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Abstract.

BACKGROUND: Objective timing of stroke in emergency departments is expected to improve patient stratification. Magnetic
resonance imaging (MRI) relaxations times, T, and T} ,, in abnormal diffusion delineated ischaemic tissue were used as proxies
of stroke time in a rat model.

METHODS: Both ‘non-ischaemic reference’-dependent and -independent estimators were generated. Apparent diffusion coef-
ficient (ADC), T and T}, were sequentially quantified for up to 6 hours of stroke in rats (n = 8) at 4.7T. The ischaemic lesion
was identified as a contiguous collection of voxels with low ADC. T, and Ty, in the ischaemic lesion and in the contralateral
non-ischaemic brain tissue were determined. Differences in mean MRI relaxation times between ischaemic and non-ischaemic
volumes were used to create reference-dependent estimator. For the reference-independent procedure, only the parameters as-
sociated with log-logistic fits to the T, and Ty, distributions within the ADC-delineated lesions were used for the onset time
estimation.

RESULT: The reference-independent estimators from T, and T, data provided stroke onset time with precisions of £32 and
+27 minutes, respectively. The reference-dependent estimators yielded respective precisions of £47 and +54 minutes.
CONCLUSIONS: A ‘non-ischaemic anatomical reference’-independent estimator for stroke onset time from relaxometric
MRI data is shown to yield greater timing precision than previously obtained through reference-dependent procedures.

Keywords: Ischaemic stroke, magnetic resonance imaging, MRI relaxometry, stroke onset time, rat

1. Introduction

The current pharmacological treatments of an ischaemic stroke, including recombinant plasminogen
activator, can only be administered within strict time limits [6]. This is due to two key reasons, as (i)
irreversible damage to brain parenchyma advances with time [26] and (ii) the benefits of pharmacother-
apy are outweighed by adverse effects [4]. Estimates of the number of neural cells and functionality
lost per minute of ischaemia [21] stress the earliest possible administration of thrombolytic and/or anti-

quual contribution.
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ischaemic therapy. Thus, stroke duration is seen as a crucial proxy of both brain state and a predictor
of functional recovery, and consequently will play a pivotal role in the objective determination of onset
time in the clinical settings.

A growing body of evidence indicates magnetic resonance imaging (MRI) protocols provide clinically
acceptable timing of stroke onset [9,20,27,29]. The difference between MRI relaxation times T, and
Ty, in ischaemic brain tissue, as defined by its low apparent diffusion coefficient (ADC), and contra-
lateral non-ischaemic tissue has been observed to increase linearly with time, thus, providing the means
for estimating the onset of ischaemic stroke [9,25]. For example, an application of the T, difference
approach for stroke timing has yielded promising results in patients [27], and a similar approach using
T,-FLAIR as a proxy of stroke duration [29] has been trialled in patients with variable success [3]. Of
these, the latter apparently has an acceptable specificity for clinical exploitation, however, the sensitivity
remains low [29] when compared with the use of quantitative T, relaxation times [27].

The key difficulty in the application of MRI relaxation times in stroke timing clinically is that it is dif-
ficult to know the baseline value at each voxel of the ischaemic lesion before the onset of ischaemia, such
that the deviation from baseline due to ischaemia cannot be calculated with certainty. For this reason,
some authors have sought to select a set of non-ischaemic voxels as a ‘reference’ region, representative
of the lesion prior to the onset of ischaemia [27]. However, this approach is confounded by the inherently
varying MRI relaxation times across the brain [30], such that the ‘reference’ voxels may not faithfully
represent those of the lesion prior to the onset of ischaemia. Given that the distribution of relaxation
times in the human brain is broader than the change caused by ischaemia, the challenge of selecting an
appropriate set of reference voxels, and the consequences of failing to do so, have presented a major
barrier.

Motivated by these factors, we present here a mathematical procedure for ‘non-ischaemic reference’-
independent stroke time estimation. Relaxometric MRI data from permanent focal ischaemia in rats was
used to assess the capability of the mathematical model for timing of stroke onset.

2. Methods
2.1. Animal model

Male Wistar rats (N = 8, approximately 300 g) underwent permanent middle cerebral artery occlusion
(MCAO) to induce focal stroke [17]. Animals were euthanized by intravenous injection of saturated KCI
at the end of the experiment. Animal procedures were conducted according to European Community
Council Directives 86/609/EEC guidelines and approved by the Animal Care and Use Committee of the
University of Eastern Finland.

2.2. Image acquisition

MRI data were acquired according to the methods described by Jokivarsi et al. [9]. The trace of the
diffusion tensor (ADC = 1/3-Trace[D]), T, and T;, MR images from a single 2 mm slice were obtained
at 30-60 min intervals for 6 h after induction of focal brain ischaemia using a horizontal Varian Unity""2
MRI system operating at 4.7T with a volume coil transmit/quadrature half-volume receive set-up (Rapid
Biomedical GmbH, Rimpar, Germany). The ADC was determined from spin echo images with 4 bipolar
gradients along each axis with 4 b-values ranging from 0 to 1,370 s mm? (field of view 2.56 x 2.56 cm?,
64 x 128 data points, echo time 55 ms). Fast spin-echo (FSE) readout data (64 x 128 pixels, echo spacing
10 ms, FOV 2.56 x 2.56 cm?) was used for T, » and T, MRI. The on-resonance spin-lock T, MRI was
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acquired with a continuous wave T, approach. A contrast formation block of AHP-SL-AHP (AHP =
adiabatic half passage, SL = spin-lock) segment was added before readout. Adiabatic spin-lock pulses
ranging from 8 to 64 ms were used [SL amplitude (B; s) 0.4 G, time to repetition (TR) 2.5 s and time to
echo (TE) 6 ms]. T, images were collected using the above FSE readout in front of a preparation block
consisting of adiabatic pulses (AHP-TE/4- AFP-TE/2-AFP-TE/4-reverse; five TEs of 10, 20, 40, 60 and
80 ms). The adiabatic refocussing pulses in a single slice mode was used to minimise contributions of
non-spin echo coherences [23]. Total acquisition time for ADC, T, and T;, was 24 min.

2.3. Image processing

All image post-processing was performed using in-house designed software written in the MATLAB
programming environment (MathWorks, Natick, Massachusetts, USA).

T, and T, weighted MR images were filtered with a squared Hamming window function in the phase
and frequency encoded dimensions of k-space prior to computing parametric maps. T> and T, relaxation
maps were computed from a voxel-wise monoexponential fit, where the data were first transformed to
a logarithmic space then fitted via linear least squares. T, and T;, weighted images were generated by
summing all echo and spin-lock time images, respectively.

Lesion detection was performed on reciprocal ADC images where regions of hyperintensity are sug-
gestive of an ischaemic assault. More formally, we have defined a lesion as the largest connected cluster
of voxels whose values all exceed one median absolute deviation above the whole brain median value
[13]. The output from the detection procedure was a binary mask, where ischaemic voxels were flagged
with the value of one and all others set to zero.

2.4. Statistical models for estimating onset time

At present, the state-of-the-art estimators for time from stroke onset are based upon measuring AT,
or AT;,, i.e. the difference between the mean T, or T;, within the lesion and some user-defined ref-
erence region, for example, the contra-laterally mirrored lesion [20,25,27]. The mean value is typically
estimated via the average of the voxel values within a given region. These averages are then used to train
a linear regression model that is the main tool through which estimation is performed.

One of the primary disadvantages associated with these estimators is the arbitrary choice of the refer-
ence region, which if not chosen appropriately, in terms of the anatomical and/or tissue type match with
respect to the ischaemic lesion, can dramatically affect their reliability. Furthermore, their robustness is
governed by the ability to accurately estimate the mean T, or T, values, which is challenging given that
the number of ischaemic voxels can vary considerably between strokes and with time in stroked tissue.
Also, voxel values can exhibit heavy-tailed empirical distributions for which the mean value is not well
defined, making the average estimator potentially unreliable.

Motivated by the disadvantages mentioned above, we have explored the idea of designing robust
reference-independent estimators that exploit information from the full empirical distribution of the T,
or T}, data in ischaemic voxels only. For improved robustness with large as well as small regions, we
underpin the linear regression estimators with a parametric statistical model of the empirical distribution
that provides a low-dimensional structure with favourable regularity properties.

2.5. Distributional models for MR parameters

Appropriate parametric statistical models for T, and T;, voxel values within ischaemic lesions were
identified by using the MATLAB statistical distribution fitting toolbox. In particular, histograms of T,
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and T, within the lesion were computed, then area-normalised to represent probability densities. In-
dividual (specified below) distributions were fitted to the data by maximum likelihood estimation and
compared with their empirical distributions. The model that on average scored the best Akaike informa-
tion criteria (AIC) value was then selected to design the regression method.

2.6. Training and testing of estimators

As with the state-of-the-art, our estimators were chosen to take the form of a multiple linear regres-
sion. Here, it is important to note that the assumption of linearity applies only to the coefficients of the
estimators and does not necessarily imply that MR parameters vary linearly in time.

To mitigate the possibility of over-fitting we used a leave-one-out cross-validation approach to split
the data used to train and to test the estimators. Precisely, our dataset of 8 rats (total of 45 sets of
relaxometric data) was iteratively separated into a training set consisting of the scans of 7 rats, and a
testing set consisting of the scans of the remaining rat. For each T, scan in the training set, the parameters
associated with the statistical model of ischaemic T, were estimated by maximum likelihood and then
used collectively to train a T, polynomial regression estimator (this procedure was iterated over all rats,
yielding a total of 8 T, and 8 T, reference-independent estimators). A similar approach was used for
signal intensities in T, and T;, weighted images. Finally, the performance of the regression estimates
was assessed by measuring the root mean-squared-error (RMSE) with respect to the true onset times.

To serve as a comparison, we also computed linear regressions based on AT, and AT, predictors,
where the reference region was defined as the contra-lateral mirrored lesion as described previously [25].

3. Results
3.1. Lesion detection

ADC images, including lesion mask overlays, from a typical rat brain acquired over multiple time-
points are given in Figure 1(A). As indicated in the images, the lesion masks form a single contiguous
region and their volumes generally increase from time of stroke onset reaching 38 + 8% of the MRI slice
area by 6 hours. ADC values of voxels in the lesion were 49.7 + 13.4% from those determined in the
contralateral non-ischaemic brain parenchyma confirming presence of severe ischaemia [7].

3.2. Statistical models for MR parameters

Histograms are given for T, (Figure 1(D)) and T, (Figure 1(E)) within the identified lesions for a typ-
ical rat (see Figure 1(A) for ADC, 1(B) for T, and 1(C) for T;, images). The histograms show that there
was a right-shift in both T, and T, distributions within the lesion as time from stroke onset increased. It
is precisely this information that is exploited in the current AT, and AT, estimators [9]. In addition to
the value shift, the histograms also reveal that the general spread of the T, and T, distributions increases
with time from stroke onset. A similar investigation focusing now on the contra-lateral mirror reference
was also performed and found that both T, and T, distributions remain approximately stationary across
time-points (not shown).

As mentioned earlier, in order to identify a low-dimensional representation of the empirical distribu-
tion, several statistical distributions were fitted to the data. Namely, the normal, lognormal, log-logistic
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Fig. 1. (A) ADC images (green) with lesion masks (pink), (B) T2 and (C) T, maps from a typical rat across multiple time
points (separated by approximately 1-hour intervals). (D) Distribution of T, within ADC lesion and (E) distribution of Ty,
within ADC lesion across multiple time-points.

[5] and scaled Burr distributions [1]. Of these models the 2-parameter log-logistic distribution, i.e.

fx | 0)_llﬂ Wherez—w
Ho) =% [1+exp(z2)]*’ N o ’

was found to be the most suitable for both T, and T, values within the lesion, as determined by obtain-
ing, on average, the best AIC value (Figure 1(D) and (E) display the distribution fits in red). Here, the
log-logistic parameters (u, o) respectively denote the log-median value and distributional shape for a
given MR parameter within the lesion.

The log-logistic model was also found to be suitable for describing the distributions of T, and T;,
signal intensities within the lesion. However, very little difference was observed between time-points,
i.e. little to no drift or spread (Supplementary Information, Figure S1).
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Fig. 2. Estimated time vs. actual time of onset for several regression estimators. (A) Reference-dependent ATy, (B) Refer-
ence-dependent AT, (C) Reference-independent 77, multiple linear regression. (D) Reference-independent 7> multiple poly-
nomial regression. 95% prediction intervals are given by green curves. Zero residual error is indicated by red curves. Coloured
dots correspond to estimates from individual rats. Both axes are in minutes.

3.3. Regression estimators

The anatomical reference-independent regression estimators were designed using (functions of) the
parameters associated with the log-logistic fits, i.e. the u and o parameters. For the T ,-based estimator,
a 3-parameter regression (including one constant term) was found to be most accurate:

fesimared = 10° - [(1.3249 £ 0.1668) 117, + (2.6680 =+ 0.9232)0,, — (5.8129 £ 0.7211)]

(R? = 0.9229, p < 0.001), with an associated RMSE of £27 mins.
For the T,-based estimator, a 7-parameter estimator based on a third-order polynomial was chosen:

festimated = 10° - [—(1.4260 + 1.6028) 01, — (0.0426 + 0.0455)o0r,
+(0.3475 £ 0.3929) 2+ (1.0624 £ 1.0877)07,
— (0.0282 £ 0.0321)3, — (7.9923 £ 8.3537)0, + (1.9490 + 2.1789)]

(R? = 0.8918, p « 0.001), with an associated RMSE of £32 mins.

Figures 2(C) and (D) show the fits for the T, and T}, estimators, respectively, where 95% prediction
intervals are given by green curves. These results were notably more accurate than those associated with
the 2-parameter regression based on AT, (Figure 2(A), p < 0.001, pairwise Bartlett test) and AT,
(Figure 2(B), p = 0.01, pairwise Bartlett test), which only achieved RMSEs of £54 mins and 47 mins
respectively. It is worth noting that uncertainties here are larger than previously reported [25]. This is
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primarily due to different uncertainty quantification approaches. Rogers et al. [25] used an analytical
uncertainty propagation method that is liberal to approximate precision at a given time point, whereas
here we assess precision empirically by cross-validation and report RMSE across all time points. An
interval-wise breakdown of the results for all estimators is given in Table 1.

In addition to measuring the precision of reference-dependent estimators, we investigated their ro-
bustness through consideration of randomly-shifted reference regions (Supplementary Information, Fig-
ure S2 and S3). The results showed that overall precision is sensitive to reference placement, with RM-
SEs often larger than those reported for the mirrored contra-lateral reference.

Estimators based on T, and T, signal intensities, averaged over their respective echo and spin-lock
times, were also considered. However, they performed poorly because the statistical distributions lacked
any significant time-dependence (Supplementary Information, Figure S1). A reference-independent esti-
mator that combined both T, and T, log-logistic parameters was also constructed. However, our results
indicated that these were highly correlated, and therefore no significant improvement in precision was
observed.

4. Discussion

The current study has established a stroke onset timing procedure using quantitative relaxometric MRI
data only from the ischaemic lesion delineated by low ADC. The use of low ADC for selection of tissue
for relaxometric data assures that only ischaemic volumes [7] are used for timing. Low ADC eliminates
non-ischaemic regions from timing analyses, because reperfusion in the early hours of ischaemia nor-
malises ADC [11,16]. It should be noted that quantitative ADC alone provides no time information [15],
neither does the rate at which ADC lesion expands [13] in the early hours of ischaemia in permanent
MCAQO. This ‘anatomical reference-independent’ procedure performs better in timing than the one using
MRI data from a non-ischaemic reference region. As the quantitative T, (which is commonly available
in standard clinical MRI systems) provides excellent precision for stroke time estimates in the preclinical
model, the presented procedure is thought to bear significant potential for stroke patient stratification.

The current 'H MRI-based timing estimation procedures rely on the differences in average values of
distributions of relaxation times between ischaemic tissue and non-ischaemic reference, i.e. AT, and
ATi,. A substantial body of evidence shows that the time dependence of both AT, and AT, in the rat
brain can be adequately described by a linear function [9,20,25] and AT, similarly in human brain [27].
The AT,-based estimators have been reported to classify stroke onset within 3 hours with a precision of
0.850 in rats [19] and 0.757 in humans [27] indicative of clinical utility. However, the precision of timing
by these reference-dependent estimators strictly depends on the selection of an anatomically identical
non-ischaemic reference region for the ischaemic lesion. This is a non-trivial task even for the simple
rat brain (see Supplementary Information Figure S3). In humans, reference selection will become even
more problematic due to inherent relaxation time differences in GM and WM [30], variation of T, in
WM due to microstructure [14], as well as the lack of ‘perfect anatomical symmetry’ of hemispheres
to choose a suitable ‘mirror reference’ over the midline. Furthermore, stroke lesions in humans vary in
location and size.

The stroke time estimators introduced in this paper use only the T, or T, data from low ADC-defined
ischaemic brain tissue. Our data indicate that information embedded within the distributions of T, and
T, can be exploited to build multiple linear regression estimators independent of MRI data from a non-
ischaemic reference, provided relaxation data from multiple time points are available. In other words,
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Table 1

Interval-wise breakdown of estimated vs. actual onset times. Values are displayed as mean £ SD. 95% confidence intervals for
estimated means were computed from mean =+ 9 95 y - SEM, where SEM is standard error of mean, and #( 95, 5 is the Student
t-value for the 95% interval and N degrees of freedom

T, reference-independent (RMSE = +32 mins)

Timing (mins) Parameters Estimation (mins)
Interval Mean time ur, (log ms) o, (X 10%) testimated 95% CI
000-060 (N =17) 413+ 84 3.99 £ 0.02 3.37+£0.54 50.3+14.5 37-63
060-120 (N = 8) 97.0+16.4 4.05£0.02 3.54 £0.70 99.7+22.4 81-118
120-180 (N =9) 157.8+16.8 4.09 +0.03 4.02 £0.67 166.9 +31.6 143-191
180-240 (N =17) 218.44+11.0 4.12+£0.02 4.56 +0.86 225.54+30.0 199-252
240-300 (N = 8) 271.9+15.6 4.14+£0.03 4.83+0.94 264.7+39.4 233-297
300-360 (N = 6) 333.8+ 124 4.17£0.03 5.00 £0.78 307.4+25.6 282-333
T, reference-independent (RMSE = 427 mins)
Timing (mins) Parameters Estimation (mins)
Interval Mean time wry, (log ms) ory, (X 10%) Testimated 95% CI
000-060 (N = 8) 41.94+104 4.35+0.02 3.31 +0.49 37.5+£22.6 23-60
060-120 (N = 8) 102.4+11.6 4.40 +0.01 3.68 £0.77 115.3+£22.1 84-120
120-180 (N = 8) 160.4+11.2 4.43 £0.02 4.11+£0.77 172.2+24.2 141-180
180-240 (N = 8) 219.4+129 4.45+£0.02 4.934+0.89 218.0+£23.5 200-239
240-300 (N =17) 274.1+11.5 4.50+0.03 493 +0.87 275.2+28.6 249-300
300-360 (N = 6) 331.8+12.4 4.51+£0.02 5.35+0.56 305.3+16.6 315-348
AT reference-dependent (RMSE = 447 mins)
Timing (mins) Parameters Estimation (mins)
Interval Mean time AT, (ms) testimated 95% CI
000-060 (N =17) 41.3+8.4 —292+1.71 59.0+41.6 22-96
060-120 (N = 8) 97.0+16.4 —-0.02£1.49 129.6 +£36.3 100-159
120-180 (N =9) 157.8 +16.8 1.77+1.97 173.1+47.9 137-209
180-240 (N =17) 218.4+11.0 3.16+£2.01 206.8 +48.9 163-251
240-300 (N = 8) 271.9+15.6 5.14+£2.07 255.0+50.3 214-296
300-360 (N = 6) 333.8+12.4 6.29+1.36 282.8+33.0 250-316
AT, reference-dependent (RMSE = £54 mins)
Timing (mins) Parameters Estimation (mins)
Interval Mean time ATy, (ms) testimated 95% CI
000-060 (N = 8) 419+104 2.17+1.28 74.3+£23.9 55-94
060-120 (N = 8) 102.4+11.6 5.38+1.79 134.14+33.3 107-161
120-180 (N = 8) 160.4+11.2 7.42+£2.96 172.1 £55.1 127-217
180-240 (N = 8) 219.44+129 9.21+£2.76 205.4+51.3 164-247
240-300 (N =17) 274.1+11.5 11.66 £3.25 251.0+60.4 197-305
300-360 (N = 6) 331.8+12.4 13.03+1.63 276.4+30.3 246-307

the time dependency of the parameters in regression estimators needs to be determined similar to the
AT, and ATy, time dependencies used in the recent estimators [9,27]. The pathophysiological basis
underpinning the estimators is likely to be that the volume of brain tissue with abnormally elevated
MRI relaxation times increases linearly with time [20]. This is due to the effects of cytotoxic oedema
on both T;, [10] and T, relaxation times with macromolecular breakdown [13] followed by vasogenic
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oedema on hydrodynamics within ischaemic tissue [28]. In addition to cytotoxic and vasogenic oedema,
altered chemical exchange processes may influence T}, relaxation in ischaemia [8]. The spread of effects
of ischaemia in the brain tissue in the early hours of the insult has been proposed to be the critical
factor underpinning the time-dependent increase in T, relaxation time due to cytotoxic oedema [13]. We
speculate that this spread is captured by the log-logistic fits of the relaxation time distributions to provide
accurate stroke time estimation.

Regarding the utility of the current time estimator in stroke imaging, several points should be consid-
ered. Firstly, while both T;, and T, MRI are in use in general radiology, T, is not part of brain MRI
protocol in clinics due to specific absorption rate of energy concerns. Therefore, the estimator based on
T, data may bear clinical potentials. Secondly, it should be stressed that the time estimators are generated
from the quantitative MRI data obtained during early hours of permanent ischaemia. Thus, the current
estimators provide timing only from the tissue where residual perfusion is below the ischaemia thresh-
old [2]. A previous study showed that reperfusion of ischaemic tissue, but not of that with compromised
blood flow and normal ADC, leads to prolongation of tissue T, [12]. Against this, reperfusion of previ-
ously ischaemic tissue during MRI data acquisition would invalidate the established AT, vs stroke onset
time relationships [9,20] and potentially also the T, relaxation time distribution characteristics used by
the current log-logistic-based estimator. In clinical settings reperfusion, either spontaneous or pharma-
cologically induced, is most likely to take place when the clot is small and/or the occlusions involves
small vessels; instead, reperfusion of proximal branches of cerebral arteries is uncommon [22]. Thirdly,
in the current data set the number of voxels in ADC lesions varied from 180 to 1,330. A human stroke
lesion of 5 cm? in volume would have > 1,600 voxels in a T, maps acquired at routine spatial resolution
of 3 mm?, i.e. even small strokes would have enough T, data for generation of reference-independent
estimators. Finally, a matter to be considered is that the ischaemic rat tissue is almost entirely gray matter
and our time estimator apparently holds only for this tissue type.

5. Conclusions

The current study indicates that relaxometric MRI data may provide stroke time estimators without
the need for non-ischaemic reference data. Critical issues in the clinical implementation of such pro-
tocols include both scan time and data post-processing. A recent study demonstrated a comprehensive
stroke MRI protocol can be acquired in six minutes [24]. Investigational MRI scan procedures, such as
magnetic resonance finger printing [18], have been shown to further shorten scan times, thus paving the
way for expedited clinical brain examination. As far as the post-processing is concerned, the current
standard computers are capable of analysing MRI data sets in seconds. Overall, quantitative MRI-based
stroke timing taking minutes is likely to become reality for clinical exploitation in the near future.

Supplementary data

Supplementary Information is available at: http://dx.doi.org/10.3233/BSI-160155.
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