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Abstract. Tanshinone IIA (Tan IIA) is one of the major fat-soluble ingredients in Salvia miltiorrhiza which has been widely 
used for various inflammatory conditions associated with cardiovascular and cerebrovascular disorders. However, the 
underlying anti-inflammatory mechanisms of Tan IIA are incompletely understood. The purpose of this study was to 
illuminate the anti-inflammatory mechanism of Tan IIA based on the protein interaction network (PIN) analysis. A PIN of 
Tan IIA was constructed with 281 nodes and 814 interactions and analyzed by gene ontology (GO) enrichment analysis based 
on Markov Cluster algorithm (MCL). Three modules were associated with anti-inflammatory actions. The most interesting 
finding of this study was that the anti-inflammatory effect of Tan IIA may be partly attributable to the mediate activation of 
TRAF2, TRAF3 and TRAF6, to inhibit the toll-like receptor signaling pathway and combine with AGER. Therefore, the 
module-based network analysis approach will be a new method for better understanding the anti-inflammatory mechanism of 
Tan IIA. 
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1. Introduction 

Radix Salvia Miltiorrhiza (Danshen) is widely used in traditional Chinese medicine for the 

treatment of cardiovascular and cerebrovascular diseases, such as angina pectoris, hyperlipidemia, and 

acute ischemic stroke [1–3]. Tan IIA is one of the main fat-soluble ingredients of Salvia miltiorrhiza 

which exerts anti-inflammatory actions in many experimental disease models [4,5], so Tan IIA has 

been widely used for various inflammatory conditions associated with cardiovascular and 

cerebrovascular disorders [6]. Tan IIA could reduce LPS-induced pro-inflammatory cytokine (IL-1β, 

IL-6, and TNF-α) released from macrophages during inflammation [7–9], however, the underlying 

anti-inflammatory mechanisms of Tan IIA are incompletely understood. In the current medical world, 

it is popular to explain the pathogenesis of cardiovascular disease from the perspective of 
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inflammation, and then to intervene in all aspects of inflammation, in order to develop new drugs or 

new therapies for cardiovascular diseases. Based on gene ontology (GO) analysis and module-network, 

this paper systematically illuminated anti-inflammatory mechanism of Tan IIA and elaborately 

illustrated the treatment of Tan IIA for cardiovascular and cerebrovascular diseases. 

Proteins are vital macromolecules, at both cellular and systemic levels, but they rarely act alone. 

Protein-protein interactions (PPIs) are major bearers of the biological process. Therefore, several 

properties of PPI such as allosteric sites and hotspots, have been incorporated into drug-design 

strategies [10,11]. The GO [12] project is a collaborative effort to construct ontologies so as to 

facilitate biologically meaningful annotation of gene products. It provides a collection of well-defined 

biological terms, spanning biological processes, molecular functions and cellular components. GO 

enrichment is a common statistical method used to identify shared associations between proteins and 

annotations to GO.  

In this study, a network pharmacology approach was applied to analyze the anti-inflammatory 

mechanisms of Tan IIA. PPIs were adopted in constructing a biological network. And scale-free, 

small-world network and module characteristics were analyzed. This paper aimed to provide a new 

approach to study anti-inflammatory mechanisms of Tan IIA systematically. 

2. Materials and methods 

2.1. Network construction 

The target’s information of Tan IIA was extracted from ChEMBL (https://www.ebi.ac.uk/chembl/#) 

and STITCH3.1 (http://stitch.embl.de/). ChEMBL is a database of bioactive drug-like small molecules 

and has grown to become "the most comprehensive ever seen in a public database” because of its 

coverage of available bioactivity data [13,14]. STITCH [15] is a database of protein-chemical 

interactions combining repository of data that captures as much as possible the publicly available 

knowledge on protein-chemical associations.  

The PPI information was obtained from the online updated databases of String 9.1 

(http://string-db.org). It provides uniquely comprehensive coverage and ease of access to both 

experimental as well as predicted PPI information. Interactions in STRING are provided with a 

confidence score, and accessory information such as protein domains and 3D structures is also 

available, all within a stable and consistent identifier space.  

2.2. Network analysis 

The characterization of biological networks by means of graph-topological properties has become 

very popular for gaining insight into the organization and structure of the resultant large complex 

networks [16–20]. Therefore, a plugin for Cytoscape Network Analyzer [21] was employed to 

compute and display a comprehensive set of topological parameters, including connected components, 

network diameter, radius, density, centralization, heterogeneity, clustering coefficient, characteristic 

path length, and the distributions of node degrees, and so on. Properties of scale-free, small word and 

modularity of the PIN were also investigated based on the topological parameters. 

The MCL [22,23] was applied to identify functional modules in the PIN, which simulates a flow on 

the graph by calculating successive powers of the associated adjacency matrix, and the value of the 

inflation parameter strongly influences the number of clusters. MCL [24] with highlighting the 
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robustness to graph alterations is superior to other algorithms, e.g. RNSC [25], MCODE [26] and SPC 

[27]. Based on the identified modules, GO enrichment analysis was utilized to predict possible 

biological roles of the modules by evaluating the involved biological processes, using the BinGO [28] 

plugin for Cytoscape.  

3. Results and discussion 

3.1. Construction of the network 

Using “Tanshinone IIA” as the key word, 9 and 35 human proteins were respectively extracted as 

Tan IIA from STITCH 3.1 and ChEMBL (gained the data on December of 2013); the targets and their 

binding affinities were listed in Table 1. PPI information of the targets with their confidence score 

above 0.7 was imported in Cytoscape 2.8.3 [31], then union calculation was carried out, followed by 

the removal of duplicated edges of PPIs using Advanced Network Merge [32] of Plugins, and the 

largest connected subgraph was selected as the PIN of Tan IIA. Due to the limitation of the current 

study, there are still unclear human protein interactions, thus the network constructed was not fully 

connected, and the largest network was connected with subgraph research. The generated network 

contained 281 nodes and 814 edges which indicated the proteins and their relations. 

3.2. Network analysis 

3.2.1. Topological analysis 

Biological networks have been proposed to have scale-free topology whose degree distribution 

follows a power law distribution P (k) ~ k
-γ
(γ<3) [33]. Scale-free networks possess fragility and 

robustness [34–36] which allow networks to have a fault tolerant behavior. As shown in Figure 1A, 

interaction degree distribution exhibited power law behavior and the PIN of Tan IIA was a scale-free 

network. 

 

 
(A)                                           (B) 

Fig. 1. The degree distribution and the shortest path distribution of the PIN of Tan IIA. (A) The degree distribution of the PIN 
of Tan IIA: the network followed the power law distribution, the equation is y=155.27x-1.491, so the PIN of Tan IIA was 
scale-free; (B) Distribution of the shortest path between pairs of proteins in the Tan IIA network: On average, any two 
proteins in the network were connected via 5.547 links.  
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Table 1 

The list of targets and their binding affinities of Tan IIA 

Targets UniProt ID IC50(nM) Source Targets UniProt ID IC50(nM) Source 

AKR1B1 P15121 8690 ChEMBL NFE2L2 Q16236 - ChEMBL 

ALDH1A1 P00352 - ChEMBL POLB P06746 - ChEMBL 

ALOX12 P18054 - ChEMBL POLH Q9Y253 - ChEMBL 

APAF1 O14727 4820 ChEMBL POLI Q9UNA4 - ChEMBL 

ATAD5 Q96QE3 - ChEMBL POLK Q9UBT6 - ChEMBL 

BAZ2B Q9UIF8 - ChEMBL RECQL P46063 - ChEMBL 

CBFB Q13951 - ChEMBL RGS4 P49798 - ChEMBL 

CBX1 P83916 - ChEMBL RUNX1 Q01196 - ChEMBL 

EHMT2 Q96KQ7 - ChEMBL SMAD3 P84022 - ChEMBL 

FEN1 P39748 - ChEMBL TDP1 Q9NUW8 - ChEMBL 

HPGD P15428 - ChEMBL TP53 P04637 - ChEMBL 

HSD17B10 Q99714 - ChEMBL USP1 O94782 - ChEMBL 

KAT2A Q92830 - ChEMBL VDR P11473 - ChEMBL 

KDM4A O75164 - ChEMBL CD40* P25942 - STITCH 

KDM4DL B2RXH2 - ChEMBL CYP1A1* P04798 - STITCH 

L3MBTL1 Q9Y468 - ChEMBL CYP3A4* P08684 - STITCH 

LMNA P02545 - ChEMBL FSD1* Q9BTV5 - STITCH 

MAPK1 P28482 - ChEMBL HMGB1* P09429 - STITCH 

MAPT P10636 - ChEMBL KCNE1* P15382 - STITCH 

MBNL1 Q9NR56 - ChEMBL NFKB1 P19838 - STITCH 

MEN1 O00255 - ChEMBL SPG7 Q9UQ90 - STITCH 

MLL Q03164 - ChEMBL TNF P01375 - STITCH 

Notes: Tan IIA can inhibit or activate other proteins [29,30], so the IC50 are not available. Confidence score of the 
targets from STITTCH is above 0.7. *Targets of Tan IIA were extracted from both ChEMBL and STITCH. 

 

Small world networks have a property that characteristic path length is short [37].The shortest path 

length between any two proteins of 5.547 links was calculated. As shown in Figure 1B, network path 

length was mostly concentrated in 4-6 steps, which meant that most proteins were closely linked and 

the PIN of Tan IIA was a small world network. 

In graph theory, a clustering coefficient is a measure of the degree to which nodes in a graph tend to 

cluster together. Compared with random network whose number of nodes and edges are the same as 

PIN of Tan IIA, the clustering coefficient of PIN was higher and thus the PIN of Tan IIA was more 

modular. These results suggested that the network exhibited scale-free property, small world property 

and modular architecture. All topological parameters were shown in Table 2. 
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Functional enrichment analysis has been shown to be conducive to gaining insight into the shared 

underlying biological function of the proteins associated with a module [38]. Functional enrichment 

was carried out using BinGO. For each module, the most significant GO biological processes were 

assigned. The results are shown in Table 3. 

The results of functional enrichment analysis showed that Tan IIA played an important role in 

pharmacodynamics with the biological processes, such as positive regulation of cellular process, DNA 

metabolic process, nucleic acid metabolic process, apoptotic signaling pathway, inflammatory 

response and so on. And modules 11, 12 and 14 are related to the regulation of inflammatory process. 

 
Table 3 

GO biological process terms of the modules display partially 

Modules GO terms P-value 

Module 1 cellular response to growth factor stimulus 1.07E-22 

Module 2 DNA repair 5.13E-32 

Module 3 chromatin organization 9.20E-18 

Module 4 intracellular receptor mediated signaling pathway 3.12E-22 

Module 5 apoptotic signaling pathway 1.77E-20 

Module 6 icosanoid metabolic process 1.73E-16 

Module 7 potassium ion transport 1.39E-15 

Module 8 response to bacterium 4.57E-11 

Module 9 
cellular component disassembly involved in execution phase of 
apoptosis 

2.23E-06 

Module 10 
adenylate cyclase-modulating G-protein coupled receptor signaling 
pathway 

1.35E-12 

Module 11 NIK/NF-kappaB cascade 3.00E-08 

positive regulation of I-kappaB kinase/NF-kappaB cascade 1.13E-07 

Module 12 TRIF-dependent toll-like receptor signaling pathway 1.52E-12 

toll-like receptor 2 signaling pathway 1.52E-12 

Module 13 double-strand break repair 7.40E-13 

Module 14 inflammatory response 4.47E-03 

positive regulation of NF-kappaB transcription factor activity 4.65E-03 

Module 15 chromatin organization 7.86E-06 

Module 16 proteasomal ubiquitin-independent protein catabolic process 1.81E-07 

Module 17 mitotic recombination 3.69E-08 

Module 18 cytokine-mediated signaling pathway 3.71E-11 

Module 19 transcription initiation from RNA polymerase I promoter 8.93E-06 

Module 20 chromatin organization 2.04E-04 

Module 21 chromatin organization 3.07E-08 

Notes: P-value is the probability of obtaining the observed effect, a very small P-value indicates that the observed effect is 
very unlikely to have arisen purely by chance, and therefore provides evidence against the null hypothesis. 
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Module 11 contains proteins such as CD40, TRAF2, TRAF3 and TRAF6. CD40 is a member of the 

TNF-receptor superfamily which has been found to play an important role in mediating a broad variety 

of immune and inflammatory responses [39]. It had been reported that Tan IIA exerted 

anti-inflammatory properties by reducing levels of CD40 [29,30]. TRAF2 [40–42], TRAF3 [41,43] 

and TRAF6 [41,43] had been shown to interact with CD40 and demonstrated to mediate activation of 

NF-κB/JNK/p38. TRAF2 mediated TNF-induced NF-κB activation and impaired JNK activation 

[44,45]. Overexpression of TRAF3 inhibited CD40 mediating antibody secretion [46] and had an 

inhibitory effect on NF-κB activation through LT-βR [47]. TRAF6 inhibited NF-κB activation by IL-1 

rather than TNF and activated JNK and p38 when overexpressed [48,49]. At the same time, 

anti-inflammatory effects of Tan IIA may be attributed to its modulation of NF-kappaB, JNK and p38 

pathway [50–54], then Tan IIA may possess anti-inflammatory activity by TRAF2, TRAF3 and 

TRAF6. 

Module 12 was closely related to the Toll-like receptor family(TLRs), which are synergistic in 

mediating production of cytokines such as interleukin 12 and tumor necrosis factor α(TNF-α) [55]. 

Previous study had demonstrated that Tan IIA can reduce the level of the pro-inflammatory cytokines 

TNF-α to resist inflammatory [56–59]. This indicates that Tan IIA may exert anti-inflammatory 

properties through the inhibition of toll-like receptor signaling pathway. 

Module14 possesses anti-inflammatory activity including HMGB1, TLR4 and RAGE. HMGB1 is a 

cytokinemediator of inflammation [60], and its mechanism of inflammation and damage is binding to 

TLR4, which mediates HMGB1-dependent activation of macrophage cytokine release [61,62]. AGER, 

which considered as a receptor for HMGB1, is involved in inflammation resolution leading to tissue 

repair or alternatively in its perpetuation leading to chronic inflammation [63,64]. It had been reported 

that the anti-inflammatory effects of Tan IIA were relevant to attenuation of systemic accumulation of 

HMGB1 [65]. This suggests that AGER might be a potential target of Tan IIA to treat inflammation. 

4. Conclusion 

In this paper, the PIN of Tan IIA exhibits scale-free property, small world property and modular 

architecture based on the analysis of topological parameters. A module-based network analysis 

approach was proposed to expound the anti-inflammatory mechanism of Tan IIA. The 

anti-inflammatory effects of Tan IIA may be partly attributable to mediate activation of TRAF2, 

TRAF3 and TRAF6, to inhibit the toll-like receptor signaling pathway and combine with AGER. This 

indicates that the module-based network analysis approach can serve as a new approach to expound 

the anti-inflammatory mechanism of Tan IIA. However, further experiments are needed to confirm the 

conclusions. 
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