
Argument and Computation
Vol. 2, Nos. 2–3, June–September 2011, 107–129

Complexity of logic-based argumentation in Post’s framework†

Nadia Creignoua, Johannes Schmidta*, Michael Thomasb‡ and Stefan Woltranc

aLIF, UMR CNRS 6166, Aix-Marseille Université, 163 Avenue de Luminy, 13288 Marseille Cedex 9,
France; bTWT GmbH, Bernhäuser Straße 40–42, 73765 Neuhausen a.d.F., Germany; cInstitut für
Informationssysteme E184/2, Technische Universität Wien, Favoritenstr. 9–11, 1040 Wien, Austria

(Received 19 May 2011; final version received 23 September 2011)

Many proposals for logic-based formalisations of argumentation consider an argument as a pair
(�, α), where the support � is understood as a minimal consistent subset of a given knowledge
base which has to entail the claim α. In case the arguments are given in the full language of
classical propositional logic reasoning in such frameworks becomes a computationally costly
task. For instance, the problem of deciding whether there exists a support for a given claim
has been shown to be �

p
2-complete. In order to better understand the sources of complexity

(and to identify tractable fragments), we focus on arguments given over formulæ in which the
allowed connectives are taken from certain sets of Boolean functions. We provide a complexity
classification for four different decision problems (existence of a support, checking the validity
of an argument, relevance and dispensability) with respect to all possible sets of Boolean
functions. Moreover, we make use of a general schema to enumerate all arguments to show that
certain restricted fragments permit polynomial delay. Finally, we give a classification also in
terms of counting complexity.

Keywords: logic based argumentation; complexity; Post’s lattice; counting; enumeration

1. Introduction

Argumentation is nowadays a main research topic within the area of Artificial Intelligence (Bench-
Capon and Dunne 2007; Besnard and Hunter 2008; Rahwan and Simari 2009) aiming to formally
analyse the pros and cons of statements within a certain scenario in order to understand implicit
conflicts and to support decision-making. The overall process of formal argumentation can be
considered as a sequence of the following steps; see, for instance, the work by Caminada and
Amgoud (2007) or Gorogiannis and Hunter (2011): Given a knowledge base �, in the first step
arguments are formed, and then conflicts between the arguments are identified. Next, one abstracts
from the concrete contents of the arguments and uses certain semantics to find acceptable subsets of
arguments by analysing solely the graph obtained from the arguments and conflicts; this particular
step was first proposed by Dung (1995) who invented the concept of abstract argumentation
frameworks. Finally, by inspecting selected arguments certain conclusions can be made. Towards
practicably efficient realisations, a good understanding of the computational complexity of all
these single steps is thus of high importance.

We focus here on the first step of this process, i.e. forming valid and plausible arguments
from a given set of formulæ. This step is also sometimes referred to as logic-based argumentation

*Corresponding author. Email: johannes.schmidt@lif.univ-mrs.fr
†An earlier version appeared in the Proc. of 12th European Conference on Logics in Artificial Intelligence,
JELIA’2010, Helsinki, Finland.
‡Work performed while employed at the Institut für Theoretische Informatik, Gottfried Wilhelm Leibniz
Universität, Appelstr. 4, 30167 Hannover, Germany.

ISSN 1946-2166 print/ISSN 1946-2174 online
© 2011 Taylor & Francis
http://dx.doi.org/10.1080/19462166.2011.629736
http://www.tandfonline.com

108 N. Creignou et al.

(Chesñevar, Maguitman, and Loui 2000; Prakken and Vreeswijk 2002; Besnard and Hunter 2008;
Amgoud and Besnard 2010) in order to separate it from the abstraction as used in Dung’s frame-
works. One goal in logic-based argumentation is thus to find a concrete formal representation
of an argument and then to define – on top of this concept – notions such as counterarguments,
rebuttals or undercuts (see Besnard and Hunter 2001). Many proposals consider an argument as
a pair (�, α), where the support � is a consistent set (or a minimal consistent set) of formulæ
from a given knowledge base that entails the claim α which is a formula (Cayrol 1995; Besnard
and Hunter 2001; Amgoud and Cayrol 2002; García and Simari 2004; Dung, Kowalski, and Toni
2006). Different logical formalisms provide different definitions for consistency and entailment
and hence give different options for defining the notion of an argument. One natural candidate for
formalising arguments is the full language of classical propositional logic. However, it is compu-
tationally challenging to generate arguments from a knowledge base �, using classical logic; in
fact, the problem of deciding whether there exists a support � ⊆ � for a given claim α has been
shown to be �

p
2-complete by Parsons, Wooldridge, and Amgoud (2003).

Computing the support for an argument underlies many reasoning problems in logic-based
argumentation, for instance, the computation of argument trees as proposed by Besnard and
Hunter (2001). Since the basic task of finding a support is already computationally involved,
it is indispensable to understand its sources of complexity and to identify fragments for which
that problem becomes tractable. In this paper, we contribute to this line of research by restricting
the formulæ involved (i.e. formulæ in the knowledge base and thus in the support, as well as the
formula used as the claim). In fact, we restrict formulæ to use only connectives from a given
set B of Boolean functions and study the decision problems of existence, validity, relevance, and
respectively, dispensability, which are defined as follows:

• Arg (Argumentation): given �, α, does there exist a support � ⊆ � for α?
• Arg-Check (Argument Checking): given a pair (�, α), is it an argument?
• Arg-Rel (Argument Relevance): given �, α, ϕ, is there an argument (�, α) such that

ϕ ∈ � ⊆ �?
• Arg-Disp (Argument Dispensability): given �, α, ϕ, is there an argument (�, α) such that

ϕ /∈ � ⊆ �?

We understand here as arguments pairs (�, α) with minimal support, i.e. (�, α) is an argument
if � is consistent, entails α, and no �′ � � entails α. Moreover, we consider the problems of
enumerating and counting arguments:

• #Arg (Argument Counting): given �, α, how many arguments (�, α) with � ⊆ � exist?
• Enum-Arg (Argument Enumeration): given �, α, output all arguments (�, α) such that

� ⊆ �.

It can be seen that the minimality condition is only important for the decision problems
Arg-Check and Arg-Rel (for instance, in case of Arg-Disp, there exists a support � with-
out ϕ for α exactly if there exists a minimal such support; we will make this more precise in
Section 2.3) as well as for #Arg and Enum-Arg. For the Enum-Arg problem, we will provide
a general scheme to compute all arguments making use of decision procedures for Arg-Check,
Arg-Rel and Arg-Disp. This also indicates the practical relevance of the decision problems we
study, since enumerating all arguments is the central task in the overall process discussed above.
However, also counting the number of arguments is of importance. Consider two different for-
mulæ α, β, it might be of interest to know whether more arguments of form (�, α) than arguments
of form (�, β) exist for a given knowledge base. Usually, such counting problems are consid-
ered without explicitly making use of enumeration procedures. Note that the latter might have to

Argument and Computation 109

output an exponential number of solutions (thus requiring exponential time), although the number
of solutions may be efficiently computable. In fact, counting complexity recently gained interest
in AI as is witnessed by work from Hermann and Pichler (2010) or Durand and Hermann (2008).
However, except recent work by Barnoi, Dunne, and Giacomin (2010), who consider counting
complexity for abstract argumentation, we are not aware of such investigations in the area of
argumentation.

A major tool when analysing the complexity of problems parameterised by a given set B
of Boolean connectives is Post’s lattice: a lattice showing the inclusion relations between all
existing sets of Boolean functions that are closed under superposition (that is, roughly speaking,
closed under arbitrary composition, see Section 2.2 for a formal definition). Several complexity
classifications have already been obtained in this so-called Post’s framework, such as the clas-
sical satisfiability problem (Lewis 1979), equivalence and implication problems (Reith 2003;
Beyersdorff, Meier, Thomas, and Vollmer 2009a), satisfiability and model checking in modal
and temporal logics (Bauland, Hemaspaandra, Schnoor, and Schnoor 2006; Bauland, Schneider,
Schnoor, Schnoor, and Vollmer 2008), default logic (Beyersdorff, Meier, Thomas, and Vollmer
2009b), circumscription (Thomas 2009) and abduction (Creignou, Schmidt, and Thomas 2010).

The main contribution of this paper is a systematic complexity classification for the six
aforementioned problems in terms of all possible sets of Boolean connectives.

• Concerning the four decision problems, we show that, depending on the chosen set of con-
nectives, the problems range from inside P up to the second level of the polynomial hierarchy,
and we identify those fragments complete for NP, coNP, and also for DP, the class of dif-
ferences of problems in NP. We also show that unless the polynomial hierarchy collapses
there exist particular sets of Boolean connectives such that: (i) deciding the existence of an
argument is easier than verifying a given one; (ii) deciding the dispensability of a formula
for some argument is easier than deciding its relevance.

• We provide a general schema for enumerating all arguments. For the fragments which
have their decision problems in P, we also obtain positive results in terms of enumeration
by showing that either each solution is computed with at most polynomial delay (for the
fragments where the number of arguments might be exponential) or that all solutions can
be computed in polynomial time (which obviously is only possible for fragments where
the number of arguments is bounded polynomially in the size of the knowledge base and
the claim). Finally, we complement our picture by considering the problem of counting the
number of arguments in terms of all possible sets of Boolean connectives.

The paper is structured as follows. Section 2 contains the necessary background on complexity
theory (Section 2.1) and on Post’s lattice (Section 2.2). Moreover, we define the studied framework
of argumentation and relevant problems in Section 2.3. We then turn to our main results which are
given in Sections 3 and 4. More specifically, the complexity of the decision problems is classified
in Sections 3.2–3.4, enumeration is studied in Section 4.1 and counting complexity is dealt with
in Section 4.2. We summarise our results and discuss their relation to similar work (as e.g. in the
area of abduction) in a dedicated Section 5. Finally, Section 6 concludes with a brief recapitulation
of the achieved results as well as future research directions.

2. Background

We assume familiarity with propositional logic. The set of all propositional formulæ is denoted by
L. A model for a formula ϕ is a truth assignment to the set of its variables that satisfies ϕ. Further,
we denote by ϕ[α/β] the formula obtained from ϕ by replacing all occurrences of α with β.

110 N. Creignou et al.

For a given formula ϕ, we denote by Vars(ϕ) the set of variables occurring in ϕ. We extend
this definition on sets of formulæ 	 as Vars() = ⋃

ϕ∈	 Vars(ϕ). We identify finite 	 with the
conjunction of all the formulæ in 	,

∧
ϕ∈	 ϕ. Naturally, 	[α/β] then stands for

∧
ϕ∈	 ϕ[α/β]. We

say that two formulæ ϕ and ψ are equivalent (written ϕ ≡ ψ) if every assignment σ : Vars(ϕ) ∪
Vars(ψ) → {0, 1} on the combined variable sets satisfies ϕ if and only if it satisfies ψ . For any
formula ϕ ∈ L, we write 	 |= ϕ if 	 entails ϕ, i.e. if ϕ is satisfied in every model of 	.

A literal l is a variable x or its negation ¬x. A positive literal is a variable x, a negative literal
is the negation of a variable ¬x. Given a set of variables V , Lits(V) denotes the set of all literals
formed upon the variables in V , i.e. Lits(V) := V ∪ {¬x | x ∈ V}. A clause is a disjunction of
literals and a term is a conjunction of literals.

2.1. Complexity theory

We require standard notions of the complexity theory. For the decision problems, the arising
complexity degrees encompass the classes Logspace, P, NP, coNP, DP and �

p
2 . The class DP

is defined as the set of languages recognisable by the difference of two languages in NP, i.e.
DP := {L1 \ L2 | L1, L2 ∈ NP} = {L1 ∩ L2 | L1 ∈ NP, L2 ∈ NP}. The class �

p
2 is the set of lan-

guages recognisable by non-deterministic polynomial-time Turing machines with an NP oracle.
For our hardness results, we employ logspace many-one reductions, defined as follows: a lan-
guage A is logspace many-one reducible to some language B (written A ≤log

m B) if there exists a
logspace-computable function f such that x ∈ A if and only if f (x) ∈ B. Thus, for C being any of
the complexity class NP, coNP, DP or �

p
2 , we call C-hard a problem G if any instance of a generic

problem in C can be reduced to an instance of G by means of a logspace many-one reduction.
If in addition G belongs to the class C, then it is called C-complete. A complete problem for DP
is Critical-Sat, the problem to decide whether a given formula in 3CNF is unsatisfiable, but
removing any of its clauses makes it satisfiable (Papadimitriou and Wolfe 1988). A prototypical
�

p
2-complete problem is deciding the truth of an expression ∃X∀Yβ where β is a propositional

formula over the set of variables X ∪ Y . This quantified formula is valid if and only if there exists
a truth assignment to the variables of X such that for all truth assignments to the variables of Y
the formula β is true. In this paper, we use a more restricted version, that we denote by Qsat2,∃, in
which the formula β is 3-DNF, and which is still �

p
2-complete.

When analysing an enumeration algorithm, polynomial time complexity is not a suitable
yardstick of efficiency since the output size is usually exponential in the size of the input. We
consider an enumeration algorithm to be efficient, when it runs in polynomial delay, i.e. if the
delay until the first solution is output, thereafter the delay between any two consecutive solutions,
and the delay between the last solution and termination is bounded by a polynomial p(n) in the
input size n. This notion of efficiency for enumeration has first been introduced by Johnson,
Papadimitriou, andYannakakis (1988). We denote the corresponding complexity class by DelayP.

A counting problem is represented using a witness function w, which for every input x returns a
finite set of witnesses. This witness function gives rise to the following counting problem: given an
instance x, find the cardinality |w(x)| of the witness set w(x). The class #P is the class of counting
problems naturally associated with decision problems in NP. According to Hemaspaandra and
Vollmer (1995), if C is a complexity class of decision problems, we define #·C to be the class
of all counting problems whose witness function is such that the size of every witness y of x is
polynomially bounded in the size of x, and checking whether y ∈ w(x) is in C. Thus, we have
#P = #·P and #P ⊆ #·NP. Completeness of counting problems is usually proved by means of
Turing reductions. A stronger notion is the parsimonious reduction (Papadimitriou 1994), where
the exact number of solutions is conserved by the reduction function. When there is a parsimonious
reduction from a counting problem #A to a counting problem #B we write #A ≤! #B.

Argument and Computation 111

For more background information on complexity theory, the reader is referred to Papadimitriou
(1994).

2.2. Post’s lattice

A Boolean function is an n-ary function f : {0, 1}n → {0, 1}. A clone is a set of Boolean func-
tions that is closed under superposition, i.e. it contains all projections (that is, the functions
f (a1, . . . , an) = ak for all 1 ≤ k ≤ n and n ∈ N) and is closed under arbitrary composition (that
is, application of one function to the results of other functions). Let B be a finite set of Boolean
functions. We denote by [B] the smallest clone containing B and call B a base for [B]. Post (1941)
identified, the set of all clones of Boolean functions. He gave a finite base for each of the clones
and showed that they form a lattice under the usual ⊆-relation, hence the name Post’s lattice
(Figure 1). To define the clones, we introduce the following notions, where f is an n-ary Boolean
function:

• f is c-reproducing if f (c, . . . , c) = c, c ∈ {0, 1}.The binary and (∧) and the binary or (∨) are
0- and 1-reproducing, the binary exclusive or (⊕) is 0-reproducing, but not 1-reproducing,
whereas the unary negation (¬) is neither 1- nor 0-reproducing.

• f is monotonic if a1 ≤ b1, . . . , an ≤ bn implies f (a1, . . . , an) ≤ f (b1, . . . , bn). Boolean
functions built up on composition of only ∧, ∨, 0, 1 are monotonic, like for instance
g(x, y, z) ≡ x ∧ (1 ∧ (y ∨ z)).

• f is c-separating of degree k if for all A ⊆ f −1(c) of size |A| = k there exists an i ∈
{1, . . . , n} such that (a1, . . . , an) ∈ A implies ai = c, c ∈ {0, 1}. The (m + 1)-ary function
hm(x1, . . . , xm+1) ≡ ∨m+1

i=1

∧m+1
j=1,j �=i xj being true if and only if ‘at least m variables are

true’ is 1-separating of degree m. For instance h2(x, y, z) ≡ (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) is
1-separating of degree 2.

• f is c-separating if f is c-separating of degree | f −1(c)|. The implication g(x, y) ≡ ¬x ∨ y
is 0-separating.

• f is self-dual if f ≡ dual(f), where dual(f)(x1, . . . , xn) := ¬f (¬x1, . . . , ¬xn). The func-
tion g(x, y, z) ≡ (x ∧ ¬y) ∨ (x ∧ ¬z) ∨ (¬y ∧ ¬z) is self-dual.

• f is affine if f ≡ x1 ⊕ · · · ⊕ xn ⊕ c with c ∈ {0, 1}. The function g(x, y, z) ≡ x ⊕ y ⊕ z ⊕ 1
is affine and self-dual.

A list of all clones with definitions and finite bases is given in Table 1. In the naming of the clones,
the semantic of single indexes is as follows. Index 2 indicates that the clone contains no constants
at all. Index 0 (resp. 1) indicates that the clone contains only the constant 0 (resp. 1), but not 1 (resp.
0). Clones with no index contain both constants 0 and 1. The only exceptions to this convention
are the clones D and D1 which do not contain any constants at all. The index ∗ stands for all valid
indexes. Clones of particular importance in this paper, since among other things they mark points
in Post’s lattice where the complexity of argumentation changes, are:

• the clone of all Boolean functions BF = [∧, ¬] = [∧, ∨, ¬, 0, 1]
• the monotonic clones M∗, e.g. M2 = [∧, ∨], M = [∧, ∨, 0, 1]
• the affine clones L∗, e.g. L2 = [x ⊕ y ⊕ z], L = [x ⊕ y, 0, 1]
• the disjunctive clones V∗, e.g. V2 = [∨], V = [∨, 0, 1]
• the conjunctive clones E∗, e.g. E2 = [∧], E = [∧, 0, 1]
• the c-reproducing clones R∗, R1 1-repr., R0 0-repr., R2 1- and 0-repr.
• the implication clone S0 = [→]
• the negated-implication clone S1 = [x ∧ ¬y]
• the dual clones D∗, D self-dual, D1 = D ∩ R2, D2 = D ∩ M

112 N. Creignou et al.

Figure 1. Post’s lattice showing the complexity of the decision problems studied herein.

• the clones S00 = S0 ∩ R2 ∩ M = [x ∨ (y ∧ z)], S10 = S1 ∩ R2 ∩ M = [x ∧ (y ∨ z)] and
S12 = S1 ∩ R2 = [x ∧ (y ∨ ¬z)]

We will often add some function f /∈ C to a clone C and consider the clone C′ = [C ∪ { f }]
generated out of C and f . With Post’s lattice, one can quite easily determine this C′: it is the lowest
clone above C that contains f . The following identities will be frequently used.

• [S10 ∪ {1}] = M1

• [D2 ∪ {1}] = S2
01• [S1 ∪ {1}] = [D ∪ {1}] = BF

For an example on how these identities will be useful, see Section 3.1, in particular at the end.

Argument and Computation 113

Table 1. The list of all Boolean clones with definitions and bases, where
hn := ∨n+1

i=1
∧n+1

j=1,j �=i xj and dual(f)(a1, . . . , an) = ¬f (¬a1 . . . , ¬an).

Name Definition Base

BF All Boolean functions {x ∧ y, ¬x}
R0 { f | f is 0-reproducing} {x ∧ y, x ⊕ y}
R1 { f | f is 1-reproducing} {x ∨ y, x ⊕ y ⊕ 1}
R2 R0 ∩ R1 {∨, x ∧ (y ⊕ z ⊕ 1)}
M { f | f is monotonic} {x ∨ y, x ∧ y, 0, 1}
M1 M ∩ R1 {x ∨ y, x ∧ y, 1}
M0 M ∩ R0 {x ∨ y, x ∧ y, 0}
M2 M ∩ R2 {x ∨ y, x ∧ y}
Sn

0 { f | f is 0-separating of degree n} {x → y, dual(hn)}
S0 { f | f is 0-separating} {x → y}
Sn

1 { f | f is 1-separating of degree n} {x ∧ ¬y, hn}
S1 { f | f is 1-separating} {x ∧ ¬y}
Sn

02 Sn
0 ∩ R2 {x ∨ (y ∧ ¬z), dual(hn)}

S02 S0 ∩ R2 {x ∨ (y ∧ ¬z)}
Sn

01 Sn
0 ∩ M {dual(hn), 1}

S01 S0 ∩ M {x ∨ (y ∧ z), 1}
Sn

00 Sn
0 ∩ R2 ∩ M {x ∨ (y ∧ z), dual(hn)}

S00 S0 ∩ R2 ∩ M {x ∨ (y ∧ z)}
Sn

12 Sn
1 ∩ R2 {x ∧ (y ∨ ¬z), hn}

S12 S1 ∩ R2 {x ∧ (y ∨ ¬z)}
Sn

11 Sn
1 ∩ M {hn, 0}

S11 S1 ∩ M {x ∧ (y ∨ z), 0}
Sn

10 Sn
1 ∩ R2 ∩ M {x ∧ (y ∨ z), hn}

S10 S1 ∩ R2 ∩ M {x ∧ (y ∨ z)}
D { f | f is self-dual} {(x ∧ ¬y) ∨ (x ∧ ¬z) ∨ (¬y ∧ ¬z)}
D1 D ∩ R2 {(x ∧ y) ∨ (x ∧ ¬z) ∨ (y ∧ ¬z)}
D2 D ∩ M {(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)}
L { f | f is affine} {x ⊕ y, 1}
L0 L ∩ R0 {x ⊕ y}
L1 L ∩ R1 {x ⊕ y ⊕ 1}
L2 L ∩ R2 {x ⊕ y ⊕ z}
L3 L ∩ D {x ⊕ y ⊕ z ⊕ 1}
V { f | f is a disjunction of variables or constants} {x ∨ y, 0, 1}
V0 V ∩ R0 {x ∨ y, 0}
V1 V ∩ R1 {x ∨ y, 1}
V2 V ∩ R2 {x ∨ y}
E { f | f is a conjunction of variables or constants} {x ∧ y, 0, 1}
E0 E ∩ R0 {x ∧ y, 0}
E1 E ∩ R1 {x ∧ y, 1}
E2 E ∩ R2 {x ∧ y}
N { f | f depends on at most one variable} {¬x, 0, 1}
N2 N ∩ R2 {¬x}
I { f | f is a projection or a constant} {id, 0, 1}
I0 I ∩ R0 {id, 0}
I1 I ∩ R1 {id, 1}
I2 I ∩ R2 {id}

A propositional formula using only functions from B as connectives is called a B-formula. The
set of all B-formulæ is denoted by L(B).

Let f be an n-ary Boolean function. A B-formula ϕ is called B-representation of f if f ≡ ϕ.
Such a B-representation exists for every f ∈ [B]. Yet, it may happen that the B-representation of
some function uses some input variable more than once, see Example 2.1.

114 N. Creignou et al.

Example 2.1 (Exponential blow up). Let h(x, y) ≡ ¬(x ∧ y).An {h}-representation of the binary
and, and(x, y) ≡ x ∧ y, is h(h(x, y), h(x, y)). Observe that an {h}-representation of the n-ary and,
andn(x1, . . . , xn) ≡ x1 ∧ · · · ∧ xn, based on the recursive application of the {h}-representation
h(h(x, y), h(x, y)) of the binary and to the formula

(· · · (((x1 ∧ x2) ∧ x3) ∧ x4) ∧ · · ·) ∧ xn

leads to an explosion of the formula size. This is because the parentheses-depth is linear and the
variables x, y appear twice in the {h}-representation h(h(x, y), h(x, y)) of the binary and. We can
avoid this exponential blow up by placing the parentheses in a way such that we get a formula of
logarithmic parentheses-depth, i.e.

(· · · ((x1 ∧ x2) ∧ (x3 ∧ x4)) ∧ · · ·) ∧ (· · · ∧ ((xn−3 ∧ xn−2) ∧ (xn−1 ∧ xn)) · · ·).

2.3. Logic-based argumentation

Throughout the paper, � is assumed to be a given finite set of formulæ (the knowledge base)
representing a large depositary of information, from which arguments can be constructed for
arbitrary claims.

Following Besnard and Hunter (2001), an argument is a pair (�, α), where � is a set of formulæ
and α is a formula such that

(1) � is consistent,
(2) � |= α,
(3) � is minimal with this last property, i.e. no proper subset of � entails α.

We say that (�, α) is an argument for α. If � ⊆ �, then it is said to be an argument in �. We
call α the consequent and � the support of the argument. Note that these three conditions are
equivalent to the following:

(C1) � is satisfiable,
(C2) � ∧ ¬α is unsatisfiable (i.e. � |= α), and
(C3) for all ϕ ∈ �, (� \ {ϕ}) ∪ {¬α} is satisfiable (i.e. � is minimal).

Let B be a finite set of Boolean functions. Then the argument existence problem for B-formulæ
is defined as

Problem: Arg(B).
Instance: A = (�, α), where � ⊆ L(B) and α ∈ L(B).
Question: Does there exist � such that (�, α) is an argument in �?

Besides the decision problem for the existence of an argument, we are interested in the decision
problems for B-formulæ for validity, relevance and dispensability. They are defined as follows and
deal with formulæ in L(B) only.

Problem: Arg-Check(B).
Instance: A = (�, α), where � ⊆ L(B) and α ∈ L(B).
Question: Is (�, α) an argument?

Problem: Arg-Rel(B).
Instance: A = (�, α, ϕ), where � ⊆ L(B) and α, ϕ ∈ L(B).
Question: Does there exist an argument (�, α) in � such that ϕ ∈ �?

Problem: Arg-Disp(B).

Argument and Computation 115

Instance: A = (�, α, ϕ), where � ⊆ L(B) and α, ϕ ∈ L(B).
Question: Does there exist an argument (�, α) in � such that ϕ /∈ �?

Observe that the minimality of the support is only relevant to the problems Arg-Check and
Arg-Rel. For Arg and Arg-Disp, the existence of a consistent subset � of the knowledge base
� that entails the claim α (and does not contain some formula ϕ) implies a consistent �′ ⊆ �

such that �′ |= α and �′ \ {ψ} �|= α for all ψ ∈ �′. To decide the existence of an argument, it
therefore suffices to find any consistent subset of � that entails α. For Arg-Rel, on the other
hand, we have to decide whether there exists an argument for α that contains the formula ϕ. The
existence of some consistent set � ⊆ � with ϕ ∈ � and � |= α does not help here, because ϕ

might be excluded from the minimal subset �′ ⊆ � yielding an argument for α. Consequently,
unlike in other non-monotonic reasoning formalisms, the complexity of deciding relevance and
dispensability of a formula for some argument may differ. Indeed, we will show that there exist
sets B such that Arg-Rel(B) is harder to decide than Arg-Disp(B) unless the polynomial hierarchy
collapses. Similarly, for Arg-Check, we have to verify that the set � in the given pair (�, α) is
indeed minimal with respect to consistency and entailment of α. While this is supposedly easier
to decide than Arg, we will see that owing to the verification of minimality there exist sets B such
that Arg-Check(B) is harder to decide than Arg(B) unless the polynomial hierarchy collapses.

Other interesting tasks are to enumerate all solutions or to count them.

Problem: Enum-Arg(B).
Instance: A = (�, α), where � ⊆ L(B) and α ∈ L(B).
Output: Generate all arguments (�, α) in � without repetition.

Problem: #Arg(B).
Instance: A = (�, α), where � ⊆ L(B) and α ∈ L(B).
Output: Number of arguments (�, α) in �.

Obviously, for both Enum-Arg(B) and #Arg(B), minimality of the support plays a crucial
role, as well.

3. Decision problems

3.1. Tools and methods

Observe that if B1 and B2 are two sets of Boolean functions such that B1 ⊆ [B2], then every
function of B1 can be expressed by a B2-formula, namely by its B2-representation. This way
there is a canonical reduction between Arg(B1, M) and Arg(B2, M) if B1 ⊆ [B2]: replace all
B1-connectives by their B2-representation. This reduction is not necessarily polynomial: Since
the B2-representation of some function may use some input variable more than once, the formula
size may grow exponentially, see Example 2.1. (The existence or not of a polynomial-size B2-
representation for any B1-formula is a topic of independent interest, which has been addressed
several times in the literature, see e.g. Spira 1971; Karchmer and Wigderson 1988). Nevertheless,
we will use the idea of this canonical reduction very frequently, dealing only with cases where
exponential blow up can be avoided by special structures of the B1-formulæ, similar to Example 2.1.

When we show hardness-results for Arg(B) for some B such that C ⊆ [B] (C a clone), we
generally show hardness first only for Arg(C) and show then in a second step that the proof
can indeed be extended to show hardness also for Arg(B), using the above-mentioned canonical
reduction.

The following lemmas show that we can often suppose that our considered B contains the
constant 1. This will reduce the number of cases to study.

116 N. Creignou et al.

Lemma 3.1 Let Arg-P denote any of the problems Arg, Arg-Check or Arg-Rel. Let B be
a finite set of Boolean functions such that ∧ ∈ [B], i.e. E2 ⊆ [B]. Then Arg-P(B ∪ {1}) ≤log

m

Arg-P(B).

Proof Let I be the given instance. We map I to the instance I ′ obtained by replacing each
formula ψ occurring in I by ψ[1/t] ∧ t, where t is said to be a fresh variable. �

In addition on this, one can also eliminate the constant 1 for the problems Arg(B) and
Arg-Rel(B) when D2 ⊆ [B].

Lemma 3.2 Let B be a finite set of Boolean functions such that D2 ⊆ [B]. Then Arg(B ∪ {1}) ≤log
m

Arg(B) and Arg-Rel(B ∪ {1}) ≤log
m Arg-Rel(B).

Proof Let g(x, y, z) := (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z). The function g is a base of D2 and evaluates
to true if and only if at least two of the variables are set to true. Given an instance (�, α) of
Arg(B ∪ {1}), we define an instance (�′, α′) of Arg(B) by �′ := {ψ[1/t] | ψ ∈ �} ∪ {t} and
α′ = g(α[1/t], t, q),where t and q are fresh variables. We claim that there is an argument for α in
� if and only if there is an argument for α′ in �′.

Let � be an argument for α in �. Consider �′ := {ψ[1/t] | ψ ∈ �} ∪ {t}. Observe that �′ ≡
�. Thus�′ is satisfiable and�′ |= α, hence�′ |= α[1/t] ∧ t, as t does not occur inα. Therefore, we
obtain �′ |= g(α[1/t], t, q). Moreover, either �′ or �′ \ {t} is minimal with this property. Indeed,
suppose that there exists a ψ ′ ∈ �′ with ψ ′ = ψ[1/t] for some ψ ∈ � such that �′ \ {ψ ′} |=
g(α[1/t], t, q). Then �′ \ {ψ ′} |= α[1/t] ∧ t as q does not occur in �′, and hence � \ {ψ} |= α,
contradictory to the minimality of �.

Conversely, with similar arguments, it is easy to see that if �′ is an argument for α′ in �′, then
� := {ψ[t/1] | ψ ∈ �′, ψ �= t} is an argument for α in �: as q does not occur in �′, �′ |= α′
implies that �′ |= α[1/t] ∧ t.

This proves a correctness of the reduction from Arg(B ∪ {1}) to Arg(B). The analogous result
for Arg-Rel follows from the same arguments as above, mapping the additional component ϕ to
ϕ′ := ϕ[1/t]. �

Remark 1 Observe that this reduction does not work for Arg − Check : one would have to decide
whether to map � to �′ or to �′ \ {t} to ensure minimality, which requires the ability to decide
whether �′ \ {t} |= t in Logspace. Further observe that an analogous statement of Lemma 3.1 for
the constant 0 cannot be obtained in the obvious way. Replacing every formula ψ by ψ[0/f] ∨ f
for a fresh variable f fails since such a reduction does not preserve consistency.

Let us show in an example how one can use these lemmas. Suppose, we want to show hardness
results for Arg-Rel(B) in the case where S00 ⊆ [B] or D2 ⊆ [B] or S10 ⊆ [B] (see Theorem 3.9).
Since in the latter two cases either D2 ⊆ [B] or E2 ⊆ [B], according to Lemmas 3.1 and 3.2
we have Arg-Rel(B ∪ {1}) ≤log

m Arg-Rel(B). Therefore, it is sufficient to prove hardness for
Arg-Rel(B ∪ {1}). Observe that if D2 ⊆ [B] then S2

01 = [D2 ∪ {1}] ⊆ [[B] ∪ {1}] = [B ∪ {1}] and
if S10 ⊆ [B] then M1 = [S10 ∪ {1}] ⊆ [B ∪ {1}]. Since S00 ⊆ S2

01 and S00 ⊆ M1, we have in both
cases S00 ⊆ [B ∪ {1}]. So, finally in order to prove that Arg-Rel(B) is hard in the case where
S00 ⊆ [B] or D2 ⊆ [B] or S10 ⊆ [B], it is sufficient to prove that the hardness holds for B such
that S00 ⊆ [B].

We will henceforth give less details when applying Lemmas 3.1 and 3.2.

Argument and Computation 117

3.2. The complexity of verification

We commence our study of the introduced argumentation problems with the argument verification
problem. This problem is in DP. Indeed, it is readily observed, as there are languages A, B with
A ∈ NP and B ∈ coNP such that Arg − Check = A ∩ B, with

A = {(�, �, α) | � is satisfiable, ∀ϕ ∈ � : � \ {ϕ} �|= α};
B = {(�, �, α) | � |= α}.

The next two results will cover all cases where we have a matching lower bound, i.e. we provide
those clones for which DP-hardness holds.

Proposition 3.3 Let S00 ⊆ [B]. Then Arg-Check(B) is DP-complete.

Proof To prove DP-hardness, we establish a reduction from Critical − Sat. Let ψ = ∧m
j=1 Cj

be an instance of Critical − Sat, and Vars(ψ) = {x1, . . . , xn}. Let u, x′
1, . . . , x′

n be fresh, pairwise
distinct variables. Note that if ψ ∈ Critical − Sat then each variable of ψ appears both as positive
and as negative literal. Let further C′

j := Cj[¬xi/x′
i | 1 ≤ i ≤ n] for 1 ≤ j ≤ m and ψ ′ := ∧m

j=1 C′
j .

We map ψ to (�, α), where we define

� = {C′
j |1 ≤ j ≤ m} and

α =
n∨

i=1

u ∨ (xi ∧ x′
i).

Since x ∨ y and x ∨ (y ∧ z) are functions of S00, α and all C′
j’s are S00-formulæ. These are

by definition 1-reproducing. Therefore, � and α are satisfiable. For 1 ≤ k ≤ m, let �k , ψk , ψ ′
k

denote the respective set of clauses where we deleted the kth clause. Note that always � ≡ ψ ′
and �k ≡ ψ ′

k .
Suppose now that ψ ∈ Critical − Sat, i.e. ψ is unsatisfiable and ψk is satisfiable for all

k ∈ {1, . . . , m}. We show that � entails α. Since ψ ≡ ψ ′ ∧ ∧n
i=1(xi ⊕ x′

i) is unsatisfiable, and
ψ ′ ≡ � is monotonic, all models of � have to set both xi and x′

i to 1 for at least one i ∈ {1, . . . , n}.
Since α[u/0] ≡ ∨n

i=1(xi ∧ x′
i), we therefore have � |= α[u/0]. Obviously also � |= α[u/1], thus

we have � |= α.
It remains to prove that � is minimal. Since for each k ∈ {1, . . . , m} ψk ≡ ψ ′

k ∧ ∧n
i=1(xi ⊕ x′

i)

is satisfiable, no ψ ′
k ≡ �k entails α[u/0] ≡ ∨n

i=1(xi ∧ x′
i). A fortiori no �k entails α.

Conversely suppose that (�, α) ∈ Arg − Check. Then, in particular, � entails α[u/0]. Thus,
we have ψ ′ |= ∨n

i=1(xi ∧ x′
i), which implies that ψ is unsatisfiable. By the minimality of � we

know that no �k entails α. Since �k |= α[u/1], we conclude that �k �|= α[u/0], which implies that
ψ ′

k ∧ ∧n
i=1(¬xi ∨ ¬x′

i) is satisfiable. As ψ ′
k is monotonic, we also obtain that ψ ′

k ∧ ∧n
i=1(xi ⊕ x′

i)

and hence ψk itself is satisfiable.
We finally transform (�, α) into a B-instance for all B such that S00 ⊆ [B] by replacing every

connective by its B-representation. This transformation works in logarithmic space for � since
it consists in clauses of size 3. It also does for α if we first represent it as an ∨-tree of depth
logarithmic in n. �

Proposition 3.4 Let B be a finite set of Boolean functions such that D2 ⊆ [B]. Then
Arg-Check(B) is DP-complete.

118 N. Creignou et al.

Proof We give a reduction from Critical − Sat similar to Proposition 3.3. For k ∈ N, we define
gk as the (k + 1)-ary function verifying

(a) gk(z1, . . . , zk , 0) ≡ ∧k
i=1 zi and

(b) gk(z1, . . . , zk , 1) ≡ ∨k
i=1 zi.

Note that for every k ∈ N, gk is monotonic and self-dual, and thus contained in D2. By abuse of nota-
tion, given a clause C = (l1 ∨ l2 ∨ l3) and a variable x, g3(C, x) stands for g3(l1, l2, l3, x). Let ψ =∧m

j=1 Cj be an instance of Critical − Sat with Cj = (l1
j ∨ l2

j ∨ l3
j) and Vars(ψ) = {x1, . . . , xn}.

Let further u, v, x′
1, . . . , x′

n be fresh, pairwise distinct variables and C′
j := Cj[¬xi/x′

i | 1 ≤ i ≤ n]
for 1 ≤ j ≤ m.

We map ψ to (�, α), where we define

� = {g3(C
′
j , u) | 1 ≤ j ≤ m}, and

α = gn((g2(xi, x′
i , v))1≤i≤n, u).

Obviously α and the formulæ in � are D2-formulæ and thus satisfiable. Let ψ ′ := ∧m
j=1 C′

j
and for 1 ≤ k ≤ m, let �k , ψk , ψ ′

k denote the respective set of formulæ (clauses) where we deleted
the kth formula (clause).

Note that if ψ ∈ Critical − Sat then each variable of ψ appears both as positive and as
negative literal. Without loss of generality we may further assume that each literal has at least
two occurrences in two different clauses. These two properties will assure that we have for all
k ∈ {1, . . . , m}

Vars(ψ ′) = Vars(ψ ′
k) = {xi, x′

i|1 ≤ i ≤ n}. (1)

Vars(�) = Vars(�k) = {xi, x′
i|1 ≤ i ≤ n} ∪ {u}. (2)

Suppose now that ψ ∈ Critical − Sat, i.e. ψ is unsatisfiable and ψk is satisfiable for all k ∈
{1, . . . , m}. We show that � entails α for all possible values of u, v, where we consider in detail
only the case where v = 0. The case v = 1 is analogous.

(i) (u, v) = (1, 0): �[u/1] ≡ ψ ′ and α[u/1, v/0] ≡ ∨n
i=1(xi ∧ x′

i). Since ψ ≡ ψ ′ ∧ ∧n
i=1(xi ⊕

x′
i) is unsatisfiable and ψ ′ is monotonic, all models of ψ ′ have to set both xi and x′

i to 1 for
at least one i ∈ {1, . . . , n}. Therefore, �[u/1] |= α[u/1, v/0].

(ii) (u, v) = (0, 0): �[u/0] ≡ ∧n
i=1(xi ∧ x′

i) and α[u/0, v/0] ≡ ∧n
i=1(xi ∧ x′

i). Obviously
�[u/0] |= α[u/0, v/0].

It remains to prove that � is minimal. Since ψ ∈ Critical − Sat, ψk ≡ ψ ′
k ∧ ∧n

i=1(xi ⊕ x′
i)

is satisfiable and hence �k[u/1] ≡ ψ ′
k does not entail α[u/1, v/0] ≡ ∨n

i=1(xi ∧ x′
i), i.e. �k �|= α.

Conversely suppose that (�, α) ∈ Arg − Check. Then, in particular, �[u/1] entails
α[u/1, v/0]. Thus, we have ψ ′ |= ∨n

i=1(xi ∧ x′
i), which implies that ψ is unsatisfiable. By

the minimality of �, we obtain that no �k entails α. One easily verifies that in the cases
(u, v) ∈ {(0, 0), (0, 1), (1, 1)} �k still entails α (use Equation (2) for (u, v) = (0, 0)). Thus, we
have that �k[u/1] �|= α[u/1, v/0], which implies that ψ ′

k ∧ ∧n
i=1(¬xi ∨ ¬x′

i) is satisfiable. As ψ ′
k

is monotonic, we obtain that ψ ′
k ∧ ∧n

i=1(xi ⊕ x′
i) and hence ψk itself is satisfiable, too.

Finally, we transform (�, α) into a B-instance for all B such that D2 ⊆ [B] in replacing all
occurrences of gk by its B-representation. This transformation works in logarithmic space, because
we may assume the function gn to be a g2-tree of depth logarithmic in n. �

The full picture for Arg-Check(B) is given in the forthcoming theorem, where we also provide
the results for the ‘easier’ clones.

Argument and Computation 119

Theorem 3.5 Let B be a finite set of Boolean functions. Then the argument validity problem for
propositional B-formulæ, Arg − Check(B), is

(1) DP-complete if S00 ⊆ [B] or S10 ⊆ [B] or D2 ⊆ [B],
(2) in P if L2 ⊆ [B] ⊆ L,
(3) in Logspace if [B] ⊆ V or [B] ⊆ E or [B] ⊆ N.

Proof For DP-completeness, according to Propositions 3.3 and 3.4, it remains only to deal with
the case S10 ⊆ [B]. Since D2 ⊆ M1 = [S10 ∪ {1}] ⊆ [B ∪ {1}], we obtain that Arg − Check(B ∪
{1}) is DP-hard by Proposition 3.4. As ∧ ∈ [B], we may apply Lemma 3.1 and obtain the DP-
hardness of Arg-Check(B).

In the case L2 ⊆ [B] ⊆ L, the sets �, � ∪ {¬α}, and (� \ {ϕ}) ∪ {¬α} for all ϕ ∈ � can
be easily transformed into systems of linear equations. Thus, checking the three conditions as
mentioned in Section 2.3 comes down to solving a polynomial number of systems of linear
equations. This can be done in polynomial time, using Gaussian elimination. For [B] ⊆ V, for [B] ⊆
E, and for [B] ⊆ N this check can be done in logarithmic space, as in this case the satisfiability of
sets of B-formulæ can be determined in logarithmic space (Schnoor 2005). �

3.3. The complexity of existence and dispensability

We next consider the problems Arg(B) and Arg-Disp(B). For the membership part of the
forthcoming results, we can make use of the results from the previous subsection.

Theorem 3.6 Let B be a finite set of Boolean functions. Then the argument existence problem
for propositional B-formulæ, Arg(B), is

(1) �
p
2 -complete if D ⊆ [B] or S1 ⊆ [B],

(2) coNP-complete if X ⊆ [B] ⊆ Y with X ∈ {S00, S10, D2} and Y ∈ {M, R1},
(3) in NP if [B] ∈ {L, L0, L3},
(4) in P if [B] ∈ {L1, L2}, and
(5) in Logspace if [B] ⊆ V or [B] ⊆ E or [B] ⊆ N.

The same classification holds for Arg-Disp(B).

Proof The general argumentation problem has been shown to be �
p
2-complete by Parsons et al.

(2003) via a reduction from Qsat2,∃. An instance of this problem is a quantified formula ∃X∀Yβ,
and one may assume that the formula β is in 3DNF, i.e. β = ∨p

j=1 tj with exactly three literals by
term. The authors map such an instance ∃X∀Yβ to (�, α), where � := {x ↔ 0, x ↔ 1|x ∈ X},
and α := β. We use this reduction to obtain �

p
2-completeness for Arg(B) if [B] = BF. We insert

parentheses in β and obtain a formula of logarithmic parentheses-depth only.We can now substitute
all occurring connectives with their B-representations and obtain this way in logarithmic space an
instance of Arg(B) which is equivalent to the original (�, α).

As ∧ ∈ S1 and [S1 ∪ {1}] = BF, we obtain �
p
2-completeness for the case S1 ⊆ [B] according

to Lemma 3.1. For the case D ⊆ [B], we obtain �
p
2-completeness by Lemma 3.2, since D2 ⊆ D

and [D ∪ {1}] = BF.
For X ⊆ [B] ⊆ Y with X ∈ {S00, S10, D2} and Y ∈ {M, R1}, membership in NP follows from

the facts that satisfiability is in Logspace (Lewis 1979), while entailment is in coNP (Beyersdorff
et al. 2009a). To prove the coNP-hardness of Arg(B), we give a reduction from the implication
problem for B-formulæ, which is coNP-hard if [B] contains one of the clones S00, S10, D2. Let
(ψ , α) be a pair of B-formulæ. We map this instance to ({ψ}, α) if ψ is satisfiable (which is easy
to decide) and to a trivial positive instance otherwise.

120 N. Creignou et al.

For [B] ∈ {L, L0, L3}, membership in NP follows from the fact that in this case Arg-Check is
in P. Owing to the trivial satisfiability of B-formulæ for [B] ∈ {L1, L2}, we can improve the upper
bound for Arg(B) with [B] ∈ {L1, L2} to membership in P.

In all other cases, Logspace-membership follows from the fact that both problems, satisfiability
and entailment, are contained in Logspace (see Beyersdorff et al. 2009a) for B-formulæ.

Finally, observe that we have Arg-Disp(B) ≡log
m Arg(B). To prove that Arg(B) ≤log

m

Arg-Disp(B), map A = (�, α) to D := (� ∪ {t}, α, t). For the converse direction, map D =
(�, α, ϕ) to A := (� \ {ϕ}, α). �

3.4. The complexity of relevance

The remaining decision problem to analyse is Arg-Rel(B) which turns out to be the most difficult
in terms of complexity.

Proposition 3.7 Let B be a finite set of Boolean functions such that S00 ⊆ [B]. Then Arg-Rel(B)

is �
p
2 -complete.

Proof To see that Arg-Rel(B) is contained in �
p
2 , observe that, given an instance (�, α, ϕ), we

can guess a set � ⊆ � such that ϕ ∈ � and verify conditions (C1)–(C3) in polynomial time using
an NP-oracle.

To prove �
p
2-hardness, we provide a reduction from the problem Qsat2,∃. An instance of this

problem is a quantified formula ∃X∀Yβ, where β = ∨p
j=1 tj with exactly three literals by term.

Let X = {x1, . . . , xn} and Y = {y1, . . . , ym}. Let u, v, x′
1, . . . , x′

n, y′
1, . . . , y′

m be fresh variables. We
transform ∃X∀Yβ to (�, α, ϕ), where

� := {xi, x′
i | 1 ≤ i ≤ n} ∪

{
v ∧

m∧
i=1

(yi ∨ y′
i)

}
∪ {u},

α := β ′ ∧ v ∧
(

n∨
i=1

(xi ∧ x′
i) ∨ u

)
,

ϕ := u,

and where β ′ = ∨p
j=1 t′j and t′j := tj[¬x1/x′

1, . . . , ¬xn/x′
n, ¬y1/y′

1, . . . , ¬ym/y′
m] for all 1 ≤ j ≤ p.

We show that ∃X∀Yβ is valid if and only if (�, α, ϕ) ∈ Arg-Rel({∧, ∨}). If ∃X∀Yβ is valid,
then there exists an assignment σ : X → {0, 1} such that σ |= β. Consequently, for � := {xi |
σ(xi) = 1} ∪ {x′

i | σ(xi) = 0} ∪ {u, v ∧ ∧m
i=1(yi ∨ y′

i)}, we obtain � |= α. As � is consistent, it
thus remains to show that u is relevant, i.e. that � \ {u} �|= α. This follows from the fact that
� \ {u} is satisfied by any assignment σ ′ extending σ with σ ′(u) := 0 and σ ′(x′

i) := 1 − σ(xi),
while such a σ ′ does not entail

∨n
i=1(xi ∧ x′

i) ∨ u and hence σ ′ �|= α.
For the converse direction, let � be a support for α such that u ∈ �. Since � |= α we conclude

that v ∧ ∧m
i=1(yi ∨ y′

i) ∈ � and hence � = X ∪ {v ∧ ∧m
i=1(yi ∨ y′

i)} ∪ {u}, for some X ⊆ {xi, x′
i |

1 ≤ i ≤ n}. From � |= α also follows that � |= β ′. From the minimality of �, we conclude that in
particular � \ {u} �|= α. And therefore � �|= ∨n

i=1(xi ∧ x′
i). That is � ∧ ∧n

i=1(¬xi ∨ ¬x′
i) is satis-

fiable and since � is monotonic, consequently also � ∧ ∧n
i=1(xi ⊕ x′

i) is satisfiable. Summed up,
we know that γ := X ∧ ∧n

i=1(xi ⊕ x′
i) ∧ ∧m

i=1(yi ∨ y′
i) is satisfiable and γ |= β ′. Hence, a for-

tiori, γ ′ := X ∧ ∧n
i=1(xi ⊕ x′

i) ∧ ∧m
i=1(yi ⊕ y′

i) is satisfiable and γ ′ |= β ′. Define now σX(xi) = 1
if xi ∈ X , σX(xi) = 0 otherwise. Obviously any extension of σX to Y satisfies β and therefore
∃X∀Yβ is valid.

Argument and Computation 121

It remains to transform (�, α, ϕ) into an Arg-Rel(B)-instance for all B such that S00 ⊆ [B].
As both ∧ and ∨ are associative, we can insert parentheses into (�, α, ϕ), such that we can
represent each formula as binary {∧, ∨}-tree of logarithmic depth. Let f be a fresh variable and
let h be the Boolean function in S00 defined by h(f , x, y) ≡ f ∨ (x ∧ y). We further transform
our instance into (�′, α′ ∨ f , ϕ′), where �′, α′, ϕ′ are obtained by replacing each occurrence of
x ∧ y by h(f , x, y). One easily verifies that (�′, α′ ∨ f , ϕ′) is in Arg-Rel({∨, h}) if and only if
(�, α, ϕ) ∈ Arg-Rel({∧, ∨}). We finally replace ∨ and h by their B-representation. �

Proposition 3.8 Let B be a finite set of Boolean functions such that [B] ⊆ V or [B] ⊆ E or
[B] ⊆ N. Then Arg-Rel(B) is in Logspace.

Proof We assume the representation of V-, E-, or N-formulæ as respectively positive clauses,
positive terms, or literals. Let us first consider Arg-Rel(B) for [B] ⊆ E. It is easy to observe that
a set of positive terms � entails a positive term α if and only if Vars(α) ⊆ Vars(�). We claim that
Algorithm 1 decides Arg-Rel(B).

Algorithm 1 Algorithm for Arg-Rel(B) with [B] ⊆ E.
Require: a set � of positive terms and positive terms α, ϕ with ϕ ∈ �.

1: for all x ∈ Vars(ϕ) do
2: �x := {ϕ} ∪ {τ ∈ � | x /∈ Vars(τ)}
3: if �x |= α then
4: accept
5: end if
6: end for
7: reject

Algorithm 1 can be implemented using only a logarithmic amount of space if we do not
construct �x entirely, but rather check the condition in line 3 directly: �x |= α holds if and only
if Vars(α) ⊆ Vars(ϕ) ∪ Vars({τ ∈ �|x /∈ Vars(τ)}).

To prove correctness, notice that Algorithm 1 accepts only if there exists a �x ⊆ � such that
�x |= α and �x \ {ϕ} �|= α. Thus �x contains a support � such that ϕ ∈ �. Conversely, let � be
a support such that ϕ ∈ �. Since � |= α and � \ {ϕ} �|= α, there is at least one xi ∈ (Vars(ϕ) ∩
Vars(α)) \ Vars(�). For this xi, the algorithm constructs �xi := {ϕ} ∪ {τ ∈ � | xi /∈ Vars(τ)}.
Obviously � ⊆ �xi and therefore �xi |= α which causes the algorithm to accept.

Next, consider Arg-Rel(B) for [B] ⊆ V. Observe that a set of positive clauses C entails a
positive clause α if and only if there is a clause c ∈ C such that Vars(c) ⊆ Vars(α). Thus if
there is a support � with ϕ ∈ � then it is the singleton {ϕ}. Given (�, α, ϕ) as an instance
of Arg-Rel(V), it hence suffices to check whether Vars(ϕ) ⊆ Vars(α), which can be done in
Logspace.

Finally Arg-Rel(B) for [B] ⊆ N is in Logspace, since each B-formula can be transformed
into a single literal. �

We obtain the following complexity classification for Arg-Rel.

Theorem 3.9 Let B be a finite set of Boolean functions. Then the argument relevance problem
for propositional B-formulæ, Arg-Rel(B), is

(1) �
p
2 -complete if S00 ⊆ [B] or D2 ⊆ [B] or S10 ⊆ [B],

122 N. Creignou et al.

(2) in NP if L2 ⊆ [B] ⊆ L,
(3) in Logspace if [B] ⊆ V or [B] ⊆ E or [B] ⊆ N.

Proof Applying Lemma 3.1 and Lemma 3.2 as shown in Section 3.1, for (1) it suffices to show
hardness for B such that S00 ⊆ [B]. This has been done in Proposition 3.7. Item (2) follows from
the fact that for [B] ⊆ L, Arg-Check(B) is in P (Proposition 3.5) and (3) has been shown in
Proposition 3.8. �

4. Enumeration and counting problems

4.1. Enumeration

A general procedure to enumerate all supports in � for a given claim α is given inAlgorithm 2. The
initial call has to be done by Enum(�, α, ∅). The idea is to build supports recursively, picking up at
each step a formula ϕ from � and deciding whether ϕ will be present in the currently constructed
support or not. The decision procedures for Arg-Rel and Arg-Disp are used in order to avoid
backtracking.

Algorithm 2 General enumeration algorithm for Arg

Enum(�, α, �)

1: if Arg − Check(�, α) then
2: output �

3: return
4: end if
5: choose a ϕ ∈ �

6: if Arg-Rel(�, α, ϕ) then
7: Enum(�\{ϕ}, ϕ → α, � ∪ {ϕ})
8: end if
9: if Arg-Disp(�, α, ϕ) then

10: Enum(�\{ϕ}, α, �)

11: end if
12: return

The correctness of the procedure is based on the deduction theorem, which says that {ϕ} ∪ � |=
α if and only if � |= (ϕ → α). Observe that, in general, when initially called on B-formulæ, this
procedure deals in its recursive calls with some formulæ which are not B-formulæ anymore
(because of the formula ϕ → α). There is an exception to the sets B such that S0 ⊆ [B], since in
this case →∈ [B] and thus ϕ → α can be represented as a B-formula.

Note that the only cases in which we can hope to obtain polynomial delay enumeration algo-
rithms are those for which the decision problem Arg(B) is tractable, i.e. the cases [B] ⊆ V or
[B] ⊆ N or [B] ⊆ E or [B] ⊆ L1. Indeed the presented procedure can be slightly modified in these
cases, except for the case [B] ⊆ L1, in order to either avoid recursive calls or manage recursive
calls on B-formulæ only. As a consequence and since in these cases the three decision problems
Arg-Check(B), Arg-Rel(B) and Arg-Disp(B) are in P, the procedure will generate efficiently
all possible arguments. This is made precise in the following proposition.

Proposition 4.1 Let B be a finite set of Boolean functions. If [B] ⊆ V or [B] ⊆ N then
Enum-Arg(B) is in FP. If [B] ⊆ E then Enum-Arg(B) is in DelayP.

Argument and Computation 123

Proof If [B] ⊆ V or [B] ⊆ N then we have seen (in the proof of Proposition 3.8) that every
support for α consists of a single formula. For this reason, no recursive call in the procedure is
necessary. It is enough to check whether every single formula from � is a support for α. Since
Arg-Check(B) is in P in this case (see Theorem 3.5), we are done.

If [B] ⊆ E then every B-formula is a positive term. Recall that if � is a set of positive terms,
and ϕ is a positive term, then we have � |= α if and only if Vars(α) ⊆ Vars(�). As a consequence,
in the case of positive terms {ϕ} ∪ � |= α if and only if � |= α \ ϕ, where α \ ϕ denotes the term
obtained from α by removing those variables that occur in ϕ. Therefore, in the general enumeration
procedure described above, we can make the recursive call on α \ ϕ instead of α → ϕ. In this
way, starting from B-formulæ, all recursive calls will be made on B-formulæ as well. Since
Arg-Check(B), Arg-Rel(B) and Arg-Disp(B) are all in P for any B such that [B] ⊆ E (see
Theorems 3.9 and 3.6), it is then clear that the procedure runs with polynomial delay and uses
only polynomial space. �

4.2. Counting

The argument counting problem #Arg(B) belongs to #·NP. This follows from the facts that
checking an argument is in DP ⊆ PNP = �

p
2 (see Section 3.2) and from the equality #·�p

2 = #·NP
(see Hemaspaandra and Vollmer 1995).

Proposition 4.2 Let B be a finite set of Boolean functions such that either D ⊆ [B] or S1 ⊆ [B].
Then #Arg(B) is #·NP-complete.

Proof We show #·NP-hardness by giving a parsimonious reduction from the follow-
ing #·NP-hard problem: Count the number of satisfying assignments of ψ(x1, . . . , xn) =
∀y1 · · · ∀ymϕ(x1, . . . , xn, y1, . . . , ym), where ϕ is a DNF-formula (Durand, Hermann, and Kolaitis
2005).

Let t, r1, . . . rn be fresh variables. We map ψ to (�, α) which we define as follows:

� = {xi, ¬xi, xi −→ ri, ¬xi −→ ri|1 ≤ i ≤ n} ∪ {ϕ −→ t}

α = t ∧
n∧

i=1

ri.

By minimality, every support � ⊆ � for α contains for every i either xi or ¬xi, but not both.
One easily verifies that by m �→ {xi|m(xi) = 1} ∪ {¬xi|m(xi) = 0} we define a bijection between
the models of ψ and the supports for α in �.

Since D2 ⊆ D and E2 ⊆ S1, we can use Lemmas 3.1 and 3.2. Observe that the reductions used
in the proofs of these lemmas are parsimonious. Therefore we have #Arg(B ∪ {1}) ≤! #Arg(B).
Thus, it is sufficient to prove that hardness holds for #Arg(B ∪ {1}). Since BF = [D ∪ {1}] ⊆ [B ∪
{1}] and BF = [S1 ∪ {1}] ⊆ [B ∪ {1}], it suffices finally to prove that hardness of #Arg(B) holds
for any B such that BF = [B]. Suppose that ϕ = ∨

i∈I ti and let 	′ be the set of formulæ obtained
from 	 by replacing ϕ → t ≡ ¬(

∨
i∈I ti) ∨ t ≡ (

∧
i∈I ¬ti) ∨ t by the set of clauses {¬ti ∨ t|i ∈ I}.

Then 	′ is a set of disjunctions of literals, whose size is polynomially bounded by |	|. Hence,
by the associativity of ∨, 	′ can be transformed in logarithmic space into an equivalent set of
B-formulæ. This provides a parsimonious reduction from the above #·NP-complete problem to
#Arg(B). �

Proposition 4.3 Let B be a finite set of Boolean functions such that X ⊆ [B] ⊆ Y with X ∈
{S00, S10, D2} and Y ∈ {M, R1}. Then #Arg(B) is in #·NP and #P-hard.

124 N. Creignou et al.

Proof Since the reductions in Lemmas 3.1 and 3.2 are parsimonious, analogously to Theorem 3.9,
it suffices to show hardness for the case S00 ⊆ [B].

We prove #P-hardness by giving a parsimonious reduction from the following #P-hard
problem: count the number of models of a positive 2-CNF-formula. Let ϕ = ∧p

j=1 Cj with
Vars(ϕ) = {x1, . . . , xn} be such a formula. Let x′

1, . . . x′
n be fresh variables. We map ϕ to (�, α)

which we define as follows:

� = {xi, x′
i|1 ≤ i ≤ n}

α = ϕ ∧
n∧

i=1

(xi ∨ x′
i)

By minimality every support � ⊆ � for α contains for every i either xi or x′
i , but not both. One

easily verifies that by m �→ {xi|m(xi) = 1} ∪ {x′
i|m(xi) = 0}, we define a bijection between the

models of ϕ and the supports for α in �.
It remains to show that α can be transformed in polynomial time into a B-formula for all

B such that S00 ⊆ [B]. As ∧ and ∨ are monotonic, we can insert parentheses such that α is
represented as a binary (∧, ∨)-tree of logarithmic depth. Let f be a fresh variable and let h be the
Boolean functions in S00 defined by h(f , x, y) ≡ f ∨ (x ∧ y). We further transform α into α′ by
replacing every occurrence of x ∧ y by h(f , x, y). Since f does not occur in � it is clear that the
arguments for α in � are the ones for α′. Since ∨, h ∈ S00 ⊆ [B], we finally replace ∨ and h by
their B-representation, thus concluding the proof. �

Proposition 4.4 Let B be a finite set of Boolean functions such that E2 ⊆ [B] ⊆ E. Then #Arg(B)

is #P-complete.

Proof Membership in #P follows from the fact that Arg(B) ∈ P for every B such that [B] ⊆ E.
To prove #P-hardness, we establish a parsimonious reduction from the same #P-hard problem

as in the previous proposition. So let ϕ = ∧p
j=1 Cj with Vars(ϕ) = {x1, . . . , xn} be a positive 2-

CNF-formula. We introduce p new variables {c1, . . . , cp} that will represent the clauses. For every
1 ≤ i ≤ n let occ(xi) = {j|1 ≤ j ≤ p, xi occurs Cj}.We mapϕ to (�, α)which we define as follows:

� =
⎧⎨
⎩xi, xi ∧

∧
j∈occ(xi)

cj|1 ≤ i ≤ n

⎫⎬
⎭

α =
p∧

j=1

cj ∧
n∧

i=1

xi

By minimality every support � ⊆ � for α contains for every i either xi or xi ∧ ∧
j∈occ(xi)

cj,
but not both. One easily verifies that by m �→ {xi ∧ ∧

j∈occ(xi)
cj|m(xi) = 1} ∪ {xi|m(xi) = 0}, we

define a bijection between the models of ϕ and the supports for α in �.
It remains to transform α and the formulæ in � into B-formulæ. We can insert parentheses

in each term in order to represent it as a binary ∧-tree of logarithmic depth. Then it suffices to
replace the ∧-connective by its B-representation which exists since ∧ ∈ E2 ⊆ [B]. �

Theorem 4.5 Let B be a finite set of Boolean functions. Then the argument counting problem
for propositional B-formulæ, #Arg(B), is

(1) #·NP-complete if D ⊆ [B] or S1 ⊆ [B],

Argument and Computation 125

(2) in #·NP and #P-hard if X ⊆ [B] ⊆ Y with X ∈ {S00, S10, D2} and Y ∈ {M, R1},
(3) in #P if L2 ⊆ [B] ⊆ L,
(4) #P-complete if E2 ⊆ [B] ⊆ E, and
(5) in FP if [B] ⊆ V or [B] ⊆ N.

Proof Items (1), (2) and (4) follow directly from the above three propositions. Item (3) follows
from the fact that Arg(B) ∈ NP for B such that [B] ⊆ L (see Theorem 3.6). In the last case, all
supports are singletons (see e.g. Theorem 3.8), thus there is at most a polynomial number of
supports that can hence be parsed in polynomial time in order to determine the exact number of
solutions. �

Let us conclude this section by pointing out that for the case where E2 ⊆ [B] ⊆ E, i.e. when
formulæ may depend on more than one variable and are representable as positive terms, the
counting problem is intractable (#P-hard, Proposition 4.4), whereas enumeration is tractable (∈
DelayP, Proposition 4.1).

5. Discussion of results

Complexity classifications along the lines of Boolean clones have already been carried out for AI
formalisms as circumscription (Thomas 2009) and abduction (Creignou et al. 2010). In particular,
the latter work is closely related to the contents of this paper. To make this more precise, let us
consider the positive abduction problem P-Abd(B). It takes as an instance a triple (, H, m), where
	 ⊆ L(B), m ∈ L(B), H is a set of variables, and asks whether there exists an explanation E ⊆ H
such that 	 ∧ E is satisfiable and 	 ∧ E |= m. Hence, the main differences to argumentation are
as follows: (a) the knowledge base 	 is always entirely used (together with a selected subset of
hypotheses) in the tests for consistency and entailment, while for argumentation these tests are
performed on a chosen subset of the knowledge base �; (b) the parameterisation via B-formula
affects only ‘fixed’ parts 	 and m in abduction (the hypotheses are by definition restricted); while
in argumentation, the parameterisation is applied to the knowledge base � from which one has to
select a subset. Nonetheless, the following relations between these two formalisms hold:

(1) if ∧ ∈ [B], i.e. if E2 ⊆ [B], then P-Abd(B) ≤log
m Arg(B)

(2) if → ∈ [B], i.e. if S0 ⊆ [B], then Arg(B) ≤log
m P-Abd(B)

For (1), one can give the reduction (, A, ψ) �→ (�, α), where � := {∧ϕ∈	 ϕ} ∪ A and α := ψ ∧∧
ϕ∈	 ϕ; likewise the mapping (�, α) �→ (, A, α), where A := {xϕ | ϕ ∈ �} and 	 := {xϕ ↔

ϕ; |ϕ ∈ �} underlies (2).
It turns out that Arg and Arg-Disp have the same complexity classification as positive abduc-

tion. This is due to the fact that minimality of the argument plays no role in Arg and Arg-Disp.
However, for Arg-Rel the situation is different but we expect similarly harder complexity for
the relevance problem in abduction with respect to subset-minimal explanations (see Eiter and
Gottlob 1995 for the definitions) which has not been analysed by Creignou et al. (2010). In other
words, the results provided in the present paper can be used to obtain novel results for certain
variants of abduction, which have not been classified yet.

Table 2 gives an overview of the results for the studied argumentation problems. The small
numbers on the right side in the table cells refer to the corresponding theorem/proposition/remark.

Our results show, for instance, that when the knowledge base’s formulæ are restricted to be
represented as positive clauses or single literals (column V∗, N∗) then all considered decision
problems as well as counting and enumeration are very easy. When allowing for positive terms

126 N. Creignou et al.

Table 2. The complexity of the argumentation problems.

D2, S∗0 ⊆ D, S1 ⊆
N∗, V∗ E∗ L1, L2 L, L0, L3 [B] ⊆ M, R1 [B] ⊆ BF

Arg-Check ∈ L, 3.5 ∈ L, 3.5 ∈ P, 3.5 ∈ P, 3.5 DP-c, 3.3, 3.4 DP-c, 3.3, 3.4
Arg, Arg-Disp ∈ L, 3.6 ∈ L, 3.6 ∈ P, 3.6 ∈ NP, 3.6 coNP-c, 3.6 �

p
2 -c, 3.6

Arg-Rel ∈ L, 3.8 ∈ L, 3.8 ∈ NP, 3.9 ∈ NP, 3.9 �
p
2 -c, 3.7 �

p
2 -c, 3.7

Enum-Arg ∈ FP, 4.1 ∈ DelayP, 4.1 Unknown Unknown coNP-h, 3.6 �
p
2 -h, 3.6

#Arg ∈ FP, 4.5 #P-c, 4.4 ∈ #P, 4.5 ∈ #P, 4.5 ∈ #·NP, #P-h, 4.3 #·NP-c, 4.2

Note: The ∗-subscripts on clones denote all valid completions, L abbreviates Logspace, and ‘-c’and ‘-h’ indicate, respectively, completeness
and hardness.

(column E∗), the decision problems remain very easy, the enumeration problem becomes less
trivial but still tractable (DelayP), whereas the counting problem becomes even intractable, namely
#P-complete.

Notably are the sets B of Boolean connectives whereX ⊆ [B] ⊆ Y withX ∈ {S00, S10, D2} and
Y ∈ {M, R1}. This case typically applies to monotonic formulæ in which no negation is involved.
Such sets of B give coNP-completeness for Arg(B), while Arg-Rel(B) remains complete for
�

p
2 . It may come as a surprise that in these cases verifying an argument is potentially harder than

deciding the existence of an argument (Arg-Check is DP-complete, Arg is only coNP-complete).
This is due to the fact that when verifying an argument, the minimality condition of a support has
to be checked, whereas this condition is of no importance to the argument existence problem.

The results obtained for the L-cases are partial. This corresponds to the case where individual
formulæ are linear equations over the two-element field. The fact that Arg(B) with L2 ⊆ [B] ⊆ L1

is in P relies on Gaussian elimination, knowing that in this case we only have to check whether
� |= α, that is whether the linear system � ∧ ¬α is satisfiable. For the corresponding problems
Arg-Rel(B), in which minimality plays a role, we only have an NP upper-bound, so far. In fact,
the exact classification of the problems into tractable and intractable cases remains open for affine
sets of Boolean connectives in the following cases: Arg(B) with [B] ∈ {L, L0, L3} and Arg-Rel(B)

with L2 ⊆ [B] ⊆ L.1

6. Conclusion and future work

To summarise, we took in this paper first steps to understanding the complexity of logic-based
argumentation. We provided a classification of the complexity of four important decision tasks
(Figure 1), as well as a classification of the complexity of enumeration and counting, for all
possible restrictions on the set of allowed connectives.

The interpretation of our results is twofold: first, we have shown that the high complexity
(i.e. �

p
2) only shows up for small parts of the lattice. In other words, only a few Boolean clones

provide the inherent full complexity, while others allow for alternative, less involved, algorithms.
Nonetheless, for the important problem of Arg-Rel, �

p
2 covers the most interesting areas of the

lattice. The bad news is that all tractable fragments are of little practical relevance. Recall that
these fragments were literals, positive terms, positive clauses, and with each of the latter two
restrictions we cannot even construct an inconsistent �. This also hints that for future work, it
might be important to restrict the connectives in �, and respectively, α independently.

The complexity of the problems studied in this paper is also a computational core for evaluating
more complex argumentation problems, for instance, the warranted formula problem (WFP) on
argument trees, which has recently been shown to be PSPACE-complete by Hirsch and Gorogiannis
(2011). We expect that fragments studied here also lower the complexity of WFP, but leave details

Argument and Computation 127

for future work. Another problem which is amenable to the kind of complexity analysis we did in
this paper is the identification of conflicts between two arguments (different notions for conflicts
between arguments based on classical logic exist, see e.g. Gorogiannis and Hunter 2011) which
is an intractable problem itself; however, since most conflicts are identified via the implication
problem, we expect results similar to the one derived by Beyersdorff et al. (2009a). A complexity
analysis in that direction has already been undertaken by Wooldridge, Dunne, and Parsons (2006).
In that paper, the authors studied problems as, for instance, equivalence of arguments. Further
future work also concerns studying the complexity of all the problems investigated here in the
popular Schaefer’s framework in which formulas are in generalised conjunctive normal form
(see Creignou and Zanuttini (2006), Nordh and Zanuttini (2008) for complexity classifications of
abduction in this framework, and Creignou and Vollmer (2008) for a survey of results obtained
for various non-monotonic logics).

Acknowledgements

Supported by ANR ENUM 07-BLAN-0327-04, WWTF grant ICT 08-028, FWF grant P20704-
N18, ÖAD grant Amadée 17/2011/EGIDE PHC Amadeus project 24908NM, and DFG grant VO
630/6-2.

Notes
1. We note that the complexity of the corresponding fragments remained unclassified also for circumscrip-

tion and positive abduction.

References
Amgoud, L., and Besnard, P. (2010), ‘A Formal Analysis of Logic-based Argumentation Systems’, in Pro-

ceedings of the 4th International Conference on Scalable Uncertainty Management (SUM’10, Toulouse,
France), eds. A. Deshpande and A. Hunter, Vol. 6379 of Lecture Notes in Computer Science, Springer
Verlag, pp. 42–55.

Amgoud, L., and Cayrol, C. (2002), ‘A Reasoning Model Based on the Production ofAcceptableArguments’,
Annals of Mathematics and Artificial Intelligence, 34, 197–215.

Baroni, P., Dunne, P., and Giacomin, M. (2010), ‘On Extension Counting Problems in Argumentation Frame-
works’, in Proceedings of the 3rd International Conference on Computational Models of Argument
(COMMA 2010, Desenzano del Garda, Italy), eds. P. Baroni, F. Cerutti, M. Giacomin, and G. Simari,
Vol. 216 of Frontiers in Artificial Intelligence and Applications, IOS Press, pp. 63–74.

Bauland, M., Hemaspaandra, E., Schnoor, H., and Schnoor, I. (2006), ‘Generalized Modal Satisfiability’, in
Proceedings of the 23rd Annual Symposium on Theoretical Aspects of Computer Science (STACS 2006,
Marseille, France), eds. B. Durand and W. Thomas, Vol. 3884 of Lecture Notes in Computer Science,
Springer Verlag, pp. 500–511.

Bauland, M., Schneider, T., Schnoor, H., Schnoor, I., andVollmer, H. (2008), ‘The Complexity of Generalized
Satisfiability for Linear Temporal Logic’, Logical Methods in Computer Science, 5.

Bench-Capon, T., and Dunne, P. (2007), ‘Argumentation in Artificial Intelligence’, Artificial Intelligence,
171, 619–641.

Besnard, P., and Hunter, A. (2001), ‘A Logic-based Theory of Deductive Arguments’, Artificial Intelligence,
128, 203–235.

Besnard, P., and Hunter, A. (2008), Elements of Argumentation, MIT Press.
Beyersdorff, O., Meier, A., Thomas, M., and Vollmer, H. (2009a), ‘The Complexity of Propositional

Implication’, Information Processing Letters, 109, 1071–1077.
Beyersdorff, O., Meier, A., Thomas, M., and Vollmer, H. (2009b), ‘The Complexity of Reasoning for Frag-

ments of Default Logic’, in Proceedings of the 12th International Conference on Theory and Applications

128 N. Creignou et al.

of Satisfiability Testing (SAT 2009, Swansea, UK), ed. O. Kullmann, Vol. 5584 of Lecture Notes in
Computer Science, Springer Verlag, pp. 51–64.

Caminada, M., and Amgoud, L. (2007), ‘On the Evaluation of Argumentation Formalisms’, Artificial
Intelligence, 171, 286–310.

Cayrol, C. (1995), ‘On the Relation between Argumentation and Non-monotonic Coherence-based Entail-
ment’, in Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI 1995,
Montréal, Canada), Morgan Kaufmann, pp. 1443–1448.

Chesñevar, C., Maguitman, A., and Loui, R. (2000), ‘Logical Models of Argument’, ACM Compututing
Surveys, 32, 337–383.

Creignou, N., Schmidt, J., and Thomas, M. (2010), ‘Complexity of Propositional Abduction for Restricted
Sets of Boolean Functions’, in Proceedings of the 12th International Conference on Principles of
Knowledge Representation and Reasoning (KR 2010, Toronto, Canada), eds. F. Lin, U. Sattler, and
M. Truszczynski, AAAI Press (full review to appear in Journal of Logic and Computation 2011), pp.
8–16.

Creignou, N., and Vollmer, H. (2008), ‘Boolean Constraint Satisfaction Problems: When Does Post’s Lattice
Help?’, in Complexity of Constraints – An Overview of Current Research Themes, Vol. 5250 of Lecture
Notes in Computer Science, eds. N. Creignou, P.G. Kolaitis, and H. Vollmer, Springer, pp. 3–37.

Creignou, N., and Zanuttini, B. (2006), ‘A Complete Classification of the Complexity of Propositional
Abduction’, SIAM Journal on Computing, 36, 207–229.

Dung, P., Kowalski, R., and Toni, F. (2006), ‘Dialectical Proof Procedures for Assumption-based Admissible
Argumentation’, Artificial Intelligence, 170, 114–159.

Dung, P.M. (1995), ‘On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic
Reasoning, Logic Programming and n-Person Games’, Artificial Intelligence, 77, 321–358.

Durand, A., Hermann, M., and Kolaitis, P.G. (2005), ‘Subtractive Deductions and Complete Problems for
Counting Complexity Classes’, Theoretical Computer Science, 340, 496–513.

Durand, A., and Hermann, M. (2008), ‘On the Counting Complexity of Propositional Circumscription’,
Information Processing Letters, 106, 164–170.

Eiter, T., and Gottlob, G. (1995), ‘The Complexity of Logic-based Abduction’, Journal of the ACM, 42,
3–42.

García, A., and Simari, G. (2004), ‘Defeasible Logic Programming: An Argumentative Approach’, Theory
and Practice of Logic Programming, 4, 95–138.

Gorogiannis, N., and Hunter, A. (2011), ‘Instantiating Abstract Argumentation with Classical Logic
Arguments: Postulates and Properties’, Artificial Intelligence, 175, 1479–1497.

Hemaspaandra, L., and Vollmer, H. (1995), ‘The Satanic Notations: Counting Classes Beyond #P and Other
Definitional Adventures’, Complexity Theory Column 8, ACM-SIGACT News, 26, 2–13.

Hermann, M., and Pichler, R. (2010), ‘Counting Complexity of Propositional Abduction’, Journal of
Computer and System Sciences, 76, 634–649.

Hirsch, R., and Gorogiannis, N. (2010), ‘The Complexity of the Warranted Formula Problem in Propositional
Argumentation’, Journal of Logic and Computation, 20, 481–499.

Johnson, D., Papadimitriou, C., andYannakakis, M. (1988), ‘On Generating All Maximal Independent Sets’,
Information Processing Letters, 27, 119–123.

Karchmer, M., and Wigderson, A. (1988), ‘Monotone Circuits for Connectivity Require Super-logarithmic
Depth’, in Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC 1988,
Chicago, Illinois, USA), ed. J. Simon, ACM, pp. 539–550.

Lewis, H. (1979), ‘Satisfiability Problems for Propositional Calculi’, Mathematical Systems Theory, 13,
45–53.

Nordh, G., and Zanuttini, B. (2008), ‘What Makes Propositional Abduction Tractable’, Artificial Intelligence,
172, 1245–1284.

Papadimitriou, C., (1994), Computational Complexity, Addison-Wesley.
Papadimitriou, C., and Wolfe, D. (1988), ‘The Complexity of Facets Resolved’, Journal of Computer and

System Sciences, 37, 2–13.
Parsons, S., Wooldridge, M., andAmgoud, L. (2003), ‘Properties and Complexity of Some Formal Inter-agent

Dialogues’, Journal of Logic and Computation, 13, 347–376.

Argument and Computation 129

Post, E. (1941), ‘The Two-valued Iterative Systems of Mathematical Logic’, Annals of Mathematics Studies,
5, 1–122.

Prakken, H., and Vreeswijk, G. (2002), ‘Logical Systems for Defeasible Argumentation’, in Handbook of
Philosophical Logic ed. D. Gabbay, Kluwer.

Rahwan, I., and Simari, G. (eds.) (2009), Argumentation in Artificial Intelligence, Springer Verlag.
Reith, S. (2003), ‘On the Complexity of some Equivalence Problems for Propositional Calculi’, in Proceed-

ings of the 28th International Symposium on Mathematical Foundations of Computer Science (MFCS
2003, Bratislava, Slovakia), eds. B. Rovan and P.Vojtás,Vol. 2747 of Lecture Notes in Computer Science,
Springer Verlag, pp. 632–641.

Schnoor, H. (2005), ‘The Complexity of the Boolean Formula Value Problem’, Technical Report, Theoretical
Computer Science, University of Hannover.

Spira, P.M. (1971), ‘On Time-hardware Complexity Tradeoffs for Boolean Functions’, in Proceedings of the
4th Hawaii International Symposium on System Sciences, pp. 525–527.

Thomas, M. (2009), ‘The Complexity of Circumscriptive Inference in Post’s Lattice’, in Proceedings of the
10th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2009,
Potsdam, Germany), eds. E. Erdem, F. Lin, and T. Schaub, Vol. 5753 of Lecture Notes in Computer
Science, Springer Verlag, pp. 290–302.

Wooldridge, M., Dunne, P., and Parsons, S. (2006), ‘On the Complexity of Linking Deductive and Abstract
Argument Systems’, in Proceedings of the 21st National Conference on Artificial Intelligence (AAAI
2006, Boston, Massachusetts, USA), MIT Press, pp. 299–304.

