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Argumentation represents a way of reasoning over a knowledge base containing possibly
incomplete and/or inconsistent information, to obtain useful conclusions. As a reasoning mech-
anism, the way an argumentation reasoning engine reaches these conclusions resembles the
cognitive process that humans follow to analyse their beliefs; thus, unlike other computationally
reasoning systems, argumentation offers an intellectually friendly alternative to other defeasible
reasoning systems. Logic Programming is a computational paradigm that has produced compu-
tationally attractive systems with remarkable success in many applications. Merging ideas from
both areas, Defeasible Logic Programming offers a computational reasoning system that uses
an argumentation engine to obtain answers from a knowledge base represented using a logic
programming language extended with defeasible rules. This combination of ideas brings about
a computationally effective system together with a human-like reasoning model facilitating its
use in applications.
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1. Introduction

The representation of knowledge and its exploitation in solving problems is one of the most
important areas of Artificial Intelligence. In this fertile field of research, described as Knowl-
edge Representation and Reasoning, different systems have been proposed during the past
decades, offering interesting and highly valuable alternatives such as McCarthy’s Circumscription
(McCarthy, 1980), Reiter’s Default Logic (Reiter, 1980), McDermott and Doyle’s Nonmono-
tonic Logic (McDermott & Doyle, 1980), Moore’s Autoepistemic Logic (Moore, 1984), and the
work of Pollock on defeasible reasoning (Pollock, 1987, 1996) and Loui on argumentation (Loui,
1987), started lines of research that lead to many proposals to address the problem of having a
computational approach to commonsense reasoning.

The research started in the 1980s led to a number of proposals on computationally oriented
systems that consider the theoretical and practical underpinnings of argumentation as an effec-
tive reasoning process. Particularly, in the argumentation community we can mention the work
of Lin and Shoham (1989), Nute (1987, 1988), Simari (1989) and Simari and Loui (1992) con-
sidering defeasible reasoning and argumentation, Dung (1993, 1995) on abstract argumentation
frameworks, Bondarenko, Toni, and Kowalski (1993) and Bondarenko, Dung, Kowalski, and Toni
(1997) leading to Assumption-Based Argumentation, Prakken (2010) and Modgil and Prakken
(2013) on the development of ASPIC+, Besnard and Hunter introduced in Besnard and Hunter
(2001, 2008) an argumentation system based on classical logic. Several works on the research on
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argumentation systems have been produced, see Chesñevar, Maguitman, and Loui (2000), Prakken
and Vreeswijk (2002), Bench-Capon and Dunne (2007), Besnard and Hunter (2008), and Rahwan
and Simari (2009).

From the body of work on Nonmonotonic and Defeasible Reasoning, Logic Programming
has emerged as one of the more attractive choices for its theoretical soundness and effective
implementations. Thus, systems based on this paradigm have received increasing attention from
industry for the construction of intelligent systems. The introduction of the elements of defeasible
reasoning in logic programming was a natural choice to address the problem of inconsistency.

Defeasible Logic Programming, or DeLP for short, provides a computational reasoning system
that uses an argumentation engine to obtain answers from a knowledge base represented using a
logic programming language extended with defeasible rules that stem from the work reported in
Simari (1989) and Simari and Loui (1992). The language of the DeLP system contains classical
negation and offers the possibility of using default negation (see Baral & Gelfond, 1994), sharing
the declarative capability of logic programming for representing knowledge, and adding the possi-
bility of representing weak information in the form of defeasible rules. The argumentation-based
inference mechanism has the ability of considering reasons for and against potential conclusions
and deciding which are the ones that can be obtained (warranted) from the knowledge base (see
García, 2000, García & Simari, 2004).

The DeLP reasoning engine forms the core of a Defeasible Logic Programming Server, or
DeLP-Server for short (García, Rotstein, Tucat, & Simari, 2007). A DeLP-Server is conceived
as the support for the implementation of argumentative reasoning services that work over knowl-
edge bases represented as defeasible logic programs. These servers were developed to provide a
reasoning service as part of a knowledge-based infrastructure in multi-agent systems (MAS). An
inherent characteristic of MASs is that they constitute a distributed environment, where hosts for
services and agents could be in different locations that could even be physically apart; thus, client
agents that operate in an MAS, can remotely access DeLP-Servers that support different reasoning
services that exploit particular knowledge bases.

In addition to answering queries from a knowledge base,1 a DeLP-Server offers the additional
capability of complementing these queries with an additional fragment of a defeasible logic pro-
gram. This program fragment will act as a private context for the query, allowing a DeLP-server
to respond to that contextualised query using not only the knowledge stored in the server but also
temporarily modifying it with this private context in several specific ways. We will discuss the
subject in one of the sections below.

Another important and desirable feature in any knowledge-based system is that of offering
explanations that will improve the understanding of an answer returned after a query. In the
framework discussed here, explanations aim to transfer the understanding of how, from a given
argumentation framework, the status of a particular argument was obtained; thus, an explanation
will consist of a structure that reflects the analysis carried out to obtain such status, and it will
contain those arguments and counterarguments that were considered in the analysis leading to its
warrant status. That is, the warrant status of a claim will be explained by presenting the whole set
of dialectical trees that was generated to decide the warrant status of the arguments related to the
claim. From the point of view of the receiver, this explanation will make available all the arguments
considered, their statuses (i.e. defeated/undefeated), with all their interactions explicitly shown,
showing to the receiver of the explanation all the elements at stake in the dialectical analysis that
supports the answer.

This paper has the aim of presenting in a progressive manner the elements involved in a
knowledge-based system where its reasoning mechanism uses an argumentative approach to epis-
temic reasoning. We will begin by introducing the essential constituents of DeLP, then we will
proceed to describe how a DeLP-Server works, and we will introduce the explanation facility
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designed with argumentative reasoning in mind. To conclude this work, we will succinctly describe
other developments based on DeLP.

2. Knowledge representation

DeLP is a formalisation of defeasible reasoning in which results of Logic Programming and
Argumentation are combined. DeLP has the declarative capability of representing knowledge in a
language that extends the language of logic programming with the possibility of representing weak
information in the form of defeasible rules, and an argumentation-based inference mechanism for
warranting conclusions. In what follows, we will use concepts of Logic Programming that will be
brought in as necessary in the presentation.

This section will introduce a description of DeLP’s features for knowledge representation and
then, in the following section, the details concerning its inference mechanism will be explained.
Although the work leading to the formalisation of DeLP began in the early 1990s Simari,
Chesñevar, García (1994a, 1994b) as an evolution of the work in Simari and Loui (1992), its com-
plete formalisation was completed in García (2000) and finally published in García and Simari
(2004). Further developments, that will be described below, can be found in the following related
material in García et al. (2007), Tucat, Garcia, and Simari (2009), Martínez, García, and Simari
(2012), and García, Chesñevar, Rotstein, and Simari (2013).

Our knowledge representation language will be determined by a set of atoms. Atoms can be
preceded by the strong negation symbol ‘∼’. Atoms that are not preceded by strong negation
will also be called positive literals and atoms preceded by strong negation will be called negative
literals, the term literal, or sometimes objective literal, will refer to either one. A pair of liter-
als involving a positive and a negative literal over the same atom are called complementary or
contradictory. For instance, ‘∼guilty’ and ‘guilty’ are two complementary literals. Atoms, while
propositional in nature, will be represented in a manner similar to a first-order language. Also,
variables will be considered only as place-holders for constants. Thus, an atom containing vari-
ables will be a schematic representation of all the possible atoms that can be obtained replacing the
variables with the constants in the representation language (Lifschitz, 1996). Our notation will fol-
low standard typographic conventions used in Logic Programming. To distinguish between atoms
and variables, as usual, atoms will start with a lowercase letter and variables with an uppercase
letter. For instance, ‘∼dangerous(X)’ and ‘dangerous(X)’ are two schematic literals.

A defeasible logic program, abbreviated d.l.p., is a set of facts, strict rules, and defeasible rules
defined as follows:

• Facts are ground (objective) literals, e.g. guilty, price(100), ∼alive. In DeLP facts are used
for representing information that is considered to hold in the application domain. Hence, as
it will be explained below, a ‘valid’ d.l.p. cannot contain two complementary facts.

• Strict Rules represent a relation between a ground literal L0, or head of the rule, and a set of
ground literals {Li}i>0, or body of the rule, and are denoted by L0 ← L1, . . . , Ln; strict rules
correspond syntactically to basic rules in Logic Programming (Lifschitz, 1996). The use of
the adjective ‘strict’ emphasises that the relation between the head and the body of the rule is
such that if the body is accepted then the head must also be accepted. The examples of strict
rules shown below can be understood as expressing that: if somebody is guilty then it is not
innocent, cats are mammals, and if there are not many surfers then there are few surfers:

∼innocent ← guilty

mammal ← cat

few_surfers ← ∼many_surfers
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• Defeasible Rules are used to represent a weaker connection between pieces of information,
they are denoted by L0 −−≺ L1, . . . , Ln, and like strict rules, the head of the rule L0 is a
ground literal and its body {Li}i>0 is a set of ground literals. Unlike strict rules, acceptance
of the body of a defeasible rule does not always lead to the acceptance of the head. In
defeasible rules, literals on the body can be preceded with the default negation symbol
‘not’ (see discussion below). Examples of defeasible rules follows, the first one represents
that usually, mosquitoes are not dangerous, and the second says that reasons to believe
mosquitoes are carrying dengue, justify the belief they are dangerous:

∼dangerous −−≺ mosquito

dangerous −−≺ mosquito,dengue

Note that, from a syntactic point of view, strict and defeasible rules differ only in the symbol
between the head and the body of the rule. It is interesting to remark here that the representational
choice between these two forms of relating the head and the body of a rule is ultimately a matter
of context, sometimes a rule could change according to the environment in which it is used;
for instance, a rule that locally can be considered strict could become defeasible in a larger
environment.

Defeasible rules allow to represent a weak connection between the body (antecedent) and the
head (consequence) of the rule. A defeasible rule H −−≺ B expresses that reasons to believe in B
provide a (defeasible) reason to believe in H. As an example, consider a scenario where an agent
has to decide how to spend the day. Then, the defeasible rule ‘nice −−≺ waves’ can represent that
‘reasons to believe that there are big waves at the beach, is a reason to believe that it should be
a nice day for surfing’. The connection between ‘waves’ and ‘nice’ is weak in the sense that there
might be other reasons such as ‘normally, if it is raining it is not nice for surfing’, represented as
‘∼nice −−≺ rain’, that will lead to the contrary conclusion. Suppose that today there are big waves
and it is raining, then the acceptance of the body of the rule ‘nice −−≺ waves’ does not lead directly
to the acceptance of the head.

Nevertheless, strict rules establish a strict connection between body and head; thus, the rule
‘∼working ← vacation’ represents the fact that in vacation an agent is not working. Then, as we
will show below, due to this strict connection in DeLP if ‘vacation’ is accepted then ‘∼working’
is also accepted.

As discussed in Alferes, Pereira, and Przymusinski (1996), logic programs, deductive
databases, and more generally non-monotonic theories, use various forms of default negation,
usually denoting ‘not F’ as the default negation of ‘F’, whose major distinctive feature is that not
‘F’ is assumed by default, i.e. it is assumed in the absence of sufficient evidence to the contrary
‘F’. In DeLP default negation can be used in the body of defeasible rules; for instance, the rule
‘alive −−≺ not dead’ represents that if we cannot be sure that something is dead, then there are rea-
sons to believe that it is alive. Thus, DeLP allows for the use of two different forms of negation.
For instance, the rule ‘∼guilty −−≺ not guilty’ represents that if we cannot be sure that somebody
is guilty, then there are reasons to believe that he is not guilty; and the defeasible rule

∼cross_railway_tracks −−≺ not ∼train_is_coming

can be understood as if we cannot be sure the train is not coming then there are (defeasible)
reasons to believe we should not be crossing the railway tracks.

Methodologically, it is suggested that the default negation ‘not’be used only on literals appear-
ing in the body of defeasible rules; these literals, that are known as extended literals, provide another
form of defeasibility. The motivation for this recommendation is that strict rules with extended
literals in their body would become defeasible (see García & Simari, 2004 for more details).
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A defeasible rule with an empty body represents an interesting representational device that
can be used as information that could be used when no contrary information exists; this type
of defeasible rule was introduced in several approaches to defeasible reasoning and is called a
presumption (García & Simari, 2004, Martínez et al., 2012, Nute, 1988).

Note that the symbols ‘−−≺’ and ‘←’ denote meta-relations between a literal and a set of
literals, and have no interaction with language symbols. As in Logic Programming, strict and
defeasible rules are not conditionals nor implications, they are inference rules; consequently, it
is not possible to apply contraposition to program rules, strict or defeasible. All defeasible logic
programs are ground; nevertheless, following the usual convention in Logic Programming, some
examples use ‘schematic rules’ with variables for notational convenience. These schematic rules
represent all possible instantiations as ground rules using the constants appearing in the signature
of the language of the program (Lifschitz, 1996).

A defeasible logic program is set of facts and rules, however, when required, a d.l.p. is denoted
by (�, �), to distinguish the subset � of facts and strict rules and the subset � of defeasible rules.
This denotational distinction will be useful for introducing central concepts below. Consider for
instance the program (�2.1, �2.1) in the following example.

Example 2.1 DeLP-program (�2.1, �2.1)

�2.1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

monday
cloudy
dry_season
waves
grass_grown
hire_gardener
vacation
∼working ← vacation
few_surfers ← ∼many_surfers
∼surf ← ill

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�2.1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

surf −−≺ nice,spare_time
nice −−≺ waves
∼nice −−≺ rain
rain −−≺ cloudy
∼rain −−≺ dry_season
spare_time −−≺ ∼busy
∼busy −−≺ ∼working
cold −−≺ winter
working −−≺ monday
busy −−≺ yard_work
yard_work −−≺ grass_grown
∼yard_work −−≺ hire_gardener
many_surfers −−≺ waves
∼many_surfers −−≺ monday

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The program above shows an application example with several facts and rules. The set �2.1

has some facts representing that: it is Monday, it is cloudy, it is the dry season, there are big waves
at the beach, the grass of our yard is grown, we can hire a gardener, we are on vacation, and three
strict rules that represent: on vacation we do not work, if there are not many surfers then there are
few surfers and if you are ill then you should not go surfing.

The set �2.1 contains defeasible rules that can be used in the process of building arguments
for supporting or attacking different claims. For instance, the first rule in �2.1 represents that
having spare time on a nice day, is a good reason to go surfing, and can be used in support
of the claim go surfing (surf ). Note that there is also a rule that can be used for concluding
that today is not a nice day (∼ nice) and another rule that provides reasons for concluding
that today I am busy (busy). In the next section, we will show how rules and facts are used
in defeasible derivations and then we will show what constitutes an argument that supports a
conclusion.
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3. Defeasible derivations and arguments

In DeLP a ground literal L will have a defeasible derivation from a program (�, �), if there is
a finite sequence of ground literals L1, L2, . . . , Ln = L, where Li is a fact in �, or there exists a
rule Ri in (�, �) (strict or defeasible) with head Li and body B1, B2, . . . , Bm such that every literal
Bj, 1 ≤ j ≤ m, of the body is either an element Lk already appearing in the sequence preceding Li

(k < i), or an extended literal, i.e. a literal affected by default negation.
In the program (�2.1, �2.1) shown in Example 2.1, the literal surf has a defeasible derivation:

vacation, ∼ working, ∼ busy, spare_time, waves, nice, surf, which contains two facts (vacation
and waves), and the use of a strict rule (∼working ← vacation) and four defeasible rules. Note
that every fact of a DeLP has a defeasible derivation; however, not every head of a rule has a
derivation, for instance, neither cold nor ∼ surf have a defeasible derivation. If a literal L has a
derivation that uses only uses facts and strict rules from � and no defeasible rules, in this case
we say that L has a strict derivation; thus, ∼ working has a strict derivation from �2.1. Note that
literals that have a strict derivation must be facts or the head of a strict rules; however, a literal
can be the head of a strict rule and might have a defeasible derivation, but not a strict derivation.
For instance, few_surfers has no strict derivation from �2.1, although it has a defeasible derivation
from (�2.1, �2.1) that uses a defeasible rule for the derivation of ∼many_surfers.

Since strong negation is allowed in the head of rules, it is possible to obtain defeasible deriva-
tions of contradictory literals from a program, e.g. both literals rain and ∼ rain have a defeasible
derivation from (�2.1, �2.1). Observe that the defeasible derivation for rain depends on the use of
the defeasible rule rain −−≺ cloudy whereas the defeasible derivation of ∼ rain uses the defeasible
rule ∼rain −−≺ dry_season. It is important to note that in DeLP the set � is used to represent
non-defeasible information, consequently it is required that the set be representationally coherent.
Therefore, for any program we assume that no pair of contradictory literals can be derived from
�, i.e. no strict derivation for contradictory literals can be obtained from a DeLP-program.

In the presence of defeasible derived contradictory literals, DeLP uses a dialectical process
to decide which information prevails, i.e. information such that no acceptable reason can be put
forward against it. Reasons will be supported by arguments which are structures based in defeasible
derivations. The notion of argument is introduced by the following definition.

Definition 3.1 Let (�, �) be a defeasible logic program and L a ground literal. We say that
A is an argument for the conclusion L from (�, �), denoted by 〈A, L〉, if A is a minimal set of
defeasible rules (A ⊆ �), such that: (1) there exists a defeasible derivation for L from � ∪ A,
(2) no pair of contradictory literals can be defeasibly derived from � ∪ A, and (3). If A contains
some rule with an extended literal ‘not F’, then the literal F can not be in the defeasible derivation
of L from � ∪ A.

Observe that although facts and strict rules are used in the defeasible derivation, the argument
structure only mentions the defeasible rules. If there exists an argument A for a literal L then we
will also say that A supports L.

Example 3.2 From program (�2.1, �2.1) introduced in Example 2.1 we can obtain several
arguments:

〈A0, surf〉 =
〈⎧⎪⎪⎨
⎪⎪⎩

surf −−≺ nice,spare_time
nice −−≺ waves
spare_time −−≺ ∼busy
∼busy −−≺ ∼working

⎫⎪⎪⎬
⎪⎪⎭ , surf

〉

〈A1, ∼nice〉 = 〈{(∼nice −−≺ rain); (rain −−≺ cloudy)}, ∼nice〉
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〈A2, nice〉 = 〈{nice −−≺ waves}, nice〉
〈A3, rain〉 = 〈{rain −−≺ cloudy}, rain〉
〈A4, ∼rain〉 = 〈{∼rain −−≺ dry_season}, ∼rain〉
〈A5, busy〉 = 〈{(busy −−≺ yard_work); (yard_work −−≺ grass_grown)}, busy〉
〈A6, ∼yard_work〉 = 〈{∼yard_work −−≺ hire_gardener}, ∼yard_work〉
〈A7, yard_work〉 = 〈{yard_work −−≺ grass_grown}, yard_work〉
〈A8, spare_time〉 = 〈{(spare_time −−≺ ∼busy); (∼busy −−≺ ∼working)}, spare_time〉
〈A9, ∼busy〉 = 〈{∼busy −−≺ ∼working}, ∼busy〉
〈A10, many_surfers〉 = 〈{many_surfers −−≺ waves}, many_surfers〉
〈A11, ∼many_surfers〉 = 〈{∼many_surfers −−≺ monday}, ∼many_surfers〉

We can see that from the program (�2.1, �2.1) there is argument (A0) for the conclusion surf ;
however, observe that there are arguments for nice and ∼ nice, and arguments for busy and ∼
busy. All the arguments rely on the same facts.

Arguments are related in different forms, and two interesting relations are the subargument
relation and counterargument relation. But first, we will make some observations regarding the
definition of argument.

As stated in Definition 3.1, a literal L has a supporting argument A from a program (�, �)

if A is a minimal set of defeasible rules such that there exist a defeasible derivation for L from
� ∪ A, and � ∪ A is not contradictory. Therefore, it could happen that a literal L has a defeasible
derivation from a program P but there is no argument for L from P , as in the following program:

�3.2 =
⎧⎨
⎩

night
at_market
∼at_home ← at_market

⎫⎬
⎭ �3.2 = {at_home −−≺ night}

Here, there exists a defeasible derivation for at_home from (�3.2, �3.2), but the set �3.2 ∪
{at_home −−≺ night} is contradictory, and for that reason there is no argument for at_home.

Let us consider again the program (�2.1, �2.1), and the following subset of defeasible rules
S = {nice −−≺ waves, ∼busy −−≺ ∼working} (S ⊆ �2.1). Observe that S ∪ �2.1 is not contradictory
and allows for the defeasible derivation of nice; nevertheless S is not an argument for nice because
it is not minimal. In Example 3.2 we have shown that A2 ⊂ S is an argument for nice.

Next, we will describe the subargument and counterargument relations. In the following section
these relations will be used in the introduction of an inference mechanism.

Given a d.l.p. (�, �) and two arguments 〈A, L〉 and 〈B, Q〉 obtained from it, if B ⊆ A then we
say that 〈B, Q〉 is a subargument of 〈A, L〉 and that 〈A, L〉 is the superargument of 〈B, Q〉 (note
that trivially every argument is a subargument/superargument of itself). For instance, consider the
Example above, 〈A3, rain〉 is a subargument of 〈A1, ∼nice〉, and 〈A2, nice〉 is a subargument of
〈A0, surf〉.

Two literals L and Q are said to disagree in the context of the program (�, �) if the set
� ∪ {L, Q} is contradictory, i.e. it is possible to strictly derive a literal and its complementary.
For instance, in the program (�2.1, �2.1) the literals working and vacation disagree because from
�2.1 ∪ {working, vacation} it is possible to strictly derive ∼working. As a particular case, two
literals disagree if they are contradictory (e.g. nice and ∼nice).

In DeLP, an argument 〈B, Q〉 is a counterargument for 〈A, L〉at literal P, if there exists a
subargument 〈C, P〉 of 〈A, L〉 such that P and Q disagree. The literal P is referred to as the
counterargument point and 〈C, P〉 as the disagreement subargument. If 〈B, Q〉 is a counterargument
for 〈A, L〉, then we also say that 〈B, Q〉 attacks 〈A, L〉, and that 〈B, Q〉 and 〈A, L〉 are in conflict.

Consider the program (�2.1, �2.1). 〈A1, ∼nice〉 is a counterargument for 〈A2, nice〉 and vicev-
ersa because in this particular case the conclusion of both arguments disagree.As another example,
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〈A4, ∼rain〉 is a counterargument for 〈A1, ∼nice〉 at the counterargument point rain and 〈A3, rain〉
is the disagreement subargument. Note that in DeLP a counter-argument for an argument A
is also a counter-argument for any super-argument of A. For instance, from (�2.1, �2.1) since
〈A1, ∼nice〉 is a counter-argument for 〈A2, nice〉 and 〈A0, surf〉 is a super-argument of 〈A2, nice〉,
then 〈A1, ∼nice〉 is a counter-argument for 〈A0, surf〉.

Given a program P , every literal L that has a strict derivation from P , has a supporting argument
with no defeasible rules (i.e. A = ∅) that supports L. Also note that in DeLP there is no possible
counterargument for a claim having a strict derivation, see García and Simari (2004) for the
proof. It was shown in an example above, involving the program (�3.2, �3.2), that there is a strict
derivation for ∼at_home; hence, for that reason there is no argument for at_home and therefore
no counter-argument can exist. Observe also that from (�2.1, �2.1) there is a strict derivation for
∼working, however, although there is a derivation for working, no argument for working can exist,
and hence, no counter-argument for ∼working.

4. Warrants and answers for queries

A query is issued to a defeasible logic program (�, �) in the form of a ground literal Q, and this
query will succeed when Q can be warranted from (�, �). The intuitive meaning of a literal being
warranted is that it is supported by an argument that has no counterargument still standing against
it. As it is discussed below, there are four possible answers for a query Q posed to a program P:
yes, if Q is warranted from P; no, if the complement of Q is warranted from P; undecided, if
neither Q nor its complement is warranted from P; and unknown, if Q is not in the signature
of the program P . For instance, as we will show later in this section in detail, from the program
(�2.1, �2.1) the answer for ‘surf ’ is yes, the answer for ‘busy’ is no, the answer for ‘many_surfers’
is undecided, and the answer for ‘beach_closed’ is unknown.

Informally, a literal Q will be warranted if there exists at least an argument A supporting Q that
prevails after going through a dialectical process considering all its counterarguments. To asses this,
the counterarguments must be compared to the supporting argument, and each counterargument
that is in some predetermined sense found better, becomes a potential defeater which in turn is
analysed in a similar way. In the rest of this section we will be describing all the elements involved
in the warranting process.

Let us consider again the program (�2.1, �2.1). The argument 〈A1, ∼nice〉 is a counterargument
for 〈A2, nice〉 and viceversa. As we will show, if a preference between A1 and A2 can be estab-
lished, then one of these arguments will defeat the other and its conclusion will prevail. In DeLP
a defeater relation is defined in terms of counter-argument and an argument comparison criterion
as follows. Recall that if an argument C counter-arguments A, then there exists a disagreement
sub-argument B of A.

Given a preference criterion, an argument D is a defeater for A, if one of the following
conditions holds:

(a) D is a counter-argument for A with disagreement sub-argument B, and D is preferred to
B, in this case D is a called a proper defeater for A, or

(b) D is a counter-argument for A with disagreement sub-argument B, and D is equally
preferred to, or D is incomparable with B, in this case D is called a blocking defeater for
A, or

(c) D is argument for the conclusion F and ‘not F’ is in some rule of A, in this case D is
called an attack to an assumption of A.
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Observe that in the case that B is preferred to D, although D remains a counterargument for A,
D is not a defeater for A. As an argument trivially is a subargument of itself, it is possible that the
disagreement subargument be A itself, thus, in this case D will be compared directly with A.

In the context of program (�2.1, �2.1), 〈A4, ∼rain〉 is a counterargument for 〈A1, ∼nice〉 at
the counterargument point rain and 〈A3, rain〉 is the disagreement subargument; therefore, A4 is
compared with A3 to determine if it is a defeater.

The argument comparison criterion is modular in DeLP; hence, it is possible to use any pref-
erence criterion established over the set of arguments. This allows the user to select the most
appropriate criterion for the application domain that is being represented. In García (2000), García
and Simari (2004), and Ferretti, Errecalde, García, and Simari (2008), different argument com-
parison criteria were defined. In the examples of this paper we will use a comparison criterion
that was introduced in García and Simari (2004). This argument preference relation uses a partial
order defined over defeasible rules that is denoted by ‘<R’. The intuitive meaning of ‘R1 <R R2’
is that: the rule R2 is preferred over R1 in the application domain described by the program.

In this argument comparison criterion, referred to as rule’s priorities, an argument A1 is
preferred to A2 if the following two conditions hold:

(1) there exists at least a rule ra ∈ A1 and a rule rb ∈ A2 such that rb <R ra,
(2) and there is no rule r′

b ∈ A2, and r′
a ∈ A1 such that r′

a <R r′
b.

Example 4.1 Consider the program (�2.1, �2.1) introducing the following priorities over its rules:

(rain −−≺ cloudy) <R (∼rain −−≺ dry_season)

(yard_work −−≺ grass_grown) <R (∼yard_work −−≺ hire_gardener)

Lets discuss the relations between some of the arguments built from that program:

〈A0, surf〉 =
〈⎧⎪⎪⎨
⎪⎪⎩

surf −−≺ nice,spare_time
nice −−≺ waves
spare_time −−≺ ∼busy
∼busy −−≺ ∼working

⎫⎪⎪⎬
⎪⎪⎭ , surf

〉

〈A1, ∼nice〉 = 〈{(∼nice −−≺ rain); (rain −−≺ cloudy)} , ∼nice〉
〈A3, rain〉 = 〈{rain −−≺ cloudy} , rain〉 , and

〈A4, ∼rain〉 = 〈{∼rain −−≺ dry_season} , ∼rain〉 ,

〈A5, busy〉 = 〈{(busy −−≺ yard_work); (yard_work −−≺ grass_grown)} , busy〉

Then, 〈A4, ∼rain〉 is preferred over 〈A3, rain〉. Since 〈A4, ∼rain〉 is a counterargument for
〈A1, ∼nice〉 with 〈A3, rain〉 as the disagreement subargument, then 〈A4, ∼rain〉 is a proper defeater
for 〈A1, ∼nice〉. Note that 〈A4, ∼rain〉 is a also a proper defeater for 〈A3, rain〉. Taking into account
that 〈A1, ∼nice〉 is a counterargument for 〈A2, nice〉 and viceversa, and 〈A1, ∼nice〉 and 〈A2, nice〉
are not comparable in this criterion, it results that 〈A1, ∼nice〉 is a blocking defeater for 〈A2, nice〉
and viceversa.

Observe that the argument 〈A0, surf〉 has two blocking defeaters: 〈A1, ∼nice〉 at the counterar-
gument point nice and 〈A5, busy〉 at the counterargument point ∼busy. Since 〈A6, ∼yard_work〉 is
preferred to 〈A7, yard_work〉 then 〈A6, ∼yard_work〉 is a proper defeater for both 〈A7, yard_work〉
and 〈A5, busy〉. Finally, 〈A10, many_surfers〉 is a blocking defeater for 〈A11, ∼many_surfers〉 and
viceversa.
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If an argument 〈A1, L1〉 is defeated by 〈A2, L2〉, then 〈A2, L2〉 represents a reason for rejecting
〈A1, L1〉; nevertheless, as 〈A2, L2〉 also is an argument, a defeater 〈A3, L3〉 for it might also exist,
defeating 〈A2, L2〉 and reinstating 〈A1, L1〉. This analysis is repeated and the argument 〈A3, L3〉
could in turn become defeated, reinstating 〈A2, L2〉, and so on. In this manner, a sequence of
arguments (called argumentation line) is built; in it, each argument is a defeater of its predecessor
in the sequence.

More formally, given 〈A1, L1〉, an argumentation line for 〈A1, L1〉 is a sequence of argu-
ments, denoted by � = [〈A1, L1〉, 〈A2, L2〉, 〈A3, L3〉, . . .], where each element of the sequence
〈Ai, Li〉, i > 1, is a defeater of its predecessor 〈Ai−1, Li−1〉. The first element, 〈A1, L1〉, becomes
a supporting argument for L1, 〈A2, L2〉 an interfering argument, 〈A3, L3〉 a supporting argument,
〈A4, L4〉 an interfering one, continuing in that manner. Thus, an argumentation line can be split
into two disjoint sets: �S = {〈A1, L1〉, 〈A3, L3〉, 〈A5, L5〉, . . .} of supporting arguments, and �I =
{〈A2, L2〉, 〈A4, L4〉, . . .} of interfering arguments. For instance, from the program (�2.1, �2.1) the
following argumentation line can be obtained [〈A0, surf〉, 〈A1, ∼nice〉, 〈A4, ∼rain〉], where A1 is
an interfering argument for surf, and A4 is a supporting argument for surf.

There are undesirable situations, analysed in the literature, that can occur leading to an infinite
argumentation line; for instance, if an argument is reintroduced in the sequence, the process could
repeat itself indefinitely. Circular argumentation and other forms of fallacious argumentation have
been studied in detail (see García & Simari, 2004, Simari et al., 1994b).

In DeLP, argumentation lines are required to be acceptable, that is, they have to be finite,
an argument cannot appear twice in it, and the set of supporting (resp. interfering) arguments
in the line have to be concordant. Given a program (�, �), a set of arguments {〈Ai, Li〉}n

i=1 is
concordant if it is not possible to have a defeasible derivation for a pair of contradictory literals
from the set � ∪ ⋃n

i=1 Ai. For instance, the set {〈A0, surf〉, 〈A4, ∼rain〉} is concordant, whereas
the set {〈A0, surf〉, 〈A1, ∼nice〉} is not because from � ∪ A0 ∪ A1 there are defeasible derivations
for nice and ∼nice.

The existence of blocking defeaters introduces another situation that is addressed by the
last requirement; that is, after introducing a blocking defeater in a line, the next defeater is
required to be a proper one to reinstate the blocked argument. Formally, an argumentation line
� = [〈A1, L1〉, . . . 〈An, Ln〉] is acceptable if and only if:

(1) � is a finite sequence.
(2) The set �S of supporting arguments (resp. �I ) is concordant.
(3) No argument 〈Ak , Lk〉 in � is a disagreement subargument of an argument 〈Ai, Li〉

appearing earlier in �, i < k.
(4) For all i, such that 〈Ai, Li〉 is a blocking defeater for 〈Ai−1, Li−1〉, if 〈Ai+1, Li+1〉 exists,

then 〈Ai+1, Li+1〉 is a proper defeater for 〈Ai, Li〉.
For instance, from the program (�2.1, �2.1) two acceptable argumentation lines for 〈A0, surf〉

can be obtained:

�1 == [〈A0, surf〉, 〈A1, ∼nice〉, 〈A4, ∼rain〉],
�2 = [〈A0, surf〉, 〈A5, busy〉, 〈A6, ∼yard_work〉].

This example shows how, given a program, there can be more than one argumentation line
starting with the same argument 〈A, L〉. Therefore, analysing a single acceptable argumentation
line for 〈A, L〉 will not be enough to determine whether 〈A, L〉 is an undefeated argument. In the
general situation, there might be several defeaters 〈B1, Q1〉, 〈B2, Q2〉, . . . , 〈Bk , Qk〉 for 〈A1, L1〉,
and for each defeater 〈Bi, Qi〉 there could be in turn several defeaters; thus, a tree structure is
defined which is called a dialectical tree. In this tree, the root is labelled with 〈A, L〉 and every
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node (except the root) represents a defeater (proper or blocking) of its parent. Each branch in the
tree, i.e. each path from a leaf to the root, corresponds to a different acceptable argumentation line.

Let 〈A1, L1〉 be an argument obtained from a DeLP-program P , a dialectical tree for 〈A1, L1〉
from P is denoted by T〈A1,L1〉 and is constructed as follows:

(1) The root of the tree is labelled with 〈A1, L1〉.
(2) Let N be a node labelled 〈An, Ln〉, and [〈A1, L1〉, . . . , 〈An, Ln〉] be the sequence of labels

of the path from the root to N . Let {〈B1, Q1〉, 〈B2, Q2〉, . . . , 〈Bk , Qk〉} be the set of all
the defeaters for 〈An, Ln〉 from P . For each defeater 〈Bi, Qi〉 (1 ≤ i ≤ k), such that the
argumentation line �′ = [〈A1, L1〉, . . . , 〈An, Ln〉, 〈Bi, Qi〉] is acceptable, the node N has a
child Ni labelled 〈Bi, Qi〉. If there is no defeater for 〈An, Ln〉 or there is no 〈Bi, Qi〉 such
that �′ is acceptable, then N is a leaf.

Dialectical trees will be depicted as a tree where labelled triangles represent arguments and
edges denote the defeat relation. An argument 〈A, L〉 will be depicted as a triangle, where its upper
vertex is labelled with L, and A is showed inside the triangle. Figure 1 shows the dialectical tree
for argument 〈A0, surf〉 obtained from program (�2.1, �2.1). A small triangle inside a bigger one
represents a subargument, and usually is presented in that way to show a disagreement subargument
with the counterargument point where an edge ends. We will use solid edge with the arrowhead
pointing from the proper defeater to the defeated argument, and edges with double pointed arrows
to represent blocking defeaters.

A dialectical tree provides a useful structure for considering all possible acceptable argumen-
tation lines that can be generated for deciding whether an argument is defeated. We call this tree
dialectical because it represents an exhaustive dialectical analysis for the argument in its root.

Given a literal L and an argument 〈A, L〉, to decide whether the literal L is warranted, every
node in the dialectical tree T〈A,L〉 is recursively marked as “D” (defeated) or “U” (undefeated),
obtaining a marked dialectical tree T ∗

〈A,L〉. Nodes are marked by a bottom-up procedure that starts
marking all leaves in T ∗

〈A,L〉 as “U”s. Then, for each inner node 〈B, Q〉 of T ∗
〈A,L〉, either:

(a) 〈B, Q〉 will be marked as “U” iff every child of 〈B, Q〉 is marked as “D”, or
(b) 〈B, Q〉 will be marked as “D” iff it has at least a child marked as “U”.

Figure 1. Dialectical tree T〈A0,surf〉.
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Figure 2. Marked dialectical tree T ∗〈A,L〉.

Marked dialectical trees will be depicted as a tree where the nodes are triangles dec-
orated with the result of the marking procedure and the directed edges denote the defeat
relation. Figure 2 shows the marked dialectical tree for argument 〈A0, surf〉 of program
(�2.1, �2.1).

Given an argument 〈A, L〉 obtained from a program P , we will write Mark(T ∗
〈A,L〉) = U to

denote that the root of T ∗
〈A,L〉 is marked as “U”; otherwise we will write Mark(T ∗

〈A,L〉) = D (if the
root of T ∗

〈A,L〉 is marked as “D”). Thus, we can define warrant in terms of the marking procedure
Mark:

Definition 4.2 Let P be a DeLP-program and L a DeLP-query. We say that T ∗
〈A,L〉 warrants L

and that L is warranted from P if Mark(T ∗
〈A,L〉) = U.

A ground literal L is considered to be warranted if an argument A for L exists, and all
the defeaters for 〈A, L〉 are defeated. Therefore, this marking procedure provides an effective
way of determining if a DeLP-query L is warranted. It is important to note that given a DeLP-
query L, there can be several arguments that support L; therefore, L will be warranted if there
exists at least one argument A for L such that the root of a dialectical tree for 〈A, L〉 is marked
as “U”.

It has been observed in Chesñevar and Simari (2007) that the order in which the defeaters are
considered is irrelevant to the final result of the marking process, only the argumentation lines are
important for the outcome. The different tree configurations obtained from the set of argumentation
lines (called bundle set) lead to the same marking of the root.

In García (2000) and García and Simari (2004) it was proved that in DeLP any claim C that
has a strict derivation is warranted. This is so because any literal C that has a strict derivation from
a program (�, �) has no posible counterargument voiding the possibility that a defeater could
exist. The reason for this is that no argument that disagrees with C could be build because the
definition of argument requires it to be non-contradictory with �.

The interpreter of DeLP takes a program P , and a DeLP-query L as input. Then returns one
of the following four possible answers: yes, if L is warranted from P; no, if the complement of
L is warranted from P; undecided, if neither L nor its complement are warranted from P; or
unknown, if L is not in the language of the program P .
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As an illustrating example, from the program (�2.1, �2.1) introduced in Example 2.1, the
following answers can be obtained:

Query Answer

surf yes

∼surf no

many−surfers undecided

∼many−surfers undecided

nice yes

∼nice no

beach−closed unknown

∼working yes

working no

few−surfers undecided

Observe that in the table above the literal beach_closed has the answer unknown, this is so
because the literal beach_closed is not present in the signature of (�2.1, �2.1). The answer for
both ∼many_surfers and many_surfers is undecided, because as it was shown in Example 4.1 the
argument 〈A10, many_surfers〉 is a blocking defeater for 〈A11, ∼many_surfers〉 and vice versa.
Note that the literal∼working is the head of a strict rule and also has a strict derivation, therefore, the
answer is yes. Finally, observe that few_surfers is the head of a strict rule but has no strict derivation,
because the body of that particular strict rule can not be strictly derived from (�2.1, �2.1). In this
case, few_surfers has a defeasible derivation (defeasible rules are used in its derivation), and
there is also an argument supporting it, but since there is a blocking defeater for that argument,
no warrant for few_surfers is possible and the answer is undecided.

5. DeLP reasoning servers and contextual queries

In MASs, reasoning can be seen as a service that can be offered as part of a knowledge-based
infrastructure providing a mechanism to exploit it. In this section we describe DeLP Servers,
that are the support of argumentative reasoning services conceived for a MAS setting. In such an
environment, DeLP-Servers, introduced in García et al. (2007), provide client agents that can be
distributed in remote hosts with the ability to consult different reasoning services implemented as
DeLP-Servers that can be distributed themselves. Figure 3 schematically depicts a situation with
three servers and five client agents distributed in four hosts.

Common (or public) knowledge can be stored in a server and represented as a DeLP-program;
then, client agents may send queries to a DeLP-server and receive the corresponding answer.
To respond to a query, a DeLP-server uses the knowledge stored in it; but, the server offers the
possibility of integrating the knowledge stored in it with ‘private’ knowledge the client making
the query has the possibility to send as part of the query.

For example, consider a DeLP-server developed for a real-state application domain.A program
can be stored in that server with some facts that represent the available properties for renting, and
some defeasible rules that represent common knowledge modelling how to select a suited property.
Then, client agents can consult for a property and submit, together with the query, some private
information that represents its current situation or requirements (e.g. has children, works at home,
has no car, cannot afford a rent of $3000 or more). If that is the case, this private knowledge
is added temporarily to the knowledge stored in the server giving a particular context for the
query. This context is private knowledge that the server will use for answering the query and
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Figure 3. Agents can query different services with different knowledge bases.

will not affect other future queries. Thus, a client agent cannot make permanent changes to the
public DeLP-program stored in a server. The temporal scope of the contextual information sent
in a query is limited and it will disappear when the process performed by the DeLP-server to
answer that query finishes. Continuing with our example, one client, Client1, can consult if some
property p is suited for her, providing the context that she is single and has a car. Other client,
Client2, can consult if p is suited for him, providing a different context: he has two children and
work downtown. Since queries do not affect permanent changes in the program stored in a server,
both contextual queries can be received and processed simultaneously, and one will not affect the
answer of the other.

Below the concept of contextual query will be formalised. We will show that a contextual
query provides to the server a particular DeLP-query, some contextual information in the form of
DeLP-program and the information of how to integrate this contextual information with the public
program stored in the server. To answer contextual queries, a DeLP-server uses both the common
knowledge stored in it, and the context that clients can send attached to a query. The conceptual
structure is described in Figure 4.

Several agents can consult the same DeLP-server, and the same agent can consult several
DeLP-Servers, as shown in Figure 3. For instance, in a particular medical application, dedicated
DeLP-Servers can maintain different programs, supporting particular shared knowledge of specific
specialties of the medical profession. Hence, an agent can pose the same contextual query to
different servers, and obtain a different answer from each of the servers. Our approach does not

Figure 4. Agents can query a DeLP-server creating a context.
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impose any restriction over the type, architecture, or implementation language of the client agents.
Next, we will formalise the above mentioned concepts introducing some examples.

Definition 5.1 A DeLP-Server is a triple � I, O, P � where I is a DeLP-interpreter, O is a set
of DeLP-program operators and P is a DeLP-program.

Thus, a DeLP-Server � I, O, P � provides a DeLP-interpreter, the possibility of representing
public knowledge in the form of a DeLP-program, and a set of operators that will handle the
integration of the contextual information with the program stored P .

Consider, for example, a DeLP-server for the real state application mentioned above. This
server will have some public knowledge represented by the program PRS = (�RS , �RS) shown
below where we will use the following shorthand notation: av (available), br (bedroom), conv_br
(convenient number of bedrooms). The set �RS contains facts representing information about the
name, number of bedrooms, location and price of the properties available for renting. For instance,
av(p1,br(1),downtown,2000) represents that the property p1 is available, it has 1 bedroom, is
located downtown, and its price is 2000.

�RS =
⎧⎨
⎩

av(p1,br(1),downtown,2000) av(p2,br(2),suburbs,4000)
av(p3,br(3),suburbs,5000) av(p4,br(3),downtown,15000)
av(p5,br(2),suburbs,10000) av(p6,br(1),downtown,7000)

⎫⎬
⎭

�RS =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

suited(Property) −−≺ av(Property,br(B),_,_),conv_br(B)
∼suited(Property) −−≺ expensive(Property)
expensive(Property) −−≺ av(Property,_,_,Price),afford(A),Price > A
conv_br(X) −−≺ has_children, X ≥ 2
conv_br(X) −−≺ couple, X ≥ 1
conv_br(X) −−≺ single, X ≥ 1
has_children −−≺ grown_children
∼conv_br(2) −−≺ grown_children
∼conv_br(1) −−≺ work_at_home

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

These defeasible rules should interpreted as follows. A convenient number of bedrooms in any
available property provide reasons for considering it as a suited property; observe that the reasons
for and against a convenient number of bedrooms depends on the private information a client
might send as a context. Properties are not considered suited if they are expensive; to determine if
a property is expensive for a client, the amount the client can afford to expend has to be provided
in the contextual query.

In the previous section we explained how a DeLP-interpreter takes a DeLP-program, a DeLP-
query (a literal), and returns one of the four DeLP possible answers: yes, no, undecided, and
unknown. To put this more clearly, let D be the domain of all possible DeLP-programs, and L is
the domain of DeLP-queries, then a DeLP-interpreter can be seen as a function

I : D × L −→ {yes, no, undecided, unknown}
Then DeLP-program operator o ∈ O, is a binary operator that will take two DeLP-programs P1

and P2, and it will return a new DeLP-program; this DeLP-program is the result of integrating P1

and P2 according to the definition of the operator o. Therefore, formally a DeLP-program operator
can be seen as a function

o : D × D −→ D

A contextual query to a DeLP-Server involves two elements: a particular DeLP-query Q to
be answered, and contextual information Co to be used together with the program stored in the
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DeLP-Server to answer Q. This contextual information consists of both private knowledge in the
form of a DeLP-program to be consider by the interpreter and appropriate operators that state how
to integrate the private information with the public program stored at the server. Formally:

Definition 5.2 A contextual query for a DeLP-Server � I, O, P � is a pair (Co,Q) where Q
is a DeLP-query, and the context Co is a sequence [({P1}, o1), . . . , ({Pn}, on)], where Pi is a
DeLP-program and oi ∈ O, 1 ≤ i ≤ n.

In García et al. (2007) and Tucat et al. (2009) concrete examples of program operators were
given. These operators are modular in the sense that each particular server can have a different
set of operators that can be designed specifically for the application domain in use. Recall that in
DeLP the set � has to be non-contradictory; therefore, a DeLP-program operator must return a
program where � is non-contradictory. Below, we include, as an example, three simple and basic
operators denoted by ⊕, ⊗, and �, that will be used throughout the examples below.

To simplify the presentation, these three operator will be defined for a restricted DeLP-program
(�, �) where � can have facts but no strict rules. We introduce auxiliary notation to use in
their definition. Let x be a fact, we denote with x the complement of x with respect to strong
negation; that is a = ∼a and ∼a = a. If X is a set of facts, the complement of X is defined as
X = {x | x ∈ X}. Previously, we have mentioned that a DeLP-program operator can be seen as a
function o : D × D �→ D; with that in mind we define the operators ⊕, ⊗, and � as follows:

(�, �) ⊕ (�a, �a) = ((� \ �a) ∪ �a, � ∪ �a)

(�, �) ⊗ (�a, �a) = (� ∪ (�a \ �), � ∪ �a)

(�, �) � (�a, �a) = (� \ �a, � \ �a)

The first two operators, ⊕ and ⊗, integrate the defeasible part of the program representing
the private knowledge and the defeasible part of the common knowledge stored in the server. The
last one, �, will eliminate the defeasible rules stored in the server that are in common with the
defeasible part of the private knowledge present in the contextual query.

The first operator, denoted by ⊕, will integrate the private knowledge of an agent received as a
DeLP-program (�a, �a) with the program stored in a server that contains (�, �), giving priority
to the information in �a. For instance, if the public knowledge in the server is (�, �) = ({a, b}, �)

and the private information received in a contextual query is (�a, �a) = ({∼a, c}, �a), then

({a, b}, �) ⊕ ({∼a, c}, �a) = (({a, b} \ {∼a, c}) ∪ {∼a, c}, � ∪ �a)

= (({a, b} \ {a, ∼c}) ∪ {∼a, c}, � ∪ �a) = ({b, ∼a, c}, � ∪ �a)

Note that a contradiction could arise if the private information would have been added directly
because � would have contained a and ∼a; by using this operator, since the received information
has priority, the fact ∼a will remain whereas a will be temporarily removed, and therefore ignored
for answering the query.

In contrast, the operator denoted by ⊗ gives priority to the facts that are part of the DeLP-
program (�, �) stored in the server. For instance, if the public knowledge in the server is as before
(�, �) = ({a, b}, �) and the received information is (�a, �a) = ({∼a, c}, �a), then

({a, b}, �) ⊗ ({∼a, c}, �a) = ({a, b} ∪ ({∼a, c} \ {a, b}), � ∪ �a)

= ({a, b} ∪ ({∼a, c} \ {∼a, ∼b}), � ∪ �a) = ({a, b, c}� ∪ �a)

That is, since the stored information has priority, the fact ∼a will remain whereas a will not be
considered for answering the query.



Argument and Computation 79

Finally, the operator denoted by � was developed with the purpose of not considering for a
particular query part of the public information maintained in the server. For instance, if the public
knowledge in the server is (�, �) = ({a, b, p}, �) and the received information is (�a, �a) =
({a, b, ∼p}, �a), then

({a, b, p}, �) � ({a, b, ∼p}, �a) = ({a, b, p} \ {a, b, ∼p}, � \ �a) = ({p}, � \ �a)

To provide an answer for a particular contextual query (Co, Q), a DeLP-Server � I, O, P �
has to consider first how the context Co is integrated with the stored program P . Since the context
can be a sequence of pairs [({P1}, o1), . . . , ({Pn}, on)], then we define:

P � Co, as (oPn
n ◦ oPn−1

n−1 ◦ . . . ◦ oP2
2 ◦ oP1

1 )(P),

where o
Pj

i (Pk) is a simplification of oi(Pj, Pk). Recall that DeLP-interpreter can be seen as a
function I : (D × L) �→ {yes, no, undecided, unknown}.

Definition 5.3 Let � I, O, P � be a DeLP-server and (Co, Q) a contextual query. Then, an
answer for (Co, Q) is I((P � Co), Q).

It is important to note that a context is a sequence and it will be processed by the DeLP-server
in the order it appears in that sequence. Hence, different answers could be obtained depending
on the order of the pairs in the context. Consider a DeLP-server � I, {⊕, ⊗, �}, (�RS , �RS) �
for the real state application already introduced. We include some contextual queries that clients
could send to the server and show the answers that will be returned:

([({single, afford(3000)}, ⊕)], suited(p1))

answer: yes

([({single, afford(3000)}, ⊕)], suited(p2))

answer: no

([({single, afford(4000)}, ⊕)], suited(p2))

answer: yes

([({grown_children, afford(4000)}, ⊕)], suited(p2))

answer: no

([({grown_children, afford(9000)}, ⊕)], suited(p3))

answer: yes

([({grown_children, afford(4000)}, ⊕)], suited(p3))

answer: no

([({grown_children, afford(4000)}, ⊕), ({∼conv_br(2) −−≺ grown_children}, �)], suited(p2))

answer: yes

6. Explanations for answers

In this section we will discuss a direct application of DeLP-Servers to address an important
topic in computational reasoning systems. The research included here has been reported in
García, Rotstein, Chesñevar, and Simari (2009) and García et al. (2013), where more extensive
presentations have been given.

Giving explanations regarding an answer coming from a computational system after a query
is a question that has been addressed in several areas of Artificial Intelligence; quite naturally, the
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expert systems community Lacave and Diez (2004),Ye and Johnson (1995), and Guida and Zanella
(1997) have explored possible solutions. Researchers in the area argumentation also have been
concerned with providing their views (Belanger, 2007; Moulin, Irandoust, Bélanger, & Desbordes,
2002; Walton, 2004); for instance, Walton (2004) has studied arguments and explanations from a
philosophical point of view. He considers that the purpose of an argument is to get the hearer to
come to accept something that is doubtful or unsettled, whereas the purpose of an explanation is
to get the hearer to understand something that he already accepts as a fact.

In our approach, explanations aim to transfer the understanding of how the warrant status of a
particular argument was obtained from a given argumentation framework. Thus, in our framework,
an explanation (called δ-Explanation) will consist of a structure that reflects the analysis carried
out in order to obtain such status, and it will contain those arguments and counterarguments that
are considered in analysis leading to its warrant status.

In Lacave and Diez (2004), a review about explanations in heuristic expert systems is given
and they offer the following definition:

. . . explaining consists in exposing something in such a way that it is understandable for the receiver of
the explanation – so that he/she improves his/her knowledge about the object of the explanation – and
satisfactory in that it meets the receiver’s expectations.

Using the language in the fragment above to describe our approach, we will explain the warrant
status of a claim by exposing the whole set of dialectical trees that was generated to study the war-
rant status of arguments related to the claim; this information is understandable from the receiver’s
point-of-view because all the arguments considered, their statuses (i.e. defeated/undefeated), and
their interrelations are explicitly shown, and this information will be satisfactory for the receiver
because it contains all the elements at stake in the dialectical analysis that supports the answer.

Example 6.1 Consider for instance the following scenario (García et al., 2013). Bob is an opera
fan and there is an opera show tonight. Besides, today is Bob’s birthday and he usually gets
together with friends. Bob usually goes to the opera house with friends. However, today Bob’s
best friend is coming with her baby because of Bob’s birthday, and is not a good idea to go to the
opera with a baby. The DeLP-program (�6.1, �6.1) represents the scenario just described. In this
program, go, show_tonight, birthday, baby and friends stand for ‘go to the opera show’, ‘there is
an opera show tonight’, ‘today is Bob’s birthday’, ‘a friend is coming with her baby’, and ‘get
together with friends’, respectively.

�6.1 = {show_tonight, birthday, baby}

�6.1 =
⎧⎨
⎩

go −−≺ showTonight go −−≺ showTonight, friends
friends −−≺ birthday ∼go −−≺ showTonight, friends, baby
∼go −−≺ friends

⎫⎬
⎭

This program contains three facts and five defeasible rules that represent tentative information.
The first defeasible rule states that if there is an opera show tonight then there is a good reason
to go to the opera house. The second defeasible rule represents that in his birthday Bob usually
gets together with friends. The third one states that if friends are coming, Bob would probably
stay at home. However, the fourth rule establishes that being with friends and the fact that there is
an opera show that night will give a good reason to go to the opera. The fifth rule states that this
situation changes if a friend is coming with a baby.
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From program (�6.1, �6.1) the following arguments can be obtained:

〈O1, go〉 = 〈{go −−≺ showTonight} , go〉
〈O2, ∼go〉 = 〈{(∼go −−≺ friends), (friends −−≺ birthday)} , ∼go〉

〈O3, go〉 = 〈{(go −−≺ showTonight, friends), (friends −−≺ birthday)} , go〉
〈O4, ∼go〉 = 〈{(∼go −−≺ showTonight, friends,baby), (friends −−≺ birthday)} , ∼go〉

Let’s assume the following priorities over rules:

(∼go −−≺ friends) <R (go −−≺ showTonight,friends)

(go −−≺ showTonight, friends) <R (∼go −−≺ showTonight, friends,baby)

From this program and the associated priorities, the argument 〈O2, ∼go〉 represents a blocking
defeater for 〈O1, go〉 and viceversa. The argument 〈O3, go〉 is a proper defeater for 〈O2, ∼go〉,
due to the priority of the rules. The argument 〈O4, ∼go〉 is a proper defeater for both 〈O3, go〉 and
〈O1, go〉.

From the program (�6.1, �6.1) the answer corresponding to the query go is no, and the answer
for the query ∼go is yes. As discussed previously, to obtain an answer for a DeLP-query Q, the
interpreter goes through a dialectical process for warranting Q involving the construction and
evaluation of the arguments that either support or interfere with the query under analysis. The
generated arguments are affected by the defeat relation and they are organised in dialectical trees.
Observe that given a DeLP-query Q, there might exist different arguments that support Q, and each
argument will generate a separate dialectical tree. Therefore, as we will show below, the returned
answer for Q will be only ‘the tip of the iceberg’ of a set of several dialectical trees that have
been explored to support that answer; thus, to understand why a DeLP-query obtains a particular
answer, it is essential to consider which arguments have been generated and what are the relations
between them.

Since an explanation has to further the understanding of the warrant status of a DeLP-query
Q, our approach to giving an explanation will consist of a structure that includes those marked
dialectical trees that are considered for establishing such status. This will include both marked
dialectical trees for arguments that support Q, and also marked dialectical trees for arguments
that support Q (the complement of Q with respect to strong negation). For instance, returning to
our Example 6.1, it is possible to build two arguments for go and two arguments that support
the complement ∼go; therefore, the explanation should include these four trees. The following
definition characterises two distinguished sets of marked dialectical trees that will be used to
produce an explanation. Recall that we write Mark(T ∗

〈A,L〉) = U to denote that the root of T ∗
〈A,L〉

is marked as “U” and we write Mark(T ∗
〈A,L〉) = D if the root of T ∗

〈A,L〉 is marked as “D”.

Definition 6.2 Let P be a DeLP-program and Q a DeLP-query.
Let T

∗(Q) = {〈A0, Q〉, . . . , 〈An, Q〉} be the set of all arguments for Q from P , and T
∗(Q) =

{〈B0, Q〉, . . . , 〈Bm, Q〉} the set of all arguments for Q from P .
The sets T

∗
U(Q) ⊆ T

∗(Q), and T
∗
D(Q) ⊆ T

∗(Q) ∪ T
∗(Q) are defined as follows:

T
∗
U(Q) = {T ∗

〈A,L〉 ∈ T
∗(Q) | Mark(T ∗

〈A,L〉) = U},
T

∗
D(Q) = {T ∗

〈A,L〉 ∈ (T∗(Q) ∪ T
∗(Q)) | Mark(T ∗

〈A,L〉) = D}.
Then, a dialectical explanation (δ-Explanation) for Q from P , denoted by EP(Q), is the tuple
EP(Q) = (T∗

U(Q), T∗
U(Q), T∗

D(Q)).
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Figure 5. Dialectical trees in the δ-Explanation for ‘∼go’.

As stated above, the purpose of an explanation is to transfer the understanding of how the
warrant status of a particular argument is obtained from a given argumentation framework. Con-
sequently, an explanation will consist of a structure that reflects the analysis carried out in order
to obtain such status, and it will contain those arguments and counterarguments that are consid-
ered in this analysis, showing explicitly how they relate to one another. That is, a δ-Explanation
EP(Q) for a claim Q from a DeLP-program P is a triplet (T∗

U(Q), T∗
U(Q), T∗

D(Q)), where the
first component is a (possibly empty) set of those marked dialectical trees from P that provide
a warrant for Q. The second component of EP(Q)is a (possible empty) set of marked dialectical
trees that provide a warrant for Q. Finally, the third component (T∗

D(Q)) is a (possibly empty) set
that contains those marked dialectical trees for Q or for Q that provide no warrant, i.e. their roots
are marked D (defeated).

Consider the program P6.1 = (�6.1, �6.1) of Example 6.1. The δ-Explanation for the query
‘∼go’ is:

EP6.1(∼go) = ({T ∗
〈A,L〉}, ∅, {T ∗

〈A,L〉, T ∗
〈A,L〉, T ∗

〈A,L〉}).
Figure 5 shows all the marked trees included in this δ-Explanation.

6.1. Schematic queries and generalised δ-Explanations

A DeLP-schematic query to a DeLP-program is a literal that at least has one variable. It represents
the set of DeLP-queries that unify with it only containing constants from the signature of the
language of the program. Schematic queries introduce the possibility of asking questions that
are more general than ground queries; for instance, consider the program introduced below in
Example 6.3, the schematic query flies(X) represents the query ‘what are the individuals for
which there exists a warranting argument supporting that they fly?’ Next, we will extend the
definition of δ-Explanation to include schematic queries and we will define the notion of answer
for schematic queries.

Example 6.3 Consider the DeLP-program (�6.3, �6.3) where:

�6.3 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

bird(X) ← chicken(X)
chicken(little)
chicken(tina)
scared(tina)
bird(rob)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

�6.3 =
⎧⎨
⎩

flies(X) −−≺ bird(X)
flies(X) −−≺ chicken(X),scared(X)
∼flies(X) −−≺ chicken(X)

⎫⎬
⎭
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Figure 6. Dialectical trees associated with the explanation for ‘∼f(X)’.

Observe that potentially, the variable X contained in the the schematic query flies(X) has an
infinite number of terms that unify with that variable. However, all queries produced unifying with
terms that are not in the signature of the language of this program; e.g. flies(mac) in Example 6.3,
will produce the answer unknown and therefore the explanation will be empty. Thus, the set of
instances of a schematic query that will be considered for generating a generalised δ-Explanation
will refer only to those instances of DeLP-queries that contain constants from the program sig-
nature. For instance, in the DeLP-program of Example 6.3, the schematic query flies(X) will only
refer to flies(tina), flies(rob), and flies(little).

Schematic queries introduce the possibility of asking questions that are more general than
ground queries. With this type of query we are not asking whether a certain piece of knowledge
can be believed (warranted), instead we are asking if there exists an instance of that piece of
knowledge (related to particular individuals) that can be warranted in the system. This approach
could lead to a deeper kind of reasoning as we may pose a query, gather the warranted instances
and continue the reasoning process with those individuals. As introduced next, an explanation for
a schematic query will contain the explanation for the individual DeLP-queries it represents.

Definition 6.4 Let P be a DeLP-program and Q a schematic query. Let {Q1, . . . , Qz} be the
set of all ground instances of Q wrt the signature of P . Let EP(Qi) be the δ-Explanation for the
DeLP-query Qi (1 ≤ i ≤ z) from program P . Then, the generalised δ-Explanation for Q in P is

GEP(Q) = {EP(Q1), . . . , EP(Qz)}

It is interesting to observe that a δ-Explanation is a particular case of a Generalised
δ-Explanation, where the set GEP(Q) is a singleton.

Consider again the DeLP-program (�6.3, �6.3), and suppose that we want to know if from this
program it can be warranted that a certain individual does not fly. If we pose the query ∼flies(X),
the answer is yes, because there is a warranted instance: ∼flies(little). The supporting argument is
(where ‘flies’ is abbreviated to ‘f’): 〈B1, ∼f (little)〉 = 〈{∼f(little) −−≺ chicken(little)} , ∼f (little)〉.
The trees corresponding to the generalised explanation are shown in Figure 6. This explanation also
shows that the other instance (∼f(tina)) is not warranted. Note that the answer for the schematic
query f(X) is also yes, but with a different set of warranted instances: f(tina) and f(rob). The
supporting argument for instance ‘X = tina’was already discussed, and the undefeated argument for
instance ‘X = rob’ is: 〈C1, f(rob)〉 = 〈{f(rob) −−≺ bird(rob)} , f(rob)〉. The generalised δ-Explanation
for f(X) is:

{({T ∗
〈A,L〉, T ∗

〈A,L〉}, ∅, {T ∗
〈A,L〉}), (∅, {T ∗

〈A,L〉}, {T ∗
〈A,L〉}), ({T ∗

〈A,L〉}, ∅, ∅)}
Consider a schematic query Q(X) and a DeLP-program P . Suppose that Q(X) represents the

five (ground) DeLP-queries: Q(a), Q(b), Q(c), Q(d) and Q(e). As the reader may have noticed
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from the example above, it may happen that the answer for Q(a) from P is yes, the answer for
Q(b) is no, the answer for Q(c) is yes, the answer for Q(b) is undecided, and the answer for Q(a)

is no. Next, we define the answer for a schematic query taking into consideration the individual
answers for each ground instance.

Let P be a DeLP-program and Q a schematic query. Let {Q1, . . . , Qn} be all the ground instances
of Q with respect to the signature of P . The answer for the schematic query Q is:

• yes, if there exists an instance Qi ∈ {Q1, . . . , Qn} such that the answer for the DeLP-query
Qi is yes (i.e. T

∗
U(Qi) ∼ t = ∅).

• no, if for every instance Qi ∈ {Q1, . . . , Qn}, the answer for Qi is no, (i.e. T
∗
U(Qi) �=

∅ for all Qi).
• undecided, if there is no instance Qi ∈ {Q1, . . . , Qn} such that the answer for the DeLP-

query Qi is yes, and there exists an instance Qk ∈ {Q1, . . . , Qn} such that the answer for Qk

is undecided.
• unknown, if {Q1, . . . , Qn} = ∅
For example, let’s assume that from a particular program P all the ground instances for p(X)

with respect to the signature of P are {p(a), p(b), p(c)} and for t(X) are {t(a), t(b), t(c)}, for k(X)

are {k(a), k(b), k(c)}, and for j(X) is the empty set. Consider that the following answers for ground
queries are obtained:

p(a) yes, p(b) no, p(c) undecided,

t(a) no, t(b) no, t(c) undecided,

k(a) no, k(b) no, k(c) no.

The answer for p(X) is yes because there is an instance (p(a)) for which the answer is yes. The
answer for t(X) is undecided because there is no warranted instance, and there is one instance
(t(c)) for which the answer is undecided. The answer for k(X) is no because all the instances
return no. The answer for j(X) is unknown.

Finally, note that from a DeLP programmer point-of-view, δ-Explanations provide a global idea
of the interactions among arguments within the context of a query. This is an essential debugging
tool while programming: whenever unexpected behaviour arises, the programmer can check the
given explanations to detect errors.

7. Extensions and variations on DeLP

Several extensions of DeLP have been proposed and in this section we will briefly sketch a few
of these developments. The following are some of these research lines that are more related to
applications.

Possibilistic Defeasible Logic Programming (P-DeLP) (Alsinet, Chesñevar, Godo, Sandri, &
Simari, 2008; Chesñevar, Simari, Alsinet, & Godo, 2004), is an extension of DeLP that allows
the treatment of possibilistic uncertainty and fuzzy knowledge at object-language level in a logic
programming language. In P-DeLP, knowledge representation features are formalised based on
a possibilistic logic based on the Horn-rule fragment of Gödel fuzzy logic (PGL). Formulas in
PGL are built over fuzzy propositional variables and the certainty degree of formulas is expressed
with a necessity measure. The proof method for PGL, in a logic programming setting, is based on
a complete calculus for determining the maximum degree of possibilistic entailment of a fuzzy
goal. In a multiagent context, it is possible to use P-DeLP to encode the agents’ knowledge about
the world, applying the argument and warrant computing procedure to obtain their inferences. In
particular, we have also a number of argument-based consequence operators which allow us to
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model different aspects of the reasoning abilities in an intelligent agent which have been formalised
and studied; the computational problem related to how answers to P-DeLP queries can be sped
up by pruning the associated search space have been considered.

The representation of strength and time provide useful elements in many argumentation appli-
cations. The Strength and Time DeLP, ST-DeLP, is an instantiation of the abstract framework
E-TAF (Budán, Gómez Lucero, Chesñevar, & Simari, 2012) based on DeLP that incorporates the
representation of temporal availability and strength factors varying over time associated with the
elements of the language of DeLP. It also specifies how arguments are built, and how the avail-
ability and strength of arguments are obtained from the corresponding information attached to the
elements from which they are built. After determining the availability of attacks by comparing
strength of conflicting arguments over time, E-TAF definitions are applied to establish temporal
acceptability of arguments. Thus, the main contribution of this development is the integration of
time and strength in the context of argumentation systems. Other lines of work related to this can
be found in Pardo and Godo (2011).

In García, García, and Simari (2008) an argumentation-based planning formalism has been
introduced. This system can be used by an agent to construct plans using partial order planning
technics, In such a manner that the traditional POP algorithm is extended to consider arguments
as planning steps. When actions and arguments are combined to construct plans, new types of
interferences appear ant it is necessary to extend the standard notion of threat to consider: action-
action, action-argument, and argument-argument threats. The resulting algorithm is called APOP,
and extends the traditional POP algorithm to consider actions and arguments as planning steps
and resolve the new types of threats using new methods.

A framework for ontology integration of DL ontologies based on DeLP was introduced in
Gómez, Chesñevar, and Simari (2013). In this work, the limitations for reasoning in the presence of
inconsistent ontologies that Description Logic (DL) ontologies suffer are addressed using defeasi-
ble argumentation to model different DL reasoning capabilities when handling inconsistent ontolo-
gies, resulting in so-called d-ontologies. ONTOarg, provides a decision support framework for
performing local-as-view integration of possibly inconsistent and incomplete ontologies in terms
of DeLP. This ontology integration system is able to handle inconsistent DL-based ontologies by
performing a dialectical analysis in order to determine the membership of individuals to concepts.

Another recent line of research deals with the problem of massively built arguments from
premises obtained from relational databases and compute warrant (Deagustini et al., 2013). In
this setting, different databases can be updated by external, independent applications, leading to
changes in the spectrum of available arguments.Algorithms for integrating a database management
system with an argument-based inference engine have been designed and tested. The empirical
results and running-time analysis associated with the approach show how, taking advantage of
modern DBMS technologies, it is possible to efficiently implement processes that requiere mas-
sive argumentation. This provides an interesting possibility for developing new architectures for
knowledge-based applications, such as Decision Support Systems and Recommender Systems,
that could efficiently use argumentation as the underlying inference model.

Note
1. We will use the term knowledge base and defeasible logic program interchangeably when no confusion

may arise.
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