in (uj)i<j<ω where αj < λ. In ui+1 a machine bit of the form [α, s, ·,λ] is added, where α is greater than
any time of a similar bit in ui+1. Indeed in every uj where j > i such a bit is added, so (sk)k<µ contains s
unboundedly often. Also, the rules imply that every sk ≥ s for for all αk ≥ α.

(iii) Choose ui such that [λ, s, γ, ·] is in ui. Let ([αk, s, γk, ·])k∈µ be an increasing (in αk) enumeration of the machine
bits in (uj)i<j<ω where αj < λ (note that we only consider bits with machine state s).

Case 1. In ui+1 a machine bit of the form [α, s, γ,λ] is added, where α is greater than any time of a similar
bit in ui+1. Indeed in every uj where j > i such a bit is added, so (γk)k<µ contains γ unboundedly often. Also,
the rules imply that every γk ≥ γ for for all αk ≥ α.

Case 2. No such bit is added in any uj, i < j. Then by the rules, (γk)k∈µ is strictly increasing below γ. Note
that by the rules there is no head position in u that is between supk∈µ(γk) and γ. So even if lim infk<µ(γk) < γ,
the partial computation behaves as if γ was indeed the lim inf . �

We can alter rule 1 in the definition of the tree of partial computations to have the nodes ui contain information
about when which bits where added, allowing ui to be decoded into (uj)j<i. Let us assume this extra requirement for
the next lemma. We consider the lexicographical well-order<lex between bits. If d = {di : i ≤ m} and e = {ei : i≤ n}

P. Schlicht and B. Seyfferth / Tree Representations via Ordinal Machines 53

are finite sets of bits with d0 <lex . . . <lex dm and e0 <lex . . . <lex en, we define d <lex e if |d| < |e|, or |d| = |e| and
di <lex ei for the least i with di 6= ei. If u, v both satisfy the properties of the sequence u in the definition of T , we can
decode sequences u0, u1, . . . , um = u and v0, v1, . . . , vn = v from u and v such that for all i < m, ui extends to ui+1
by a set of additional bits, which we call u+

i+1, as stated by the rules for T , and similarly vj for j < n. Let us define
u <tree v by m < n, or m = n and u+

i <lex v+
i for the least i with ui 6= vi.

Lemma 3.2. T has pointwise leftmost branches with respect to <tree, i.e. that for every input x on which the
computation halts, the tree Tx has a branch b so that bn ≤tree cn for every branch c of Tx and for every n.

Proof. Let us consider the computation with input x. Let b0 = {[0, 0, 0, 0], (0, 0, 0, 0), [α, s, γ, 0], (α, γ, c, 0)}, where
α is the halting time, s is the machine state at time α, γ is the head position at time α, and c is the content
of cell γ at time α. Let b+

n+1 be ≤lex-least such that the extension bn+1 of bn by b+
n+1 describes a fragment of

the given computation and is in T . Suppose towards a contradiction that c is a branch in Tx and n is minimal
with cn <tree bn. We can recover the predecessors b0, . . . , bn−1 of bn and c0, . . . , cn−1 of cn. If bi <tree ci for some
i < n, then bn <tree cn, contradicting the choice of n. Hence bi = ci for all i < n by minimality of n. This implies
b+

n ≤lex c+
n by the definition of b and thus bn ≤tree cn, contradicting the assumption. �

Remark 3.3. A stricter variation of T would only allow extensions by a minimal number of bits necessary to fulfill
the conditions, and require the bits to be chosen <lex-minimal in the sense that an extension of a node may not
add <lex-smaller bits which satisfy the same requirement as a given bit. If we consider this variation and change
the definition of T so that ui consists only of the additional bits relative to

⋃
j<i uj, it is not hard to see that T has

pointwise leftmost branches with respect to <lex.

Remark 3.4. The tree T induces a Σ1
2 scale on the set of reals semi-decided by P. Let x ≤n y if both P(x) and P(y)

halt and bx(n) ≤tree by(n), for the leftmost branches bx ∈ Tx and by ∈ Ty, respectively, or P(x) halts and P(y) does
not halt. The relation x <n y has an analogous definition with≤tree replaced by<tree. To prove that T is the tree from
a scale, it is sufficient to show that the relations ≤n and <n induced by T are OTM semi-decidable. We semi-decide
x ≤n y by simulating P on the inputs x and y, as in Corollary 2.12. If P(x) halts before P(y), we halt the program.
If P(x), P(y) halt at the same step, we run an OTM computation to determine whether bx(n) ≤n by(n) and halt the
program, if this is the case. Otherwise we let the program diverge. The argument for <n is similar.

Remark 3.5. As a natural extension of the scale property, we might ask for a tree T projecting to a Σ1
2 universal

set A such that Tx has a unique infinite branch for every x ∈ A. Let us argue that the existence of such a tree is not
provable in ZF. Assuming such a tree T exists, let S = {(s, ((s0, t0), . . . , (sn−1, tn−1))) : n ∈ ω, (s, t) ∈ T}. Then
A = p[T] = p[S] and there is a unique bx ∈ Sx for every x ∈ A, and bx 6= by for all x 6= y. Since for each α < ω1 the
projection of S restricted to ordinals below α is an injective image of a closed set and hence Borel, there is an n such
that the set B of values of bx(n) for x ∈ A is unbounded in ω1. Let us choose the leftmost branch (xα, bα) in S with
bα(n) = α for each α ∈ B. We have defined an uncountable sequence (xα : α ∈ B) of distinct reals. However, there
is no such sequence in the symmetric model for the Levy collapse Col(ω,< ℵω), as was pointed out to the authors
by Daisuke Ikegami.

It is possible to prove Shoenfield absoluteness without referring to tree representations from descriptive set
theory, using only computational means:

Remark 3.6. The tree of partial computations may be used instead of the Shoenfield tree to show that every Σ1
2 set

is OTM semi-decidable. We can see that Σ1
1(x) sets are ordinal semi-decidable via a depth-first search for a witness

for the Σ1
1(x) statement. The length of this search is bounded by the least α such that Lα[x] is a model of KP and

Σ1-separation (see [1, Theorem 9.6]), and this ordinal α is computable on input x by recursively writing codes for
Lβ[x] for increasing β while checking the axioms. Hence Σ1

1 and Π1
1 sets are OTM decidable. To semi-decide a Σ1

2
set A = p[B] with B in Π1

1, we now search on input x for a real y and a branch in the tree of partial computations for
B on input (x, y).

54 P. Schlicht and B. Seyfferth / Tree Representations via Ordinal Machines

4. Applications
In [7, Definition 1] the programs that steer the computations of OTMs are defined with the following condition: If the
machine is currently in state s and the machine’s read-write head currently reads symbol c, then the program contains
at most one command for that situation. This way, when Koepke defines the ordinal computation by a program P,
he can refer to the unique command in a given situation. Instead, for the present section, we shall drop the above
restriction on programs and define ordinal computations in a way that, in successor steps, the lexicographically least
instruction (if there is one that suits the current situation) is chosen to determine the next machine step. This allows
us to define non-deterministic ordinal computations as follows.

Definition 4.1. Given program P and an input (i.e. an initial tape configuration), the non-deterministic ordinal
Turing computation (NOTM computation) by P is defined like the ordinal computation by P ([7, Definition 2]),
except that in successor steps any suitable command may define the machine’s next step.

NOTM computations may be used to define sets of reals.

Definition 4.2. A set of reals A ⊆ ωω is NOTM semi-decidable if there is a program P such that

x ∈ A↔ there is a halting NOTM computation by P on input x

Consider a countable substructure of a transitive set containing such a computation as an element. Then the
image of the computation under the collapsing map is a countable halting NOTM computation by P on input x.

As in the case of classical Turing decidability, given a coding of the “choices” that a NOTM computation makes,
NOTM decidability can be verified deterministically:

Lemma 4.3. There is a program Q such that for every program P and every real input x, there is a real z such that
the OTM computation by Q on inputs P, x, and z halts if and only if some NOTM computation by P on input x halts.

Proof. Let us define z to code two reals z1 and z2. Let z1 code a well-order on ω of order type the (countable) length
of the NOTM computation by P on input x. Let z2 be such that in machine step otpz1

(i), the OTM computation by P
on input x selects the z2(i)-th least command P contains for that situation. Note that both otpz1

and otp−1
z1

are OTM
computable functions. Now the program Q is essentially a universal OTM which selects the z2(i)-th command in P
in the otpz1

(i)-th simulation step. �

This settles the question of whether NOTMs compute more sets of reals than OTMs:

Proposition 4.4. Every NOTM (semi-)decidable set of reals is already OTM (semi-)decidable.

Proof. Let A ⊆ ωω and suppose that Q is the program from Lemma 4.3. Then A is NOTM semi-decidable if and
only if there is a program P so that for every input x there is a real z such that the OTM computation by Q on inputs
P, x, and z halts. Since this is a Σ1

2 statement, A is Σ1
2 and hence OTM semi-decidable. �

Note now that the existence of certificates z established in Lemma 4.3 is absolute. Thus, if there are any
certificates, there is one in L. Using Shoenfield absoluteness, we could search for such a z through L, using the
OTM computable recursive truth predicate from [7]. Instead, let us search for a certificate via the tree of partial
computations:

Lemma 4.5. Given a program P and an element (s, u) of the full tree on ω × ω1, we can OTM decide the question
of whether or not (s, u) is an element of the tree of partial computations according to P.

Proof. We first have the OTM check whether u codes a set of tape and machine bits. If yes, we can easily check the
finitely many conditions (rules 1-10) if u is a partial computation by P on some input that is compatible with s. �

P. Schlicht and B. Seyfferth / Tree Representations via Ordinal Machines 55

With the preceding lemma, we can use a variant of Algorithm 2.3 to find branches in the tree of partial
computations. Since Propositions 1 and 2 hold also for our algorithm operating on the tree of partial computations,
we get:

Proposition 4.6. There is an algorithm such that, if A is NOTM semi-decidable by the program P, then, given x as
an input, the algorithm will find a real z ∈ ωω such that the OTM computation by Q (cf. Lemma 4.3) on inputs P, x,
and z halts if x ∈ A and diverges otherwise.

Proof. If x is in A, there is a z in L such that the OTM computation by Q on inputs P, x, and z halts. An argument
analogous to Propositions 2.2 and 2.4 shows that given a real x, a straighforward adaptation of algorithm 2.3 will
find a branch of the form (x, c) in the tree T of partial computations by P, if any exists. From c the desired z can be
easily decoded. �

The tree representation allows us to generalize the results in Section 2 to sets of reals semi-decided by ordinal
machines with upper bounds on the halting times.

Definition 4.7. Suppose f is a function from the reals to the ordinals. Let us say that a set of reals A is f -semi-
decidable or Γf if there is a OTM program P semi-deciding A such that P halts before time f (x) on input x if it halts
at all.

For our purpose, we are interested in functions of the following form:

Definition 4.8. Suppose f is a function from the reals to the ordinals. We call f multiplicatively closed if f (x) ≤
f (〈x, y〉) for all reals x and y and f (x) as an ordinal is closed under ordinal multiplication. Let us call f admissible if
furthermore f (x) is x-admissible for all reals x.

The classes Γf for admissible f with values strictly above ω range from Π1
1 to Σ1

2. Recall the definition of δ1
2

from the paragraph before Corollary 2.13.

Lemma 4.9. Let f (x) = ωx
1 and g(x) = δ1

2(x). Then Γf is the class of Π1
1 sets and Γg is the class of Σ1

2 sets.

Proof. Suppose that A is f -semi-decidable via P and x is a real. Then x ∈ A if and only if in every countable model
of KP every computation by P with input x halts. Since such models can be coded into reals, A is Π1

1. Suppose A is
Π1

1 and x ∈ A if and only if Tx is wellfounded. Then rank(Tx) < ωx
1 and hence the algorithm searching for a branch

in the Shoenfield tree halts before ωx
1. The statement for Σ1

2 sets follows from Corollary 2.13. �

Corollary 4.10. Suppose f is multiplicatively closed. Then every Γf set has a Γf norm.

Proof. Suppose a set in Γf is semi-decidable by a program P with halting time bounded by f . Let φ(x) be the halting
time of P on input x. Since f is multiplicatively closed, φ is a Γf -norm as in the proof of Corollary 2.12. �

Corollary 4.11. Suppose f is admissible. Then every Γf binary relation has a uniformization with graph in Γf .

Proof. Suppose a relation in Γf is semi-decidable by a program P with halting time bounded by f . We apply the
algorithm for searching through the Shoenfield tree to the tree of partial computations. Let us consider a program
R for the variant of Algorithm 2.3 which on input (x, y) searches for a real z and a branch in the tree of halting
computations of P with input (x, z). We claim that if the program finds such a pair, then this happens before the time
α = f (〈x, z〉). Let us assume towards a contradiction that z and the corresponding computation of P are found at
a time γ ≥ α. If γ = α, we map each n ∈ ω to the time at which z � n appears first in the search, and thus obtain
a ΣLα[x,y]

1 definable cofinal map h : ω → α. If γ > α, there is a t ∈ <ωω which appears first at the time α, and we
obtain a ΣLα[x,y]

1 definable cofinal map h : {s ∈ <ωω : s <lex t} → α by mapping s to the time at which it first appears
in the search. This contradicts the 〈x, z〉-admissibility of α.

At this point, we let R halt if y = z and let R diverge otherwise. For any real x in the domain of the relation,
let (g(x), b(x)) be ≤lex-least such that b(x) is a branch in the tree of partial computations with input (x, g(x)). Then
R(x, g(x)) halts and R(x, z) diverges for all z 6= g(x). Hence the graph of g is in Γf . �

56 P. Schlicht and B. Seyfferth / Tree Representations via Ordinal Machines

Let us now consider ordinal machines with a set of reals as oracle as in [3]. In a query state in a computation,
the program asks whether the sequence on the initial segment of length ω of the tape is an element of the set. Let
us write PA(x) for the OTM computation by the program P with oracle A on input x. Let us also fix a computable
enumeration (Pn | n ∈ ω) of all programs.

Definition 4.12. The halting problem relative to a set of reals A or jump of A is defined as AH = {(n, x) |
PA

n (x) ↓}.

The halting problem 0H is a Σ1
2 set, in fact we have:

Proposition 4.13. The halting problem 0H is Σ1
2 universal. If n ≥ 1 and V = L, then the nth iterated jump 0Hn is

Σ1
n+1 universal.

Proof. Every halting computation with countable input halts at a countable time (see Remark 2.5). Hence (m, x) ∈
0Hn is described by a Σ1

n+1 formula stating the existence of a wellorder w on the natural numbers with largest element
l together with a sequence indexed by w, coding a computation of Pm with input x and oracle 0H(n−1) halting at l.
Let us suppose that A is defined by the formula ∃xϕ(x, y), where ϕ is Π1

n. We consider a program searching through
L for a witness for ϕ as in [7], using the oracle 0H(n−1) to verify ϕ(x) for reals x. This program identifies A as a
section of 0Hn. �

In particular, the Σ1
n+1 sets are exactly the OTM semi-decidable sets in a Σ1

n oracle for n ≥ 1, if V = L. Let us
show that this remains true when κ ≥ ω1 many Cohen reals are added to L by the forcing Add(ω,κ).

Lemma 4.14. Suppose that V = L[G], where G is Add(ω,κ)-generic over L, and κ ≥ ω1. Then 0Hn is Σ1
n+1

universal for all n ≥ 1.

Proof. Suppose that x is a real in L[G]. There are an Add(ω, 1)-generic filter g0 with L[x] = L[g0] and an
Add(ω,κ)-generic filter g1 over L[g0] with L[G] = L[g0][g1]. Let us consider the case n = 2 and suppose ϕ is a
binary Π1

2-formula. Then ∃yϕ(x, y) holds in L[G] if and only if ∃σ ∈ N Add(ω,1) ϕ(y,σ) holds in L[x], where N is
the set of nice Add(ω, 1)-names for reals in L[x]. Since nice names for reals are coded by reals, this is a Σ1

3 statement
in L[x]. We can now express any Σ1

n+1 statement about x in L[G] by a Σ1
n+1 statement in L[x] uniformly in x for all

n ≥ 1 in a similar fashion. This is proved by induction on n. Every such set is a section of 0Hn by the proof of the
previous proposition. �

It is also consistent with ZFC that the iterated jumps have a lower complexity. Note that the assumption that
ωL[x]

1 < ω1 for every real x may be obtained by forcing with the Levy collapse Col(ω,< κ) below an inaccessible
cardinal κ.

Lemma 4.15. Suppose that ωL[x]
1 < ω1 for every real x. Then 0Hn is a ∆1

3 set for all n ≥ 1.

Proof. Let us consider the Π1
2 set A of pairs (x, y) such that y codes Lγ[x] and γ is the least x-admissible ordinal

above ωL[x]
1 . We can compute the truth value of x ∈ 0Hn in Lγ[x] using an algorithm which has access to n distinct

tapes of length ωL[x]
1 + 1. The original program runs on tape n. Whenever the oracle 0Hi is called on tape i for

1 < i ≤ n, the oracle is computed on tape i− 1 by a subroutine of length ωL[x]
1 + 1. The Π1

2 description of A yields
a ∆1

3 description of the set of pairs (x, n) with x ∈ 0Hn. �

The two previous lemmas imply that the complexity of 0Hn cannot be computed in ZFC for n ≥ 2, even if the
size of the continuum is known.

5. Further Questions
A set of reals A is said to be Σ1

2 in a countable ordinal α if there is a Σ1
2 formula ϕ(x, y) such that for all reals y

coding α and all reals x, x ∈ A if and only if ϕ(x, y) holds, i.e. the Σ1
2 definition is independent of the coding of

P. Schlicht and B. Seyfferth / Tree Representations via Ordinal Machines 57

α. We leave open whether the sets of reals with a Σ1
2 definition in an ordinal α, evaluated in VCol(ω,α), are exactly

the OTM semi-decidable sets of reals with parameter α, and whether sets in these classes can be uniformized by
functions with graphs in these classes.

References
[1] J. Barwise. Admissible Sets and Structures: An Approach to Definability Theory. Springer-Verlag, Berlin, 1975.

Perspectives in Mathematical Logic.
[2] G. Hjorth. Vienna notes on effective descriptive set theory and admissible sets. http://www.math.uni-bonn.de/

people/logic/events/young-set-theory-2010/Hjorth.pdf, 2010.
[3] J. D. Hamkins and A. Lewis. Infinite time Turing machines. The Journal of Symbolic Logic, 65(2): 567–604,

2000.
[4] L. Harrington. Analytic determinacy and 0]. The Journal of Symbolic Logic, 43(4):685–693, 1978.
[5] T. Jech. Set Theory: Springer Monographs in Mathematics, The third millennium edition, revised and

expanded. Springer-Verlag, Berlin, 2003.
[6] A. S. Kechris. Classical Descriptive Set Theory, volume 156 of Graduate Texts in Mathematics. Springer-

Verlag, New York, 1995.
[7] P. Koepke. Turing computations on ordinals. The Bulletin of Symbolic Logic, 11:377–397, 2005.
[8] P. Koepke. Ordinal computability. In K. Ambos-Spies, B. Löwe, and W. Merkle, editors, Mathematical Theory

and Computational Practice, volume 5635 of Lecture Notes in Computer Science, pages 280–289. Springer-
Verlag, Berlin, Heidelberg, 2009.

[9] P. Koepke and B. Seyfferth. Ordinal machines and admissible recursion theory, Computation and Logic in the
Real World: CiE 2007. Annals of Pure and Applied Logic, 160(3):310–318, 2009.

