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Abstract. Sino-atrial node cells (SANCs) play a significant role in rhythmic firing. To investigate their role in arrhythmia 
and interactions with the atrium, computer simulations based on cellular dynamic mathematical models are generally used. 
However, the large-scale computation usually makes research difficult, given the limited computational power of Central 
Processing Units (CPUs). In this paper, an accelerating approach with Graphic Processing Units (GPUs) is proposed in a 
simulation consisting of the SAN tissue and the adjoining atrium. By using the operator splitting method, the computational 
task was made parallel. Three parallelization strategies were then put forward. The strategy with the shortest running time 
was further optimized by considering block size, data transfer and partition. The results showed that for a simulation with 500 
SANCs and 30 atrial cells, the execution time taken by the non-optimized program decreased 62% with respect to a serial 
program running on CPU. The execution time decreased by 80% after the program was optimized. The larger the tissue was, 
the more significant the acceleration became. The results demonstrated the effectiveness of the proposed GPU-accelerating 
methods and their promising applications in more complicated biological simulations. 
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1. Introduction 

Sino-atrial node cells (SANCs) are the primary pacemakers of the heart. Investigations of the 
interactions between sino-atrial node (SAN) and the atrium can greatly help us reveal the mechanisms 
of SAN automaticity and arrhythmia [1]. As an important quantitative method, simulation of the 
cellular mathematical model has been widely used for clinical and research purposes [2, 3]. However, 
due to the complex and dynamic natures of cardiac tissue [4], excessive computational loads have to 
be implemented given the limited computational power of Central Processing Units (CPUs).  

Recently, the utilization of Graphic Processing Units (GPUs) instead of CPUs in cardiac simulations 
is being paid more and more attention [5, 6]. Each GPU may contain hundreds of stream 
multiprocessors. The inherent data-parallel nature of the cardiac computer simulation makes GPU an 
ideal platform. In the present study, the GPU system was nVIDIA GeForce GTX550Ti. CUDA (the 
Compute Unified Device Architecture) was used as the developing platform. In CUDA [6], the GPU is 
viewed as a computing device suitable for parallel data applications. It has its own device random 
access memory and may run a very high number of threads in parallel. Threads are grouped in blocks 
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and many blocks may run in a grid of blocks. Threads of the same block share data through the fast 
shared on-chip memory and can be synchronized through synchronization points.  

GPU computation generally uses a CPU and GPU together in a heterogeneous co-processing 
computing model. The sequential part of the application runs on the CPU while the computationally 
intensive part is accelerated by GPU [7]. In order to enhance the performance of GPUs, a number of 
aspects have to be taken into account by a researcher, including the size of the thread block, the 
communication between the CPU host and the GPU device, as well as the data partition across various 
kinds of memories on GPUs. Although GPUs have been evaluated in a simple ventricular model with 
8 state variables [8], detailed information about parallelization and optimization methods was not 
mentioned in the report. In addition, the GPU’s application in the modern and much more complicated 
cardiac models is still worth discussing, since a different number of equations and state variables 
imply different arrangements of memories, registers and threads on GPU. Parallelization and 
optimization strategies usually need to be reconsidered in order to maximize performance.  

In this paper, based on two types of single cellular models, SAN and atrium, an inhomogeneous 
one-dimensional sino-atrium tissue model was developed. The strategies to accelerate simulation with 
GPUs were proposed and evaluated. The effectiveness of GPUs in simulations with two different 
types of cellular models was demonstrated to show their promising future in more complicated 
simulations. The technique can also be applied to other biological phenomena modelled as wave 
propagation in an excitable medium. 

2. Methods 

2.1.  Algorithm and parallelization strategies 

An inhomogeneous fiber was developed by coupling SANCs [9] to atrial cells [10] through gap 
junctions. A monodomain system in Eq. (1) was used to describe the electrical behaviors of the tissue, 
in which electrical excitation was considered to propagate along an idealized cable [11]: 
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where V is the membrane potential, σ denotes the conductivity of the gap junction, Cm is the mem-
brane capacitance, t is the time, Iion represents the total ionic current and Am is the surface-to-volume 
ratio. 

Generally, the current leaving a cardiac surface is considered to be zero in terms of the Neumann 
boundary condition; therefore, at the two ends of the tissue, no-flux boundary conditions were used: 

 
                                        00 =∇=∇ +== lalsxx VV                                                                      (2) 

 

where x is the spatial coordinate in the string, and ls and la represent the length of the SAN and the 
atrium, respectively. 

Since the conductivity of the gap junction is discontinuous at the SAN-atrial border, a conservation 
of the flux condition given in Eq. (3) was imposed at x= ls: 
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where σs and σa represent conductivities in the region of the SAN and atrium, respectively. 

To address regional differences between central and peripheral SANCs, the conductances of the gap 
junction, capacitance and the size of SANCs were changed via an exponential form [12]. The operator 
splitting technique [13] was used to split Eq. (1) into Eq. (4) and Eq. (5), in which the ordinary 
differential equation (ODE) describing the behavior of each single cell was solved separately from the 
partial differential equation (PDE) describing the electrical diffusion along the fiber. As shown in Eq. 
(4), Iion was the function of V and gating variable Y. Since Y indicated the open probability of a 
specified channel and was also described by an ODE, a set of ODEs was required to solve for the 
intermediate value of V. In simulations, the Euler method was used to solve these ODEs. After 
computation, V was used as an initial value for solving coupled PDE.  
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The operator splitting method allowed us to calculate the ODEs separately from the PDE. For each 

time step, the first task was to compute the ODEs of each cell on the tissue one after another. After 
getting the membrane voltage of each single cell, the electrical diffusion was computed. Obviously, 
with more cells, the bottleneck of the computation was mainly in the ODE part. Therefore, in parallel 
strategy 1, the ODEs were assigned to GPU for implementation, in which each thread was responsible 
for a single cell, so different threads could be launched at the same time for different cell calculations. 
The computation of Eq. (4) was partitioned into segments, and a kernel for each segment was created. 
In strategy 1, five kernels were designed and launched one after another to initialize the variables and 
parameters of the SANCs and atrial cells in Kernel 1 and Kernel 2, calculate gating variables, ionic 
currents and transmembrane potentials of SANCs in Kernel 3 and Kernel 4, respectively. The 
computation of the atrial cells was carried out in Kernel 5. 

In parallel strategy 2, the PDE solver and boundary conditions (2) and (3) were moved into GPU to 
compute, creating a new kernel for the computation of the electrical diffusion. In addition, Kernel 3 
and 4 in strategy 1 were combined to compute the tissue of SANC. The initializations of the SANC 
and atrial variables were also merged in strategy 2 and implemented by one kernel. Therefore, in 
strategy 2, a total of 4 kernels were designed and launched one after another to initialize the variables 
and parameters of the SANCs and atrial cells in Kernel 1, calculate gating variables, ionic currents and 
transmembrane potentials of the SANCs and atrial cells in Kernel 2 and Kernel 3, respectively. The 
computation of the electrical diffusion was carried out in Kernel 4. 

In strategy 3, the number of kernels was further decreased by combining Kernels 2 to 4 in strategy 2. 
In other words, except for variable initializations, all the other executions were carried out in one large 
kernel. During calculations, through the cudaMalloc function, the host first allocated memory for the 
parameters used on GPU. Under the control of instructions, the host then copied the values from the 
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main memory to the global memory on GPU. After that, Kernel 1 was launched to initialize the SAN 
and atrial cell variables. Then, a cycle was executed on GPU by launching the second kernel, in which 
gating variables, ionic currents, transmembrane potentials and electrical diffusion were computed. 
Calculation results were copied back to the main memory for storage and visualization. The cycle 
continued until the end of the simulation. Finally, the memory space was released. 

2.2. Program optimization 

The strategy with the shortest execution time was selected as the starting point for optimization. In 
order to improve its performance, the entire CUDA program was first analyzed through the NVIDIA 
Visual Profiler, after being compiled with VS2010. The GPU system and CUDA in this study had a 
computing capability 2.0; therefore, each multiprocessor could accommodate up to 1536 threads, 8 
blocks and 48 warps. In order to make the workload of the threads occupy the entire multiprocessor, 
the number of threads should be greater than Threads Per Multiprocessor divided by Thread Block, 
that is, 1536/8 = 192. Each thread required 32 registers, and each multiprocessor had 32768 registers; 
therefore, each multiprocessor could have 1024 threads. In the present simulation, two blocks with 512 
threads in each block were used.  

Additionally, a large amount of time would be consumed if the data were copied to the memory on 
GPU and then back to the main memory during each operation. To reduce the data exchange, after a 
large amount of calculations on GPU, a data transfer between the host and the device was launched. 
This allowed more data to be copied back to the main memory during one exchange operation. Due to 
the limited storage capability of the shared memory on GPU, there was an up limit for data storage. In 
the present study, a data exchange was arranged for every 500 time step computation on GPU. 

The data partition across various memories should also be considered in order to reduce the memory 
access time. In each strategy, Kernel 1 was used to initialize the variables of the single cell, so these 
initial data had to be placed in the global memory in order to be accessed by all threads. Since the 
read/write speed of the global memory was slow, shared memory and registers were also utilized to 
store frequently used data to reduce the access time. 

3. Results and discussion 

3.1. The efficacy of parallelization 

The NVIDIA Visual Profiler was used to measure the running time of each designed strategy to test 
its efficacy. Figure 1(a) shows a 1.6s simulation of real world cardiac time on tissue made up of 200 
SANCs and 30 atrial cells. The result illustrated that strategy 3 was the fastest, and strategy 1 was the 
slowest. Compared with strategy 2, the PDE solver in strategy 1 was calculated on CPU. This made 
the parallelization degree low, while the data transfer between the host and the device frequent, thus 
resulting in a long running time. For strategy 3, due to combination of three kernels in strategy 2, the 
calls among multiple kernels and the access to memories were reduced, making the whole execution 
time short. The result suggested that to improve efficiency, the program must be well-organized to 
maximize the parallelization degree and reduce the calls among different tasks.  

Figure 1(b) displays the time taken at different stages in strategy 3. As noticed, the computation 
time of gating variables, ionic currents, voltages and electrical diffusion counted for 96.3% of the total 
computation time, while the execution time on CPU took 2.1% of the time. The variable initialization  
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presence of the atrium, the electrical wave propagated in the reverse direction (Figure 4(b)). A shift of 
the leading pacemaker site from the center to the periphery occurred. Additionally, the pacemaker rate 
became rapid compared to Figure 4(a). The characteristics of the action potential and the significant 
effect of atrial load on the activity of SANCs were all in good agreement with other reports [12, 14], 
thus demonstrating the correctness of our computation with GPU. 

4. Conclusions 

Detailed accelerating strategies for sino-atrium simulations on a GPU platform were discussed and 
presented in this paper. It was suggested that the iterative and inherent data-parallel natures of the 
tissue model make NVIDIA GPU an ideal architecture for computation, even if different cellular types 
were involved in the simulation. By evenly distributing the workload and balancing the data 
partitioning among threads to maximize the parallel degree while optimizing access to memory and 
reducing the frequency of data exchange, an optimal performance from GPU was achieved. The 
results indicated the correctness and effectiveness of the proposed strategies.  

Acceleration of tissue simulation including both the SAN and the atrium with GPU was first 
examined in this paper. Although the developed tissue model was simple, it proved that with more 
cells, the accelerating efficiency from GPU would become more significant. Therefore, the proposed 
parallelization and optimization strategies provide a promising approach for more complicated 
biological simulations.   
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