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Answer-set programming (ASP) has emerged as a declarative programming paradigm where
problems are encoded as logic programs, such that the so-called answer sets of theses pro-
grams represent the solutions of the encoded problem. The efficiency of the latest ASP solvers
reached a state that makes them applicable for problems of practical importance. Consequently,
problems from many different areas, including diagnosis, data integration, and graph theory,
have been successfully tackled via ASP. In this work, we present such ASP-encodings for prob-
lems associated to abstract argumentation frameworks (AFs) and generalisations thereof. Our
encodings are formulated as fixed queries, such that the input is the only part depending on
the actual AF to process. We illustrate the functioning of this approach, which is underlying
a new argumentation system called ASPARTIX in detail and show its adequacy in terms of
computational complexity.
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1. Motivation

In Artificial Intelligence (AI), the area of argumentation (the survey by Bench-Capon and Dunne
(2007) gives an excellent overview) has become one of the central issues during the last decade.
Argumentation provides a formal treatment for reasoning problems arising in a number of applica-
tions fields, including Multi-Agent Systems and Law Research. In a nutshell, the so-called abstract
argumentation frameworks (AFs) formalise statements together with a relation denoting rebuttals
between them, such that the semantics gives an abstract handle to solve the inherent conflicts
between statements by selecting admissible subsets of them. The reasoning underlying such AFs
turned out to be a very general principle capturing many other important formalisms from the
areas of AI and knowledge representation.

The increasing interest in argumentation led to numerous proposals for formalisations of argu-
mentation. These approaches differ in many aspects. First, there are several ways as to how
“admissibility” of a subset of statements can be defined; second, the notion of rebuttal has dif-
ferent meanings (or even additional relationships between statements are taken into account);
finally, statements are augmented with priorities, such that the semantics yields those admissible
sets which contain statements of higher priority. Thus, in order to compare these different propos-
als, it is desirable to have a system at hand, which is capable of dealing with a large number of
argumentation semantics.

Argumentation problems are, in general, intractable; for instance, deciding if an argument
is contained in some preferred extension is known to be NP-complete. Therefore, developing
dedicated algorithms for the different reasoning problems is non-trivial. A promising way to
implement such systems is to use a reduction method, where the given problem is translated into
another language, for which sophisticated systems already exist.
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In this work, we present an approach which meets these challenges, i.e. we describe a system
which, on the one hand, implements numerous approaches for abstract argumentation, and, on the
other hand, gains its efficiency by exploiting highly sophisticated solvers to which we can map the
problems in question. The declarative programming paradigm of Answer-Set Programming (ASP)
(Niemelä 1999; Leone et al. 2006) is especially well suited for this purpose due to the following
three characteristics.

• The prototypical language of ASP (i.e. logic programming under the answer-set semantics
(Gelfond and Lifschitz 1991), also known as stable logic programming or A-Prolog) is very
expressible and allows to formulate queries (in an extended datalog fashion) over databases,
such that multiple results can be obtained. In our context, queries thus can be employed to
obtain multiple extensions for AFs, where the actual AF to process is just given as an input
database.

• Advanced ASP-solvers such as Smodels, DLV, GnT, Cmodels, Clasp, or ASSAT are nowa-
days able to deal with large problem instances, see, e.g. (Gebser et al. 2007). Thus, using
our proposed reduction method delegates the burden of optimisation to these systems.

• Depending on the syntactical structure of a given ASP query, the complexity of evaluating
that query on input databases (i.e. the data complexity of ASP) varies from classes P, NP,
coNP up to �P

2 and to �P
2 . Hence, for the different types of problems in abstract argu-

mentation, we are able to formulate queries which are “well suited” from a complexity
point of view. In other words, the complexity of evaluating ASP queries representing some
argumentation problem lies in the same complexity class as the original problem.

The main aim of this paper is to present ASP queries for reasoning problems within different
types of AFs. To be more specific, we give queries for the most important types of extensions
(i.e. admissible, preferred, stable, semi-stable, complete, and grounded (Dung 1995; Caminada
2006)) in terms of Dung’s original abstract framework, the preference-based AF by Amgoud and
Cayrol (2002), the value-based argumentation framework (VAF) by Bench-Capon (2003), and the
bipolar argumentation framework (BAF) (Cayrol and Lagasquie-Schiex 2005; Amgoud, Cayrol,
Lagasquie-Schiex, and Livet 2008).

We have implemented these queries in a system called ASPARTIX, which makes use of the
prominent answer set solver DLV (Leone et al. 2006). All necessary programs to run ASPARTIX
and some illustrating examples are available at

www.dbai.tuwien.ac.at/research/project/argumentation/systempage/
We believe that our system is a useful tool for researchers in the argumentation community to

compare different argumentation semantics on concrete examples within a uniform setting. In fact,
investigating the relationship between different argumentation semantics has received increasing
interest lately (Baroni and Giacomin 2008b).

Earlier work already proposed reductions from argumentation problems to certain target for-
malisms. Most notably are encodings in terms of (quantified) propositional logic (Besnard and
Doutre 2004; Egly and Woltran 2006; Besnard, Hunter, and Woltran 2009) and logic programs
(Nieves, Osorio, and Cortés 2008; Nieves, Osorio, and Zepeda 2009; Osorio, Zepeda, Nieves, and
Cortés 2005; Wakaki and Nitta 2008; we will come back to the earlier work on reductions to logic
programs, which is indeed most closely related to ours, in the discussion section at the end of this
article).

The main difference of this earlier work compared with our approach is the necessity of
compiling (at least, for some of the semantics) each problem instance into a different instance of
the target formalism (e.g. into a different logic program).

In our approach, all semantics are encoded within a fixed query (independent from the concrete
AF to process). Thus, we are more in the tradition of a classical implementation because we
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construct an interpreter inASP which takes anAF given as input.Although there is no advantage of
the interpreter approach from a theoretical point of view (as long as the reductions are polynomial-
time computable), there are several practical ones. The interpreter is easier to understand, easier to
debug, and easier to extend. Additionally, proving properties like correspondence between answer
sets and extensions is simpler. Moreover, the input AF can be changed easily and dynamically
without translating the whole formula. This indeed simplifies the answering of questions like
“What happens if I add this new argument?”.

The remainder of the article is organised as follows. In the next section, we recall the necessary
concepts ofASP andAFs. Furthermore we give some illustrative examples and recall the respective
complexity results. In Section 3, we gradually introduce the encodings for the particular semantics
and in Section 4, we adapt these encodings for some generalisations of AFs. Finally, in Section 5,
we give an overview of related approaches and discuss future work.

2. Preliminaries

2.1. Answer-set programming

We first give a brief overview of the syntax and semantics of the ASP-formalism we consider,
i.e. disjunctive datalog under the answer-set semantics (Gelfond and Lifschitz 1991). Then, we
illustrate useful programming techniques on some simple examples. Finally, we briefly recall
some important complexity results for disjunctive datalog. We refer to Eiter, Gottlob, and Mannila
(1997) and Leone et al. (2006) for a broader exposition on all of these topics.

In what follows, we fix a countable set U of (domain) elements, also called constants and
suppose a total order < over these elements. An atom is an expression p(t1, . . .,tn), where p is a
predicate symbol of arity n ≥ 0 and each ti is either a variable or an element from U . An atom is
ground if it is free of variables.

A (disjunctive) rule r is of the form

a1 ∨ · · · ∨ an :−b1, . . . , bk, not bk+1, . . . , not bm

with n ≥ 0,m ≥ k ≥ 0, n + m > 0, and where a1, . . . , an, b1, . . . , bm are atoms, and “not ” stands
for default negation.

The head of r is the set H(r) = {a1, . . . , an} and the body of r is B(r) = {b1, . . . , bk,

not bk+1, . . . , not bm}. Furthermore, B+(r) = {b1, . . . , bk} and B−(r) = {bk+1, . . . , bm}. A rule r

is normal (or disjunction-free) if n ≤ 1 and a constraint if n = 0. A rule r is safe if each variable
in r occurs in B+(r). A rule r is ground if no variable occurs in r . If each rule in a program is
normal (resp., ground), we call the program normal (resp., ground). A fact is a disjunction-free
ground rule with an empty body.

A program is a finite set of safe (disjunctive) rules. Employing database notation, we call a
finite set of facts also an input database and a set of non-ground rules a query. For a query � and
an input database D, we often write �(D), instead of the program D ∪ �, in order to indicate
that D serves as input for query �.

A normal program � is called stratified if no atom a depends by recursion through negation
on itself (Apt, Blair, and Walker 1988). More formally, � is stratified if there exists an assignment
α(·) of integers to the predicates in �, such that for each rule r ∈ �, the following holds: If
predicate p occurs in the head of r and predicate q occurs

(i) in the positive body of r , then α(p) ≥ α(q) holds;
(ii) in the negative body of r , then α(p) > α(q) holds.
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As an example, consider the following program �:

� = { a(X) :− not b(X), d(X); b(X) :− a(X) }.
In order to find an assignment α(·) satisfying the above conditions for �, observe that the first
rule of � requires α(a) > α(b), but the second rule, in turn, forces α(b) ≥ α(a). In other words,
each assignment α(·) violates at least one of the conditions, and hence, � is not stratified.

For the program

�′ = { a(X) :− not b(X), d(X); b(X) :− c(X); c(X) :− b(X) },
we can use the assignment α(a) = 2, α(b) = α(c) = α(d) = 1 to show that �′ is stratified. The
concept of stratified programs is very important in logic programming, since it allows for a
restricted form of negation, but does not lead to an increase in the complexity (see also the
complexity results below, which show that stratified programs still can be evaluated efficiently,
while this is not the case for normal or disjunctive programs).

For any program �, let U� be the set of all constants appearing in � (if no constant appears in
�, an arbitrary constant is added to U�), and let B� be the set of all ground atoms constructible
from the predicate symbols appearing in � and the constants of U�. Moreover, Gr(�) is the set of
rules rσ obtained by applying, to each rule r ∈ �, all possible substitutions σ from the variables
in � to elements of U�.

Let the set of all ground atoms over U be denoted by BU . An interpretation I ⊆ BU satisfies a
ground rule r iff H(r) ∩ I 
= ∅ whenever B+(r) ⊆ I and B−(r) ∩ I = ∅. A ground program �

is satisfied by I , if I satisfies each r ∈ �. A non-ground rule r (resp., a non-ground program �)
is satisfied by I , if I satisfies all groundings of r (resp., Gr(�)). An interpretation I ⊆ BU is an
answer set of � iff it is a subset-minimal set satisfying the Gelfond–Lifschitz reduct

�I = { H(r) :− B+(r) | I ∩ B−(r) = ∅, r ∈ Gr(�) }.
For a program �, we denote the set of its answer sets by AS(�). We note that for each I ∈ AS(�),
I ⊆ B� holds. Moreover, a program can have multiple answer sets. A stratified program has at
most one answer set, and a constraint-free stratified program has exactly one answer set.

Let us discuss some typical concepts of ASP which are important for the implementation later
on by providing queries for some graph problems (see Leone et al. (2006) for a more detailed
discussion of similar examples). First, consider the problem of reachability in directed graphs.
We assume that an input graph G is given as a set of facts edge(a, b), indicating that there is an
edge from vertex a to vertex b in G. Moreover, we assume that each such input database D also
contains a fact start(a) for a designated vertex a. The goal is now to compute all vertices reachable
from a via the edges in G. Therefore, we use the predicate reached(·) in the following program:

πreach = {reached(X) :− start(X);
reached(Y ) :− reached(X), edge(X, Y )}

Given an input database D as specified above, we get that predicate reached(b) is in the answer
set of πreach(D) iff vertex b is reachable in G from the designated start vertex a. Note that πreach

does neither contain disjunction nor negation. Moreover, there is no constraint in πreach, hence
πreach(D) has exactly one answer set, for each input database D. Minimality of the answer-set
semantics guarantees that the answer set of πreach(D) does not contain predicates reached(c), if
vertex c is not reachable from a in G.

Before we give some further examples, let us introduce the concept of splitting sets (Lifschitz
and Turner 1994). Given a program �, a set S of predicate symbols is a splitting set for �,
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iff, for every rule r ∈ �, it holds that if some atom with predicate symbol from S occurs in
the head of r , then each atom in r has its predicate symbol from S as well. Any splitting set
S for program � divides � in two parts. The top of � (with respect to S), in symbols �t

S ,
contains all rules of � which have an occurrence of a predicate symbol not contained in S,
while the bottom of � (with respect to S) is defined as �b

S = � \ �t
S . To have an example,

recall the program �′ = {a(X) :− not b(X), d(X); b(X) :− c(X); c(X) :− b(X)}. The set S =
{b, c} is a splitting set for �′, and we obtain (�′)tS = {a(X):− not b(X), d(X)} and (�′)bS =
{b(X) :− c(X); c(X) :− b(X)}. Splitting sets allow to compute the answer sets of a program
step-by-step due to the following result, known as the Splitting Theorem.

Proposition 2.1 Let S be a splitting set of a program �, and let I ⊆ BU . Then I ∈ AS(�) iff
I ∈ AS(�t

S(J )), where J = I ∩ B�b
S

and J ∈ AS(�b
S).

We next illustrate a typical use of default negation. We consider here the problem of
3-colourability of an (undirected) graph. Suppose a graph’s vertices are defined via the predi-
cate vertex(·) and its edges via the predicate edge(·, ·). We employ default negation to guess a
colour for each node in the graph, and then check whether adjacent vertices have indeed different
colours.

πcol = πguess ∪ πcheck where

πguess = {red(X) :− vertex(X), not green(X), not blue(X); (1)

green(X) :− vertex(X), not red(X), not blue(X); (2)

blue(X) :− vertex(X), not red(X), not green(X)} (3)

πcheck = {fail :− red(X), red(Y ), edge(X, Y ); (4)

fail :− green(X), green(Y ), edge(X, Y ); (5)

fail :− blue(X), blue(Y ), edge(X, Y ); (6)

:− fail} (7)

The three rules of πguess are typical “guessing rules” which assign to each vertex exactly one
colour. To illustrate this, let D be an input database over predicates vertex and edge, and assume D

contains three vertices {vertex(a), vertex(b), vertex(c)}. Then, the program πguess(D) possesses
27 answer sets, namely

D ∪ {red(a), red(b), red(c)}, D ∪ {red(a), red(b), green(c)}, . . .
We note that the fact that no vertex gets assigned to more than one colour is ensured by the
interplay between minimality and the notion of a reduct. Also observe that πguess is not stratified.
Indeed, we would require a mapping α(·), such that α(red) > α(green) (because of rule (1)) and
α(green) > α(red) (because of rule (2)). Such a mapping obviously does not exist.

Now let use consider πcheck. The role of this program is to exclude answer set candi-
dates provided by πguess. In our case, we want to rule out candidates having adjacent vertices
of the same colour. Thanks to the Splitting Theorem, we indeed are allowed to first com-
pute the answer sets of πguess(D) and then compute the answer sets of πcheck(J ) for each
J ∈ AS(πguess(D)), in order to obtain the answer sets of the entire program πcol(D). In
fact, the set S = {vertex, edge, red, green, blue} is a splitting set for πcol(D), for any input
database D over atoms with predicate symbols from S. The top of πcol(D) with respect to
S is thus given by (πcol(D))tS = πcheck, and the bottom of πcol(D) with respect to S is given
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by (πcol(D))bS = πguess(D). For illustration, assume D contains edge(a, b), edge(b, c), and
edge(c, a). Assume the answer set J = D ∪ {red(a), red(b), green(c)} of πguess(D) is used as
input now to πcheck. Then, the rule fail :− red(X), red(Y ), edge(X, Y ) derives fail, but then rule
(7) cannot be satisfied. Thus, J does not satisfy πcol(D), and consequently, J cannot become
an answer set of πcol(D). On the other hand, D ∪ {red(a), green(b), blue(c)} (which is also an
answer set of πguess(D)) satisfies all rules of πcheck and thus becomes an answer set of πcol(D). In
fact, for the example graph represented in D, πcol(D) possesses six answer sets.

Actually, instead of the rules (1)–(3), we could have used disjunction to guess a colour for
each vertex. As we shall see next, disjunction is a more expressive concept than default negation.
While with default negation, one is able to formulate an exclusive guess (as we did in the above
example), disjunction can be additionally employed for a certain saturation technique, which
allows for representing even more complex problems. The term “saturation” indicates that all
atoms which are subject to a guess can also be jointly contained in an interpretation. To saturate
a guess, it is however necessary that the checking part of a program interacts with the guessing
part.

As a very simple example, let us compare the following two programs:

� = {p ∨ q :− ; �′ = {p :− not q; q :− not p;
p :− q; q :− p} p :− q; q :− p}

In � we are guessing p or q via disjunction and in �′ we have formulated the same guess via two
normal rules. Note that the remaining rules p :− q and q :− p however saturate any such guess
between p and q by adding the respective other predicate. In fact, this saturation of the guess
shows the difference between programs � and �′ in the following sense: We have that {p, q} is
the unique answer set of � (which can be seen by the fact that {p, q} is the minimal interpretation
satisfying �; note that � does not contain default negation, so there is no need to consider the
reduct.). On the other hand, for �′ we obtain as the reduct (�′){p,q} = {p :− q; q :− p}. But now,
{p, q} is not the minimal interpretation satisfying (�′){p,q}, since we could also take the empty
interpretation (i.e., both p and q are set to false). Thus, {p, q} is not an answer set of �′. In fact,
�′ has no answer set at all.

To have a slightly more meaningful application of this saturation technique, let us now reduce
also the non-3-colourability problem to the problem of deciding whether an answer set exists.
Therefore, we adapt the encoding πcol from above as follows. First, we use disjunction in rule (8)
to guess the colour of vertices. Second, we have the same rules (9)–(11) to derive fail as we had
in πcol. Finally, instead of the constraint :− fail to exclude invalid colourings, we “saturate” the
guess via rules (12)–(14) and add as constraint :− not fail.

πncol = {red(X) ∨ green(X) ∨ blue(X) :− vertex(X); (8)

fail :− red(X), red(Y ), edge(X, Y ); (9)

fail :− green(X), green(Y ), edge(X, Y ); (10)

fail :− blue(X), blue(Y ), edge(X, Y ); (11)

red(X) :− fail, vertex(X); (12)

green(X) :− fail, vertex(X); (13)

blue(X) :− fail, vertex(X); (14)

:− not fail} (15)

Suppose graphs are represented by inputs D as above. The only possible answer set J of πncol(D)

(if one exists) contains fail because of the last rule :− not fail. But if fail is contained in J , J has to



Argument and Computation 153

contain red(X), green(X), and blue(X) for each vertex X. Thus J has to be of the form D ∪ {fail} ∪
{red(a), green(a), blue(a) | vertex(a) ∈ D}. We observe that the reduct (πncol(D))J is given by
πncol(D) \ {:− not fail}. Note that interpretations satisfying (πncol(D))J do not necessarily contain
fail. Indeed, we can come up with such an interpretation (not containing fail), exactly in the case
where the input D represents a 3-colourable graph. But this means that D represents a graph which
is not 3-colourable iff J is (the unique) answer set of πncol(D). We refer to the work by Eiter and
Polleres (2006) for a general discussion on how this saturation technique can be further exploited
in ASP queries.

We conclude this section by recalling some central complexity results for ASP. Credulous and
skeptical reasoning in terms of programs are defined as follows. Given a program � and a set A

of ground atoms, we denote by � |=c A that A is contained in some answer sets of �. Likewise,
we denote by � |=s A that A is contained in all answer sets of �. In the former case, we reason
credulously; in the latter case, we reason skeptically.

Since we will deal with fixed programs, we focus on results for data complexity. Recall that
data complexity in our context addresses the problem �(D) |= A where the query � is fixed,
while the input database D and ground atoms A are inputs of the decision problem. Depending on
the concrete definition of |=, we get the complexity results in Table 1, compiled from (Dantsin,
Eiter, Gottlob, and Voronkov 2001) and the references therein.

2.2. Basic argumentation frameworks

In this section, we recall the most important semantics for the basic version of abstract AFs and
highlight complexity results for typical decision problems. Later, in Section 4, we will introduce
some generalisations of AFs.

In order to relate frameworks to programs, we use the universe U of domain elements
(introduced in the previous subsection) also in the following basic definition.

Definition 2.2 An AF is a pair F = (A, R) where A ⊆ U is a finite set of arguments and R ⊆
A × A. The pair (a, b) ∈ R means that a attacks (or defeats) b. A set S ⊆ A of arguments defeats
b in F , if there is an a ∈ S, such that (a, b) ∈ R. An argument a ∈ A is defended by S ⊆ A in F

iff, for each b ∈ A, it holds that, if (b, a) ∈ R, then S defeats b in F .

An AF can be naturally represented as a directed graph.

Example 2.3 Let F = (A, R) be an AF with A = {a, b, c, d, e} and R = {(a, b), (c, b), (c, d),
(d, c), (d, e), (e, e)}. The graph representation of F is the following.

a b c d e

In order to be able to reason about such frameworks, it is necessary to group arguments with
special properties to extensions. One of the basic properties is the absence of conflicts between
arguments contained in the same extension.

Table 1. Data complexity for datalog (all results are completeness results).

Stratified programs Normal programs General case

|=c P NP �P
2|=s P coNP �P
2
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Definition 2.4 Let F = (A, R) be an AF. A set S ⊆ A is said to be conflict-free in F , if there
are no a, b ∈ S, such that (a, b) ∈ R. We denote the collection of sets which are conflict-free in
F by cf(F ).

For our framework F = (A, R) from Example 2.3, we have

cf(F ) = {∅, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, d}}.
As a first concept of extensions, we present the stable extensions which are based on the idea that
an extension should not only be internally consistent but also be able to reject the arguments that
are outside the extension.

Definition 2.5 Let F = (A, R) be an AF. A set S is a stable extension of F , if S ∈ cf(F ) and
each a ∈ A \ S is defeated by S in F . We denote the collection of all stable extensions of F by
stable(F ).

The framework F from Example 2.3 has a single stable extension {a, d}. Indeed, {a, d} is
conflict-free, and each further element b, c, e is defeated by either a or d. In turn, {a, c} for
instance is not contained in stable(F ), although it is conflict-free as well. The obvious reason is
that e is not defeated by {a, c}.

Stable semantics in terms of argumentation are considered to be quite restricted. Moreover, it is
not guaranteed that a framework possesses at least one stable extension (consider, e.g. the simple
cyclic framework ({a}, {(a, a)})). Therefore it is also reasonable to consider those arguments which
are able to defend themselves from external attacks, like the admissible semantics proposed by
Dung (1995).

Definition 2.6 Let F = (A, R) be an AF. A set S is an admissible extension of F (or S is
admissible in F ), if S ∈ cf(F ) and each a ∈ S is defended by S in F . We denote the collection of
all admissible extensions of F by adm(F ).

For the framework F from Example 2.3, we obtain

adm(F ) = {∅, {a}, {c}, {d}, {a, c}, {a, d}}.
By definition, the empty set is always an admissible extension, therefore reasoning over admissible
extensions is also limited. In fact, skeptical acceptance (i.e. given an AF F = (A, R), and a ∈ A,
is a contained in all extensions of F ) becomes trivial w.r.t. admissible extensions. Thus, many
researchers consider maximal (w.r.t. set-inclusion) admissible sets, called preferred extensions, as
more important.

Definition 2.7 Let F = (A, R) be an AF. A set S is a preferred extension of F , if S ∈ adm(F )

and for each T ∈ adm(F ), S 
⊂ T . We denote the collection of all preferred extensions of F by
pref(F ).

Obviously, the preferred extensions of the framework F from Example 2.3 are {a, c} and {a, d}.
We note that each stable extension is also preferred, but the converse does not hold, as witnessed
by this example.

The next semantics we consider is the semi-stable semantics, recently introduced by Caminada
(2006) and investigated also in (Dunne and Caminada 2008). Semi-stable semantics are located
in-between stable and preferred semantics, in the sense that each stable extension of an AF F is
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also a semi-stable extension of F , and each semi-stable extension of F is a preferred extension of
F . However, in general, both inclusions do not hold in the opposite direction. In contrast to the
stable semantics, semi-stability guarantees that there exists at least one extension (in case of finite
AFs). We use the definition given by Dunne and Caminada (2008).

Definition 2.8 Let F = (A, R) be an AF, and for a set S ⊆ A, let S+
R be defined as S ∪ {b |

∃a ∈ S, such that (a, b) ∈ R}. A set S is a semi-stable extension of F , if S ∈ adm(F ) and for each
T ∈ adm(F ), S+

R 
⊂ T +
R . We denote the collection of all semi-stable extensions of F by semi(F ).

For our example framework (A, R), the only semi-stable extension coincides with the sta-
ble extension T = {a, d}. In contrast, S = {a, c} is not semi-stable because S+

R = {a, b, c, d} ⊂
{a, b, c, d, e} = T +

R .
Finally, we introduce complete and grounded extensions which Dung considered as skeptical

counterparts of admissible and preferred extensions, respectively.

Definition 2.9 Let F = (A, R) be an AF. A set S is a complete extension of F , if S ∈ adm(F )

and, for each a ∈ A defended by S in F , a ∈ S holds. The least (w.r.t. set inclusion) complete
extension of F is called the grounded extension of F . We denote the collection of all complete
(resp., grounded) extensions of F by comp(F ) (resp., ground(F )).

The complete extensions of framework F from Example 2.3 are {a, c}, {a, d}, and {a}, with
the last being also the grounded extension of F .

This concludes our collection of argumentation semantics that we consider in this paper. The
relations between the semantics are depicted in Figure 1, where an arrow from e to f indicates
that each e-extension is also an f -extension.

We briefly review the complexity of reasoning in AFs. To this end, we define the following
decision problems for e ∈ {stable, adm, pref, semi, comp, ground}:

• Crede: Given AF F = (A, R) and a ∈ A. Is a contained in some S ∈ e(F )?
• Skepte: Given AF F = (A, R) and a ∈ A. Is a contained in all S ∈ e(F )?

The complexity results are depicted in Table 2 (many of them follow implicitly from Dimopou-
los and Torres (1996); for the remaining results and discussions, see (Dunne and Bench-Capon
2002, 2004; Coste-Marquis, Devred, and Marquis 2005; Dunne and Caminada 2008; Dvořák
and Woltran 2009)). In the table, “C-c” refers to a problem which is complete for class C, while
“in C” is assigned to problems for which a tight lower complexity bound is not known. A few

stable

semi-stable

preferred grounded

complete

admissible

Figure 1. Overview of argumentation semantics and their relations.
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Table 2. Complexity for decision problems in AFs.

stable adm pref semi comp ground

Crede NP-c NP-c NP-c �P
2 -c NP-c in P

Skepte coNP-c (trivial) �P
2 -c �P

2 -c in P in P

further comments are in order. We already mentioned that skeptical reasoning over admissible
extensions always is trivially false. Moreover, we note that credulous reasoning over preferred
extensions is easier than skeptical reasoning. This is due to the fact that the additional maximality
criterion only comes into play for the latter task. Indeed, for credulous reasoning the following
simple observation makes clear why there is no increase in complexity compared with credulous
reasoning over admissible extensions: a is contained in some S ∈ adm(F ) iff a is contained in
some S ∈ pref(F ). A similar argument immediately shows why skeptical reasoning over com-
plete extensions reduces to skeptical reasoning over the grounded extension. Finally, we recall
that reasoning over the grounded extension is tractable (Dung 1995), since the least fixed point of
the following operator captures (for finite AFs) the grounded extension and can be computed in
polynomial time.

Proposition 2.10 The grounded extension of an AF F = (A, R) is given by the least fixed point
of �F , where the operator �F : 2A → 2A is defined as

�F (S) = {a ∈ A | a is defended by S in F}.

3. ASP-encodings for abstract argumentation frameworks

We now provide fixed queries πe for each extension of type e introduced in the previous section,
in such a way that the AF F is given as an input database F̂ and the answer sets of the combined
program πe(F̂ ) are in a certain one-to-one correspondence with the respective extensions. Note
that having established the fixed query πe, the only translation required is to provide a given AF
F as input database F̂ to πe. For an AF F = (A, R), we define

F̂ = {arg(a) | a ∈ A} ∪ {defeat(a, b) | (a, b) ∈ R}.

In most cases, we have to guess candidates for the selected type of extensions and then check
whether a guessed candidate satisfies the corresponding conditions. As we have outlined in
Section 2.1, default negation is an appropriate concept to formulate such a guess within a query. In
what follows, we use unary predicates in(·) and out(·) to perform a guess for a set S ⊆ A, where
in(a) represents that a ∈ S. The following notion of correspondence is relevant for our purposes.

Definition 3.1 Let S ⊆ 2U be a collection of sets of domain elements and let I ⊆ 2BU be a
collection of sets of ground atoms. We say that S and I correspond to each other, in symbols
S ∼= I, iff (i) for each S ∈ S, there exists an I ∈ I, such that {a | in(a) ∈ I } = S; and (ii) for
each I ∈ I, it holds that {a | in(a) ∈ I } ∈ S.

Note that S ∼= I thus implies |S| = |I|. In what follows, we will stepwise introduce the rules
from which our queries will be built.
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Let F = (A, R) be an AF. The following program fragment guesses, when augmented by F̂ ,
any subset S ⊆ A and then checks whether the guess is conflict-free in F :

πcf = {in(X) :− not out(X), arg(X);
out(X) :− not in(X), arg(X);
:− in(X), in(Y ), defeat(X, Y )}.

For our framework F from Example 2.3, we have as input

F̂ = {arg(a), arg(b), arg(c), arg(d), arg(e),

defeat(a, b), defeat(c, b), defeat(c, d),

defeat(d, c), defeat(d, e), defeat(e, e)}.
Moreover, using F̂ together with πcf , we obtain

AS(πcf(F̂ )) = {S∅, Sa, Sb, Sc, Sd, Sac, Sad, Sbd},
where

S∅ = F̂ ∪ {out(a), out(b), out(c), out(d), out(e)},
Sa = F̂ ∪ {in(a), out(b), out(c), out(d), out(e)},
Sb = F̂ ∪ {in(b), out(a), out(c), out(d), out(e)},
Sc = F̂ ∪ {in(c), out(a), out(b), out(d), out(e)},
Sd = F̂ ∪ {in(d), out(a), out(b), out(c), out(e)},
Sac = F̂ ∪ {in(a), in(c), out(b), out(d), out(e)},
Sad = F̂ ∪ {in(a), in(d), out(b), out(c), out(e)},
Sbd = F̂ ∪ {in(b), in(d), out(a), out(c), out(e)}.

Proposition 3.2 For any AF F , cf(F ) ∼= AS(πcf(F̂ )).

Proof Let F = (A, R) and S ∈ cf (F ). We show that the interpretation

I = F̂ ∪ {in(a) | a ∈ S} ∪ {out(a) | a ∈ A \ S}
(corresponding to S) is an answer set of πcf(F̂ ). We have to show that I satisfies πcf(F̂ ) (we
recall that an interpretation I satisfies a program � iff I satisfies �I ), and that no J ⊂ I satisfies
(πcf(F̂ ))I . To show that I satisfies πcf(F̂ ), we have to show that I satisfies each r ∈ Gr(πcf(F̂ )).
Note that

Gr(πcf(F̂ )) = F̂ ∪
{in(a) :− not out(a), arg(a) | a ∈ A} ∪ (16)

{out(a) :− not in(a), arg(a) | a ∈ A} ∪ (17)

{:− in(a), in(b), defeat(a, b) | a, b ∈ A}. (18)

Clearly, I satisfies F̂ , since F̂ ⊆ I . Moreover, I satisfies each instance of rule (16) (and likewise
of rule (17)), since either in(a) or out(a) is contained in I , for each a ∈ A. Finally, each instance



158 U. Egly et al.

of constraint (18) is satisfied by I , since B+(r) 
⊆ I . This can be seen as follows: Suppose r is of
the form :− in(a), in(b), defeat(a, b). In case, {in(a), in(b)} 
⊆ I , B+(r) 
⊆ I is clear. Otherwise,
then both a and b are contained in S, by definition of I . Since S ∈ cf(F ) by assumption, (a, b) /∈ R

has to hold. Thus, by definition, defeat(a, b) /∈ F̂ (and thus defeat(a, b) /∈ I ). Hence B+(r) 
⊆ I .
This shows that I satisfies πcf(F̂ ). Now let J ⊆ I , such that J satisfies (πcf(F̂ ))I . We show

that then J = I . Note that the reduct is always grounded by definition. We have

(πcf(F̂ ))I = F̂ ∪
{in(a) :− arg(a) | a ∈ A, out(a) /∈ I } ∪ (19)

{out(a) :− arg(a) | a ∈ A, in(a) /∈ I } ∪ (20)

{:− in(a), in(b), defeat(a, b) | a, b ∈ A}. (21)

Since J satisfies (πcf(F̂ ))I , F̂ ⊆ J . Moreover, since J satisfies each rule in Equation (19), for each
a ∈ A, such that out(a) /∈ I , in(a) has to be in J . But since, for each a ∈ A, we have that out(a) /∈ I

iff in(a) ∈ I , we get that in(a) ∈ J iff in(a) ∈ I . Similarly, using the rules from Equation (20),
we obtain that out(a) ∈ J iff out(a) ∈ I . J = I follows. Hence, there is no J ⊂ I , such that J

satisfies (πcf(F̂ ))I . This concludes the proof for I ∈ AS(πcf(F̂ )).
Now suppose I ∈ AS(πcf(F̂ )). Consequently, F̂ ⊆ I , and no further atom of the form

defeat(·, ·) or arg(·) is contained in I (by the minimality of answer sets, and since such predicates
do not occur in heads of rules apart from F̂ ). We show that S ∈ cf(F ) for S = {a | in(a) ∈ I }.
Since I ∈ AS(πcf(F̂ )), I satisfies πcf(F̂ ), i.e. I satisfies the grounding of πcf(F̂ ), Gr(πcf(F̂ )), as
given above. In particular, I satisfies each constraint in Equation (18), thus jointly in(a) ∈ I and
in(b) ∈ I , only if defeat(a, b) /∈ I . By our observation from above, defeat(a, b) /∈ F̂ , and thus
(a, b) /∈ R. Thus, for each a, b jointly occurring in S, a and b do not attack each other in F . Thus
S is conflict-free for F . �

3.1. Stable extensions

We are now prepared to present our first encoding. Two additional rules for the stability test are
required and we define

πstable = πcf ∪ πsrules

πsrules = {defeated(X) :− in(Y ), defeat(Y, X);
:− out(X), not defeated(X)}.

The first rule of πsrules computes those arguments attacked by the current guess, while the con-
straint in πsrules eliminates those guesses where some argument not contained in the guess remains
undefeated.

Note that we can use the Splitting Theorem (Section 2.1) as follows. The splitting set C =
{in, out, arg, defeat} divides the program πstable(F̂ ) into (πstable(F̂ ))tC = πsrules and (πstable(F̂ ))bC =
πcf(F̂ ). Therefore, we make direct use of the answer sets of πcf(F̂ ). For our example, let us first
consider the collection C of answer sets of

πcf(F̂ ) ∪ {defeated(X) :− in(Y ), defeat(Y, X)}.
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In fact, using our calculations from the previous subsection, we obtain

C = {
S∅,

Sa ∪ {defeated(b)},
Sb,

Sc ∪ {defeated(b), defeated(d)},
Sd ∪ {defeated(c), defeated(e)},
Sac ∪ {defeated(b), defeated(d)},
Sad ∪ {defeated(b), defeated(c), defeated(e)},
Sbd ∪ {defeated(c), defeated(e)} }

.

If we now apply the constraint :− out(X), not defeated(X) to each element in C, we observe that
any set from C except Sad ∪ {defeated(b), defeated(c), defeated(e)} is violated by that constraint.
In fact, each other set contains at least one atom out(y) without the matching defeated(y).

In general, our encoding for stable extensions satisfies the following correspondence result.

Proposition 3.3 For any AF F , stable(F ) ∼= AS(πstable(F̂ )).

Proof First, let us formally describe the application of the Splitting Theorem (Proposition 2.1)
as sketched above with the splitting set C = {in, out, arg, defeat}. Then, we obtain

AS(πstable(F̂ )) =
⋃

J∈AS(πcf (F̂ ))

AS(J ∪ πsrules). (22)

Let F = (A, R) and S ∈ stable(F ). Since S ∈ stable(F ), S ∈ cf(F ), and by Proposition 3.2, there
exists an interpretation

J = (
F̂ ∪ {in(a) | a ∈ S} ∪ { out(a) | a ∈ A \ S}) ∈ AS(πcf(F̂ )).

By Equation (22), we know that each answer set of J ∪ πsrules is also an answer set of πstable(F̂ ).
We now show that I given as

F̂ ∪ { in(a) | a ∈ S } ∪ { out(a) | a ∈ A \ S} ∪ {defeated(a) | b ∈ S, (b, a) ∈ R }
is indeed an answer set of πstable(F̂ ). We first show that I satisfies the grounding of J ∪ πsrules.
Clearly, I satisfies J , since J ⊆ I . The groundings of the remaining rules are given by

{defeated(a) :− in(b), defeat(b, a) | a, b ∈ A} (23)

{:− out(a), not defeated(a) | a ∈ A}. (24)

Note that, for each argument b, we have in(b) ∈ I iff b ∈ S. Moreover, we already know
defeat(a, b) ∈ J iff (a, b) ∈ R. Thus, I satisfies each instance of rule (23). Further, since S is
stable, we know that each a ∈ A \ S is defeated by S in F . By definition, if a ∈ A \ S then
out(a) ∈ I . But this shows that either out(a) /∈ I or defeated(a) ∈ I holds for each a ∈ A.
Thus I satisfies each instance of constraint (24). This shows that I satisfies πstable(F̂ ). In order
to show that I ∈ AS(πstable(F̂ )), let K ⊆ I be an interpretation satisfying (πstable(F̂ ))I . First,
we know K ∩ Bπcf (F̂ ) = I ∩ Bπcf (F̂ ), otherwise J /∈ AS(πcf(F̂ )) (in that case we would have



160 U. Egly et al.

K ∩ Bπcf (F̂ ) ⊂ I ∩ Bπcf (F̂ ), but then also K ∩ Bπcf (F̂ ) ⊂ J holds since J = I ∩ Bπcf (F̂ ); further,

by assumption, K (and thus also K ∩ Bπcf (F̂ )) satisfies (πcf(F̂ ))J = (πcf(F̂ ))I ⊆ (πstable(F̂ ))I ).
Second, since K satisfies the rules in Equation (23) – which are all without default negation and
thus contained in the reduct – defeated(a) ∈ K iff defeated(a) ∈ I . Hence K = I . This shows
I ∈ AS(πstable(F̂ )).

Let now I ∈ AS(πstable(F̂ )). We show that S = {a | in(a) ∈ I } is a stable extension of F .
Since I ∈ AS(πstable(F̂ )) there exists (because of relation (22)) a J ∈ AS(πcf(F̂ )) such that I ∈
AS(J ∪ πsrules). It is not hard to see that S = {a | in(a) ∈ J }. By Proposition 3.2, S is conflict-free
in F . Since I ∈ AS(J ∪ πsrules), we get (by analogous observations as above) that defeated(a) ∈ I

iff a is defeated by S in F . Now, since I satisfies πstable(F̂ )), I has to satisfy each instance of
constraint (24). In particular, we obtain that for each a such that out(a) ∈ I , also defeated(a) ∈ I .
But this yields that each a /∈ S is defeated by S in F . Thus S ∈ stable(F ). �

3.2. Admissible extensions

We next give the rules for the admissibility test:

πadm = πcf ∪ {defeated(X) :− in(Y ), defeat(Y, X);
:− in(X), defeat(Y, X), not defeated(Y )}.

The first rule is the same as in πstable. The new constraint rules out sets containing a non-defended
argument. Indeed, we can identify non-defended arguments as those, which are defeated by an
argument, which itself is undefeated.

For our example framework, we start from a collections C of sets as above but now we check
which sets violate the new constraint :− in(X), defeat(Y, X), not defeated(Y ). This is the case for
two of the candidates.

(1) Sb contains in(b) and defeat(a, b) but since defeated(a) is not contained, the constraint
applies;

(2) for Sbd ∪ {defeated(c), defeated(e)}, the argumentation is analogous.

Hence, we obtain

AS(πadm(F̂ )) = {
S∅,

Sa ∪ {defeated(b)},
Sc ∪ {defeated(b), defeated(d)},
Sd ∪ {defeated(c), defeated(e)},
Sac ∪ {defeated(b), defeated(d)},
Sad ∪ {defeated(b), defeated(c), defeated(e)}}.

Again, we observe a one-to-one correspondence to the admissible extensions of F . The general
result is as follows.

Proposition 3.4 For any AF F , adm(F ) ∼= AS(πadm(F̂ )).

The proof is similar to the one of Proposition 3.3.
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3.3. Complete extensions

We proceed with the encoding for complete extensions. We define

πcomp = πadm ∪ {undefended(X) :− defeat(Y, X), not defeated(Y );
:− out(X), not undefended(X)}.

Once more, we use our running example to illustrate πcomp. Again, we proceed in
two steps and first compute the answer sets of the program without the constraint
:− out(X), not undefended(X). Here, we can directly use the sets from AS(πadm(F̂ )) and
check which predicates undefended(·) can be derived. The answer sets of πadm(F̂ ) ∪
{undefended(X) :− defeat(Y, X), not defeated(Y )} are

S∅ ∪ {undefended(b), undefended(c), undefended(d), undefended(e)},
Sa ∪ {defeated(b), undefended(b), undefended(c),

undefended(d), undefended(e)},
Sc ∪ {defeated(b), defeated(d), undefended(b), undefended(d), undefended(e)},
Sd ∪ {defeated(c), defeated(e), undefended(b), undefended(c), undefended(e)},
Sac ∪ {defeated(b), defeated(d), undefended(b), undefended(d), undefended(e)},
Sad ∪ {defeated(b), defeated(c), defeated(e),

undefended(b), undefended(c), undefended(e)}.

Obviously, each candidate which contains out(a) (i.e. the sets S∅, Sc, and Sd ) is ruled out by the
constraint :− out(X), not undefended(X), since no such candidate set contains undefended(a).
One can check that all other sets, i.e., Sa , Sac, and Sad , do not violate the constraint, and thus are
answer sets of πcomp(F̂ ). Again, these three sets characterise the complete extensions of F , as
desired.

Proposition 3.5 For any AF F , comp(F ) ∼= AS(πcomp(F̂ )).

The proof is similar to the one of Proposition 3.3.

3.4. Grounded extension

Computing the grounded extension of a given AF could also be done by the “Guess & Check”
method we used in the previous encodings. But since reasoning via the grounded extension is
tractable (Table 2), we aim to find an encoding in a tractable subclass of datalog (the encodings we
used so far are not contained in such a tractable subclass). Inspecting Table 1 shows that stratified
programs are the appropriate candidate. However, as discussed in Section 2.1, stratified negation
is too weak to formalise guesses as we did in the encodings above. Instead, a suitable encoding
of the operator �F as introduced in Proposition 2.10 is possible. Therefore, we recursively derive
in(·) predicates according to the definition of the operator �F (following the same idea as we used
to derive the reached(·) predicates in the example program for reachability in graphs, discussed in
Section 2.1). To compute (in a stratified program) the required predicate for being defended, we
have to use the order < over the domain elements (such an order is provided by all ASP-solvers)
and derive corresponding predicates for infimum, supremum, and successor w.r.t. <. In fact, we
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shall use these predicates to perform “loops” over all arguments given by the input database.

π< = {lt(X, Y ) :− arg(X), arg(Y ), X < Y ;
nsucc(X, Z) :− lt(X, Y ), lt(Y, Z);
succ(X, Y ) :− lt(X, Y ), not nsucc(X, Y );
ninf(Y ) :− lt(X, Y );
inf(X) :− arg(X), not ninf(X);
nsup(X) :− lt(X, Y );
sup(X) :− arg(X), not nsup(X)}.

Note that π< is indeed stratified and constraint-free. Hence, π<(F̂ ) yields exactly one answer
set for each AF F . To illustrate the purpose of π<, recall our example framework F , and assume
the arguments are ordered as follows: a < b < c < d < e. For this particular order, the single
answer set S0 of π<(F̂ ) contains

{inf(a), succ(a, b), succ(b, c), succ(c, d), succ(d, e), sup(e)}.
The other atoms (which however will not be used in later calculations) contained in S0 are
lt(a, b), lt(a, c), lt(a, d), lt(a, e), lt(b, c), lt(b, d), lt(b, e), lt(c, d), lt(c, e), lt(d, e), nsucc(a, c),
nsucc(a, d), nsucc(a, e), nsucc(b, d), nsucc(b, e), nsucc(c, e), ninf(b), ninf(c), ninf(d), ninf(e),
nsup(a), nsup(b), nsup(c), and nsup(d).

We now define the required predicate defended(X) which itself is obtained via a predicate
defended_upto(X, Y ) with the intended meaning that argument X is defended by the current
assignment with respect to all arguments U ≤ Y . In other words, we perform a loop starting with
the infimum Y and then use the successor predicate to derive defended_upto(X, Y ) for all further
Y . If we arrive at the supremum element in this way, i.e. defended_upto(X, Y ) is derived for the
supremum Y , we finally obtain defended(X). We define

πdefended = {defended_upto(X, Y ) :− inf(Y ), arg(X), not defeat(Y, X); (25)

defended_upto(X, Y ) :− inf(Y ), in(Z), defeat(Z, Y ),

defeat(Y, X); (26)

defended_upto(X, Y ) :− succ(Z, Y ), defended_upto(X, Z),

not defeat(Y, X); (27)

defended_upto(X, Y ) :− succ(Z, Y ), defended_upto(X, Z),

in(V ), defeat(V , Y ), defeat(Y, X); (28)

defended(X) :− sup(Y ), defended_upto(X, Y )}, and (29)

πground = π< ∪ πdefended ∪ {in(X) :− defended(X)}.
Note that πground is also stratified. We also mention that the relevant predicate in(a) is derived
for some argument a if defended_upto(a, b) holds for each b. However, if there is an unattacked
argument c which attacks a, defended_upto(a, c) is not derived. It is thus not relevant in which
order we derive the predicates defended_upto(a, b). Consequently, the particular definition of the
order <, from which we obtained the inf(·), succ(·, ·), and sup(·) predicates used in πdefended, plays
no role. Any total order over the constants can be used.
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For illustration, we compute the answer set for F̂ ∪ π< ∪ πdefended step by step, for our example
AF F . Recall that we already have given S0, the answer set of F̂ ∪ π<. Since πground only derives
distinguished predicates defended_upto(·, ·) and defended(·), we can view S0 as input to πground.

In the “first round” of computation, we have no in(·) predicate derived so far; hence only the
rules (25) and (27) in πdefended are of interest. In fact, for inf(a), the rule (25) in πdefended yields

defended_upto(a, a), defended_upto(c, a), defended_upto(d, a), defended_upto(e, a).

Note that defended_upto(b, a) is missing, since we have defeat(a, b) ∈ F̂ . Now we use rule (27)
and succ(a, b) to obtain

defended_upto(a, b), defended_upto(c, b), defended_upto(d, b), defended_upto(e, b).

The remaining atoms we derive are

defended_upto(a, c), defended_upto(c, c), defended_upto(e, c).

Note that, since d is attacked by c, defended_upto(d, c) cannot be derived. Finally, we get

defended_upto(a, d), defended_upto(a, e).

However, as a does not defend any argument, it can be checked that no further atoms can be
derived. Thus we obtain that in the single answer set of πground(F̂ ) the only in(·) predicate is in(a).
This corresponds to the grounded extension of F , as desired.

Proposition 3.6 For any AF F , ground(F ) ∼= AS(πground(F̂ )).

Proof Let F = (A, R) and let F̂< be the answer set of π<(F̂ ). Recall that each F possesses a
unique grounded extension which is given by the least fixed point of �F . In order to prove the
correspondence between the operator �F , and the unique answer set of the program πground(F̂ ),
we first define the operator �F̂ representing the derivation of the answer set F̂ground of πground(F̂ )

as follows.

�F̂ (I) = I ∪ {defended_upto(a, b) | arg(a), arg(b) ∈ I, ∀c s.t. arg(c) ∈ I and c ≤ b :
defeat(c, a) 
∈ I or ∃d s.t. defeat(d, c) ∈ I and in(d) ∈ I } ∪

{defended(a), in(a) | arg(a) ∈ I, ∀c s.t. arg(c) ∈ I :
defeat(c, a) 
∈ I or ∃d s.t. defeat(d, c) ∈ I and in(d) ∈ I }.

Using the one-step provability operator for logic programs (see e.g. van Emden and Kowalski
(1976) for details on that operator), it can be shown that for every AF F = (A, R), the answer set
of the program πground(F̂ ) is given by the least fixed point of �F̂ . It remains to show that, in turn,
the least fixed point of �F̂ equals the grounded extension of F .

Therefore, let �0
F̂

= �F̂ (F̂<) and, for i > 0, �i

F̂
= �F̂ (�i−1

F̂
). Likewise, for the operator �

defined in Proposition 2.10, let �0
F = �F (∅), and �i

F = �F (�i−1
F ).

We now show, given an AF F = (A, R), that

�i
F = {a ∈ A | in(a) ∈ �i

F̂
} (30)

holds for every i ≥ 0. The proof is by induction on i.
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Induction base Suppose i = 0 and let a ∈ �0
F . We show that in(a) ∈ �0

F̂
. Since a ∈ �0

F and

�0
F = �F (∅), a is not attacked in F , i.e. there is no c ∈ A with (c, a) ∈ R. By definition, arg(a) ∈

F̂<, and there is no c such that defeat(c, a) ∈ F̂<. Hence, in(a) ∈ �0
F̂

by construction. To show

that, for each a ∈ A with in(a) ∈ �0
F̂

, also a ∈ �0
F holds, can be done in a similar manner.

Induction step Let i > 0, and suppose Relation (30) holds for all 0 ≤ j < i; in particular, we can
assume that�i−1

F = {a ∈ A | in(a) ∈ �i−1
F̂

}holds. Leta ∈ �i
F \ �i−1

F .We show in(a) ∈ �i

F̂
. Since

a ∈ �i
F , it must hold that for each c ∈ A with (c, a) ∈ R, there exists an argument d ∈ �i−1

F with
(d, c) ∈ R. Therefore, in(d) ∈ �i−1

F̂
holds by induction hypothesis. Moreover, we clearly have

arg(e) ∈ �i−1
F̂

for all e ∈ A, and defeat(e, f ) ∈ �i−1
F̂

for all (e, f ) ∈ R (recall that F̂ ⊆ �i−1
F̂

).

Hence, we know that for each c with arg(c) ∈ �i−1
F̂

, such that defeat(c, a) ∈ �i−1
F̂

, there exists an

argument d, such that defeat(d, c) ∈ �i−1
F̂

and in(d) ∈ �i−1
F̂

. By definition, in(a) ∈ �i

F̂
. Again,

the other direction is by similar arguments. �

Obviously, we could have used the defended(·) predicate in previous programs. Indeed, πcomp

could be defined as

πcf ∪ π< ∪ πdefended ∪ {:− in(X), not defended(X); :− out(X), defended(X)}.

We continue with the more involved encodings for preferred and semi-stable extensions. Compared
with the one for admissible extensions, these encodings require an additional maximality test.
However, this is quite complicate to encode and requires the use of disjunction, together with
the saturation technique introduced in Section 2.1 for the encoding of the complement of the
3-colourability problem.

3.5. Preferred extensions

To compute the preferred extensions of an AF, we will use the saturation technique described in
Section 2.1 as follows: Having computed an admissible extension S (characterised via predicates
in(·) and out(·) using our encoding πadm(F̂ )), we perform a second guess using new predicates,
say inN(·) and outN(·), to represent a further guess T ⊃ S. In order to check whether the first
guess (via in(·) and out(·)) characterises a preferred extension, we have to ensure that no guess of
the second form (i.e., via inN(·) and outN(·)) characterises an admissible extension. Recall that in
Section 2.1, we already have seen how to encode (using the program πncol) such a complementary
problem when we considered the problem of non-3-colourability. Here the saturation module
looks as follows:

πsatpref = {inN(X) ∨ outN(X) :− out(X); (31)

inN(X) :− in(X); (32)

fail :− eq; (33)

fail :− inN(X), inN(Y ), defeat(X, Y ); (34)

fail :− inN(X), outN(Y ), defeat(Y, X), undefeated(Y ); (35)

inN(X) :− fail, arg(X); (36)
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outN(X) :− fail, arg(X); (37)

:− not fail}. (38)

Let us for the moment also assume that predicates eq (rule (33)) and undefeated(·) (rule (35))
are defined (we will give the additional modules for those predicates below) and provide the
following information:

• eq is derived if the guess S via in(·) and out(·) equals the second guess T via inN(·) and
outN(·); in other words, eq is derived if S = T ;

• undefeated(a) is derived if argument a is not defeated in F by the second guess T .

In what follows, we discuss the functioning of πsatpref when conjoined with the program
πadm(F̂ ) from Section 3.2, for a given AF F . First, rule (31) guesses a set T ⊆ A as already
discussed above. Rule (32) ensures that the new guess satisfies S ⊆ T (recall that S is characterised
by predicates in(·) and out(·) from πadm).

The task of the rules (33)–(35) is to check whether the new guess T is a proper superset of
S and characterises an admissible extension of the given AF F . If this is not the case, we derive
the predicate fail. More specifically, rule (33) checks whether S = T , and in case this holds we
derive fail; rule (34) checks whether T is not conflict-free in F , and in case this holds we derive
fail; rule (35) checks whether T contains an argument not defended by T in F , and in case this
holds we derive fail. In other words, we have not derived fail if T ⊃ S and T is admissible in F .
By definition, S then cannot be a preferred extension of F .

The remaining rules (36)–(38) saturate the guess in case fail was derived, and finally ensure
that fail has to be in an answer set. We already discussed the underlying idea of such rules for the
program πncol in terms of the non-3-colourability encoding in Section 2.1 (see rules (12)–(15) of
program πncol).

Let us illustrate now the behaviour of πsatpref for two scenarios. First, suppose the first guess
S (via predicates in(·) and out(·)) is a preferred extension of the given AF F = (A, R). Hence,
for each T ⊃ S, T must not be admissible. But then, we have that every new guess T (via
predicates inN(·) and outN(·)) derives fail. Due to the spoiling rules (36) and (37), we thus have no
interpretation (without predicate fail) which satisfies πsatpref . However, the saturated interpretation
(which contains fail and both inN(a) and outN(a) for each a ∈ A) does satisfy the program and
also becomes an answer set of the program.

Now suppose the first guess S (via predicates in(·) and out(·)) is an admissible but not a
preferred extension of the given AF F . Then there exists a set T ⊃ S, such that T is admissible for
F . If we consider the interpretation I characterising T (i.e. we have inN(a) ∈ I , for each a ∈ T ,
and outN(a) ∈ I , for each a ∈ A \ T ), then I does not contain fail and satisfies the rules (31)–(37).
But this shows that we cannot have an answer set J which characterises S. Due to rule (38) such
an answer set J has to contain fail and by rules (36) and (37), J contains both inN(a) and outN(a)

for each a ∈ A. Note that we thus have I ⊂ J (if I and J characterise the same initial guess S).
Moreover, I satisfies the reduct of our program with respect to J . This can be seen by the fact that
the only occurrence of default negation is in rule (38). In other words, there is an I ⊂ J satisfying
the reduct and thus J cannot be an answer set. This, however, is as desired, since the initial guess
S characterised by J is not a preferred extension.

We still have to define the rules for the predicates eq and undefeated(·). Basically, these
predicates would be easy to define, but as we have seen in the discussion above, default negation
plays a central rule in the saturation technique (recall the functioning of :− not fail). We therefore
have to find encodings which suitably define the required predicates only with a limited use of
negation. In fact, we are only allowed to have stratified negation in these modules. Therefore, we
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employ similar techniques as we have used for the predicate defended(·) as defined in Section 3.4
where we also required a stratified program. In fact, both predicates eq and undefeated(·) are
computed via predicates eq_upto(·) (resp., undefeated_upto(·, ·)) in the same manner as we used
defended_upto(·, ·) for defended(·) in the module πdefended in Section 3.4. We thus make use of
the helper predicates from π< as defined in the previous subsection and define

πeq = {eq_upto(X) :− inf(X), in(X), inN(X);
eq_upto(X) :− inf(X), out(X), outN(X);
eq_upto(X) :− succ(Y, X), in(X), inN(X), eq_upto(Y );
eq_upto(X) :− succ(Y, X), out(X), outN(X), eq_upto(Y );
eq :− sup(X), eq_upto(X)};

πundefeated = {undefeated_upto(X, Y ) :− inf(Y ), outN(X), outN(Y );
undefeated_upto(X, Y ) :− inf(Y ), outN(X), not defeat(Y, X);
undefeated_upto(X, Y ) :− succ(Z, Y ), undefeated_upto(X, Z),

outN(Y );
undefeated_upto(X, Y ) :− succ(Z, Y ), undefeated_upto(X, Z),

not defeat(Y, X);
undefeated(X) :− sup(Y ), undefeated_upto(X, Y )}.

With these predicates at hand, we can now formally define the module for preferred extensions,
πpref = πadm ∪ π< ∪ πeq ∪ πundefeated ∪ πsatpref . The general result is as follows.

Proposition 3.7 For any AF F , pref(F ) ∼= AS(πpref(F̂ )).

To illustrate how πpref applies to our example framework, note that a step-by-step evaluation
as used before is no longer possible. In particular, the sub-program � = πeq ∪ πundefeated ∪ πsatpref

has to be treated as a whole, due to the cyclic dependencies among the atoms (in other words,
we obtain only trivial splitting sets for �). However, we can still split πpref into πadm ∪ π< and
�. We already know the single answer set S0 of π<(F̂ ) (see Section 3.4) and the collection
{S∅, Sa, Sc, Sd, Sac, Sad} = AS(πadm(F̂ )) of answer sets of πadm(F̂ ) (see Section 3.2). As is easily
checked, we get

AS(F̂ ∪ πadm ∪ π<) = {S0 ∪ S | S ∈ AS(πadm(F̂ ))}.
Hence, let us illustrate the program � for the two inputs S1 = S0 ∪ Sa and S2 = S0 ∪ Sac (We omit
the further atoms from the corresponding answer sets in F̂ ∪ πadm ∪ π<, since they play no role
in �.). Indeed, we expect that S1 does not lead to an answer set of πpref(F̂ ), while the second set
S2 corresponds to a preferred extension of F , and thus should be part of an answer set of πpref(F̂ ).
As discussed above, the only potential answer set I1 of �(S1) contains

S1 ∪ {inN(a), inN(b), inN(c), inN(d), inN(e),

outN(a), outN(b), outN(c), outN(d), outN(e), fail}.
We next check whether some J1 ⊂ I1 satisfies �(S1)

I1 = �(S1) \ {:− not fail}. If this is not the
case, I1 becomes an answer set. Indeed, one can check that the set J1

Sa ∪ {inN(a), outN(b), inN(c), outN(d), outN(e)}
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satisfies �(S1)
I1 . This can be seen as follows: The above set J1 does not contain fail, thus the

bodies of rules (33–35) must not be satisfied. For the first rule, this is the case since eq is not
derived (we leave it to the reader to check this), for the second rule this is the case as well, since
the vertices for which inN(·) holds are not adjacent. Finally, for rule (35), we first mention that the
predicate undefeated(·) is derived for the following instantiations undefeated(a), undefeated(c),
undefeated(e). One can now check that the bodies of rule (35) are not satisfied. As well, rules (36)
and (37) are not applied (since fail has not been derived). Thus, we found a proper subset J1 of
I1, such that J1 |= �(S1)

I1 . Consequently, I1 cannot be an answer set of �(S1) and thus not of
πpref(F̂ ).

The situation is different for set S2 = S0 ∪ Sac. As before, the only potential answer set I2 of
�(S2) contains

S2 ∪ {inN(a), inN(b), inN(c), inN(d), inN(e),

outN(a), outN(b), outN(c), outN(d), outN(e), fail}.
Moreover, �(S2)

I2 = �(S2) \ {:− not fail} as before, and we thus seek for sets J2 ⊂ I2, such
that J2 |= �(S2)

I2 . Note that rule (32) guarantees that J2 contains at least inN(a), inN(c) but
further inN(·) predicates could be contained in J2. However, if the only inN(·) predicates in J2 are
inN(a), inN(c), predicate eq is derived and we saturate. As well, if a further inN(·) predicate is
contained in J2 then we already know that such a set characterises a subset S ′ ⊆ A which cannot
be conflict-free. Indeed, rule (34) applies in this case, and we obtain fail. As soon as fail is derived,
rules (36) and (37) “turn J2 into I2”. From this observation, it is clear that we cannot find a J2 ⊂ I2,
such that J2 |= �(S2)

I2 . Thus I2 becomes an answer set of �(S2) and therefore also of πpref(F̂ ).
This meets our expectation, since Sac relates to the preferred extension {a, c} of F .

3.6. Semi-stable extensions

We conclude our encodings for the different types of extensions with a query for the semi-stable
semantics. The basic intuition for the forthcoming encoding is the same as for the preferred
semantics. The main difference lies in the fact that, given an admissible extension S for an AF
F = (A, R), we now have to test whether noT ∈ adm(F )withS+

R ⊂ T +
R exists, while for preferred

extensions, it was sufficient to test whether no such T exists for which S ⊂ T holds. This requires
the following changes. First, we have to guess an arbitrary set T (for preferred extensions, we
could restrict ourselves to supersets of S). Then we saturate (as before) in case T is not admissible.
Finally, we explicitly get rid of the cases where S+

R 
⊂ T +
R (for preferred extensions, we only had to

exclude the case S = T via the predicate eq). Hence, we need a new predicate eqplus which tests for
S+

R = T +
R , and we saturate if eqplus is derived, or in case there exists an a ∈ S+

R not contained in T +
R .

We reuse the modules πadm, π<, as well as πundefeated and define the additional rules

π+
eq = {eqplus_upto(X) :− inf(X), in(X), inN(X);

eqplus_upto(X) :− inf(X), in(X), inN(Y ), defeat(Y, X);
eqplus_upto(X) :− inf(X), in(Y ), inN(X), defeat(Y, X);
eqplus_upto(X) :− inf(X), in(Y ), inN(Z), defeat(Y, X), defeat(Z, X);
eqplus_upto(X) :− inf(X), out(X), outN(X), not defeated(X),

undefeated(X);
eqplus_upto(X) :− succ(Z, X), in(X), inN(X), eqplus_upto(Z);
eqplus_upto(X) :− succ(Z, X), in(X), inN(Y ), defeat(Y, X), eqplus_upto(Z);
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eqplus_upto(X) :− succ(Z, X), in(Y ), inN(X), defeat(Y, X), eqplus_upto(Z);
eqplus_upto(X) :− succ(Z, X), in(Y ), inN(U), defeat(Y, X), defeat(U, X),

eqplus_upto(Z);
eqplus_upto(X) :− succ(Y, X), out(X), outN(X), not defeated(X),

undefeated(X), eqplus_upto(Y );
eqplus :− sup(X), eqplus_upto(X)}

and

πsatsemi = {inN(X) ∨ outN(X) :− arg(X);
fail :− eqplus;
fail :− inN(X), inN(Y ), defeat(X, Y );
fail :− inN(X), outN(Y ), defeat(Y, X), undefeated(Y );
fail :− in(X), outN(X), undefeated(X);
fail :− in(Y ), defeat(Y, X), outN(X), undefeated(X);
inN(X) :− fail, arg(X);
outN(X) :− fail, arg(X);
:− not fail}.

We define πsemi = πadm ∪ π< ∪ π+
eq ∪ πundefeated ∪ πsatsemi and obtain the following result.

Proposition 3.8 For any AF F , semi(F ) ∼= AS(πsemi(F̂ )).

3.7. Summary and combinations of encodings

We summarise the results from this section.

Theorem 3.9 For any AF F and e ∈ {stable, adm, pref, semi, comp, ground}, it holds that
e(F ) ∼= AS(πe(F̂ )).

We note that our encodings are adequate in the sense that the data complexity of the encodings
mirrors the complexity of the encoded task. In fact, depending on the chosen reasoning task,
the queries which have to be used are depicted in Table 3. Recall that credulous reasoning over
preferred extensions reduces to credulous reasoning over admissible extensions and skeptical
reasoning over complete extensions reduces to reasoning over the single grounded extension. The
only proper disjunctive programs involved are πpref and πsemi; all other encodings are disjunction-
free. Moreover, πground is stratified and constraint-free. Recall that such programs have exactly
one answer set; hence there is no need to distinguish between |=c and |=s. If one now assigns
the complexity entries from Table 1 to the type of queries used in Table 3, one obtains Table 2.
This shows that the complexity of the encoded decision problem of AFs meets the corresponding
complexity of the employed datalog fragment.

We are now able to encode more involved decision problems using our queries. As a first
example, consider the �P

2 -complete problem of coherence (Dunne and Bench-Capon 2002),
which decides whether for a given AF F , pref(F ) ⊆ stable(F ) (recall that pref(F ) ⊇ stable(F )
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Table 3. Overview of the encodings of the reasoning tasks for AF F = (A, R) and a ∈ A.

stable adm pref semi comp ground

Crede πstable(F̂ ) |=c a πadm(F̂ ) |=c a πadm(F̂ ) |=c a πsemi(F̂ ) |=c a πcomp(F̂ ) |=c a πground(F̂ )|=a

Skepte πstable(F̂ ) |=s a (trivial) πpref (F̂ ) |=s a πsemi(F̂ ) |=s a πground(F̂ )|=a πground(F̂ )|=a

always holds). We can decide this problem by extending πpref in such a way that an answer set of
πpref survives only if it does not correspond to a stable extension. By definition, the only possibility
to do so is if some undefeated argument is not contained in the extension.

Corollary 3.10 The coherence problem for an AF F holds iff the program

πpref(F̂ ) ∪ { v :− out(X), not defeated(X); :− not v }
has no answer set.

As a second example, we give a program which decides, for a given AF F , whether the
semi-stable and the preferred extension of F coincide. Dunne and Caminada (2008) have shown
�P

2 -completeness for this problem.
Again, we can decide this problem by reusing some of the modules from previous encodings.

In this particular case, however, we need to separate some of the atoms which are used in common
by πpref and πsemi. For this reason, we require new atoms inNN(·), outNN(·), undefeatedN(·) and
undefeatedN_upto(·, ·), and denote by πundefeatedN the program resulting from πundefeated by using
the new atoms instead of inN(·), outN(·), undefeated(·) and undefeated_upto(·, ·), respectively.
Similarly, we obtain π+

eqN from π+
eq. Consider now the following program.

πcoincide = πpref ∪ πundefeatedN ∪ π+
eqN ∪

{inNN(X) ∨ outNN(X) :− arg(X);
:− eqplus;
:− inNN(X), inNN(Y ), defeat(X, Y );
:− inNN(X), outNN(Y ), defeat(Y, X), undefeatedN(Y );
:− in(X), outNN(X), undefeated(X);
:− in(Y ), defeat(Y, X), outNN(X), undefeatedN(X)}.

Corollary 3.11 Given an AF F , it holds that semi(F ) = pref(F ) iff πcoincide(F̂ ) has no answer
set.

Roughly speaking, we combine here the program which computes the preferred extensions with
a program which checks whether the input is not semi-stable. The latter test can be accomplished
via constraints (instead of the saturation technique used above), since it is sufficient here to just
get rid off candidates which already have been checked to be preferred but are not semi-stable.

4. Encodings for generalisations of argumentation frameworks

In this section, we again show the flexibility of our approach by reusing the queries from the
previous section in the context of generalisations of abstract AFs.
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4.1. Value-based argumentation frameworks

As a first example for generalising basicAFs, we deal with value-basedAFs (VAFs) (Bench-Capon
2003) which themselves generalise the preference-based AFs (Amgoud and Cayrol 2002). Again
we give the definition w.r.t. the universe U .

Definition 4.1 AVAF is a 5-tupleF = (A, R, �, σ , <) where A ⊆ U are arguments, R ⊆ A × A

denotes the attack relation, � ⊆ U is a non-empty set of values disjoint from A, σ : A → � assigns
a value to each argument from A and < is a preference relation (irreflexive, asymmetric) between
values. Let � be the transitive closure of <. An argument a ∈ A defeats an argument b ∈ A in F

iff (a, b) ∈ R and (σ (b), σ (a)) /∈ �.

Example 4.2 Consider the following VAF F = (A, R, �, σ , <). Let A = {a, b, c}, R =
{(b, a), (c, b)}, � = {red, blue}, σ(a) = blue, σ(b) = blue, σ(c) = red, and <= {(red, blue)}.
The graph representation of F is as follows.

a
blue

b
blue

c
red

We obtain that c defeats b, because (c, b) ∈ R and (σ (b), σ (c)) 
∈ � holds. But, if (blue, red) ∈ <,
this does not hold any longer.

Using this notion of defeat, we say in accordance with Definition 2.2 that a set S ⊆ A of arguments
defeats b in F , if there is an a ∈ S which defeats b.

An argument a ∈ A is defended by S ⊆ A in F iff, for each b ∈ A, it holds that, if b defeats a

in F , then S defeats b in F . Using these notions of defeat and defence, the definitions in Bench-
Capon (2003) for conflict-free sets, admissible extensions, and preferred extensions are exactly
along the lines of Definitions 2.4, 2.6, and 2.7, respectively.

In order to compute these extensions for VAFs, we thus only need to slightly adapt the modules
introduced in Section 3.

In fact, we now use, for a VAF F ,

F̃ = {arg(a) | a ∈ A} ∪ {att(a, b) | (a, b) ∈ R} ∪
{val(a, σ (a)) | a ∈ A} ∪ {valpref(v, w) | v < w}

and we require a further module, which obtains the defeat(·, ·) relation accordingly:

πvaf = {valpref(X, Y ) :− valpref(X, Z), valpref(Z, Y );
pref(X, Y ) :− valpref(U, V ), val(X, U), val(Y, V );
defeat(X, Y ) :− att(X, Y ), not pref(Y, X)}.

We obtain the following theorem using the new concepts for F̃ and πvaf , as well as reusing πadm

and πpref from Section 3.

Theorem 4.3 For any VAF F and e ∈ {adm, pref}, e(F ) ∼= AS(πvaf ∪ πe(F̃ )).

For the other notions of extensions, we can employ our encodings from Section 3 in a similar
way. The concrete composition of the modules however depends on the exact definitions, and
whether they make use of the notion of a defeat in a uniform way.
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In (Bench-Capon 2002), for instance, stable extensions for a VAF F are defined as those
conflict-free subsets S of arguments, such that each argument not in S is attacked (rather than
defeated) by S. Still, we can obtain a suitable encoding quite easily using the following redefined
module:

πvaf_stable = πcf ∪ {attacked(X) :− in(Y ), att(Y, X);
:− out(X), not attacked(X)}.

Theorem 4.4 For any VAF F , stable(F ) ∼= AS(πvaf ∪ πvaf_stable(F̃ )).

The coherence problem for VAFs thus can be decided as follows.

Corollary 4.5 The coherence problem for a VAF F holds iff the program

πpref(F̃ ) ∪ {attacked(X) :− in(Y ), att(Y, X);
v :− out(X), not attacked(X); :− not v}

has no answer set.

4.2. Bipolar argumentation frameworks

Bipolar AFs (BAFs) (Cayrol and Lagasquie-Schiex 2005) augment basic AFs by a second relation
between arguments which indicates supports independent from defeats.

Definition 4.6 A BAF is a tuple F = (A, Rd, Rs) where A ⊆ U is a set of arguments, and
Rd ⊆ A × A and Rs ⊆ A × A are the attack, and resp., support relation of F .

An argument a defeats an argument b in F if there exists a sequence a1, . . . , an+1 of arguments
from A (for n ≥ 1), such that a1 = a, and an+1 = b, and either

• (ai, ai+1) ∈ Rs for each 1 ≤ i ≤ n − 1 and (an, an+1) ∈ Rd ; or
• (a1, a2) ∈ Rd and (ai, ai+1) ∈ Rs for each 2 ≤ i ≤ n.

A BAF can be represented by a directed graph called the bipolar interaction graph. In order
to distinguish between the two relations, two kinds of edges are used. For two arguments a and b,
(a, b) ∈ Rd is represented by a → b and (a, b) ∈ Rs is represented by a ��� b.

Example 4.7 Consider the following F = (A, Rd, Rs). Let A = {a, b, c, d, e}, Rd =
{(a, e), (d, c)} and Rs = {(a, b), (b, c), (d, e)}. Then the bipolar interaction graph looks as
follows.

a b c

d

e

As before, we say that a set S ⊆ A defeats an argument b in F if some a ∈ S defeats b. An
argument a ∈ A is defended by S ⊆ A in F iff, for each b ∈ A, it holds that, if b defeats a in F ,
then S defeats b in F .



172 U. Egly et al.

Again, we just need to adapt the input database and incorporate the new defeat-relation. Other
modules from Section 3 can then be reused. In fact, we define for a given BAF F = (A, Rd, Rs),

F̄ = {arg(a) | a ∈ A} ∪ {att(a, b) | (a, b) ∈ Rd} ∪ {support(a, b) | (a, b) ∈ Rs},
and for the defeat relation, we first compute the transitive closure of the support(·, ·) predicate and
then define defeat(·, ·) accordingly.

πbaf = {support(X, Y ) :− support(X, Z), support(Z, Y );
defeat(X, Y ) :− att(X, Y );
defeat(X, Y ) :− att(Z, Y ), support(X, Z);
defeat(X, Y ) :− att(X, Z), support(Z, Y )}.

Following Cayrol and Lagasquie-Schiex (2005), we can use this notion of defeat to define conflict-
free sets, stable extensions, admissible extensions, and preferred extensions (these extensions are
respectively called d-admissible and d-preferred in Cayrol and Lagasquie-Schiex (2005)) exactly
along the lines of Definitions 2.4–2.7, respectively.

Theorem 4.8 For any BAF F and e ∈ {stable, adm, pref}, e(F ) ∼= AS(πbaf ∪ πe(F̄ )).

More specific variants of admissible extensions from Cayrol and Lagasquie-Schiex (2005) are
obtained by replacing the notion of a conflict-free set by other concepts.

Definition 4.9 Let F = (A, Rd, Rs) be a BAF and S ⊆ A. Then S is called safe in F if for
each a ∈ A, such that S defeats a, a /∈ S and there is no sequence a1, . . . , an (n ≥ 2), such that
a1 ∈ S, an = a, and (ai, ai+1) ∈ Rs , for each 1 ≤ i ≤ n − 1. A set S is closed under Rs if, for
each (a, b) ∈ Rs , it holds that a ∈ S if and only if b ∈ S.

Note that for a BAF F , each safe set in F is conflict-free in F . We also remark that a set S of
arguments is closed under Rs iff S is closed under the transitive closure of Rs .

Definition 4.10 Let F = (A, Rd, Rs) be a BAF. A set S ⊆ A is called an s-admissible extension
of F if S is safe in F and each a ∈ S is defended by S in F . A set S ⊆ A is called a c-admissible
extension of F if S is closed under Rs , conflict-free in F , and each a ∈ S is defended by S in F .
We denote the collection of all s-admissible extensions (resp., of all c-admissible extensions) of F

by sadm(F ) (resp., by cadm(F )).

We define now further programs as follows:

πsadm = πadm ∪ {supported(X) :− in(Y ), support(Y, X);
:− supported(X), defeated(X)};

πcadm = πadm ∪ {:− support(X, Y ), in(X), out(Y );
:− support(X, Y ), out(X), in(Y )}.

The two constraints in πcadm rule out, according to the definition of closed sets, all answer sets
where (a, b) ∈ Rs but either a ∈ S and b 
∈ S or a 
∈ S and b ∈ S (note that the relation support
is not symmetric).
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Finally, one defines s-preferred (resp., c-preferred) extensions as maximal (w.r.t. set-inclusion)
s-admissible (resp., c-admissible) extensions.

Definition 4.11 Let F = (A, Rd, Rs) be a BAF. A set S ⊆ A is called an s-preferred extension of
F if S ∈ sadm(F ) and for each T ∈ sadm(F ), S 
⊂ T . Likewise, a set S ⊆ A is called a c-preferred
extension of F if S ∈ cadm(F ) and for each T ∈ cadm(F ), S 
⊂ T . By spref(F ) (resp., cpref(F ))
we denote the collection of all s-preferred extensions (resp., of all c-preferred extensions) of F .

For the framework F from Example 4.7, we obtain pref(F ) = {{a, b, d}}, spref(F ) =
{{d}, {a, b}}, and cpref(F ) = {∅}.

Again, we can reuse parts of the program πpref from Section 3. The only addition necessary is
to saturate in case the additional requirements are violated.

We define

πspref = πsadm ∪ π< ∪ πeq ∪ πundefeated ∪ πsatpref ∪
{supported(X) :− inN(Y ), support(Y, X);
fail :− supported(X), defeated(X)};

πcpref = πcadm ∪ π< ∪ πeq ∪ πundefeated ∪ πsatpref ∪
{fail :− support(X, Y ), inN(X), outN(Y );

fail :− support(X, Y ), outN(X), inN(Y )}.
Theorem 4.12 For any BAF F and e ∈ {sadm, cadm, spref, cpref}, we have e(F ) ∼= AS(πbaf ∪
πe(F̄ )).

Slightly different semantics for BAFs occur in Amgoud et al. (2008), where the notion of
defence is based on Rd , while the notion of conflict remains evaluated with respect to the more
general concept of defeat as given in Definition 4.6. However, also such variants can be encoded
within our system by a suitable composition of the concepts introduced so far.

Again, we note that we can put together encodings for complete and grounded extensions for
BAFs, which, to the best of our knowledge, have not been studied in the literature yet.

5. Discussion

In this work we providedASP-encodings for computing different types of extensions in Dung’sAF
as well as in some recent extensions of it. Our system ASPARTIX, together with some illustrating
examples, is available at www.dbai.tuwien.ac.at/research/project/argumentation/systempage/

Besides the types of extensions discussed in this paper, the current version of ASPARTIX also
implements the recently proposed concept of ideal semantics (Dung, Mancarella, and Toni 2007).
For the respective encoding for ideal semantics, we refer to the paper by Faber and Woltran (2009).

To the best of our knowledge, so far no system is available which supports such a broad range
of different semantics, although nowadays a reasonable number of different implementations
exists. (See http://wyner.info/LanguageLogicLawSoftware/index.php/software/ for an overview.)
In short, one can divide these systems into two categories: graphical representation of AFs
and computation of acceptable arguments. The first category contains systems like Argunet
(http://www.argunet.org/debates/) and Araucaria (Reed and Rowe 2004). To the second category
belong systems like:

• ArgKit (South, Vreeswijk, and Fox 2008), a Java reasoner capable of reasoning with
grounded and preferred extensions which can be integrated in Araucaria.
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• A system by Verheij (2007) which computes grounded, preferred, stable and semi-stable
semantics via labelings.

• The epistemic and practical reasoner by Visser (2008) which is an implementation of an
argument-based practical reasoning system. From a given belief base of formulas (in a
propositional modal logic with a single modality D standing for desire) and a query formula,
one selects between different argument games including one for grounded semantics and
one for credulous reasoning over admissible extensions.

• PARMENIDES (Cartwright and Atkinson 2008), a system for e-democracy that makes use
of argumentation tools including VAFs.

• CASAPI (Gaertner and Toni 2007), a Prolog implementation for credulous and sceptical
argumentation based upon the computation of dispute derivations for grounded, admissible
and ideal beliefs for the generalised assumption-based frameworks.

• An implementation of a query-answering algorithm due to Vreeswijk (2006) for grounded
and admissible semantics. Compared with the other systems, this algorithm computes the
so-called defence sets around the queried argument rather than the entire collection of
extensions.

• An implementation (Efstathiou and Hunter 2008) for logic-based formalisations of argu-
mentation (Besnard and Hunter 2001), which constructs arguments using connection
graphs.

The work which is related closest to ours is by Nieves et al. (2008, 2009) who also suggested
to use ASP for computing extensions of AFs. One aspect in their work is to use a fixed encoding
schema to represent AFs as logic programs, and then show how different semantics for logic pro-
grams can be used to compute different forms of extensions using this particular schema. Most
notably, they showed that in their setting the stable semantics (for logic programs) captures sta-
ble extensions of AFs, the well-founded semantics captures the grounded extension of AFs, and
a novel stratification semantics (Nieves et al. 2009) captures the CF2 semantics due to Baroni,
Giacomin and Guida (2005). Osorio et al. (2005) present an algorithm for computing preferred
extensions (based on abductive logic programming) using a fixed logic program to characterise
the admissible sets in the same manner we have used here. In Nieves et al. (2008), a different
approach to compute preferred extensions by means of logic programs has been proposed. How-
ever, this work requires a recompilation of the encoding for each particular AF. Similarly, Wakaki
and Nitta (2008) also provide ASP encodings for different semantics. In contrast to our work,
their encodings for complete and stable semantics are based on labellings, whereas for grounded,
preferred and semi-stable semantics they use a meta-programming technique by applying addi-
tional translations for each AF into normal logic programs. We recall that in our system, fixed
disjunctive queries which require the actual instance just as an input database are used for all these
semantics. We believe that our approach is thus more reliable and easily extendible to further
formalisms.

Future work includes a comparison of the efficiency of different implementations. Preliminary
tests show that our approach is able to deal with more than 100 arguments for all considered
semantics in Dung’s abstract framework. Another direction of future work is to extend our system
by incorporating further recent notions of semantics. In particular, it is planned to implement the
resolution-based semantics due to Baroni and Giacomin (2008a), semantics based on decompo-
sition into strongly connected components (like, for instance, the CF2 semantics) due to Baroni
et al. (2005), novel approaches to preferential semantics due to Amgoud and Vesic (2009), and
semantics based on meta-attacks as introduced by Modgil (2009).
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