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Wealth management: Modeling
the nonlinear dependence

Mariana Rosa Montenegro and Pedro Henrique Melo Albuquerque∗
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Abstract. This work aims at the development of an enhanced portfolio selection method, which is based on the classical
portfolio theory proposed by Markowitz (1952) and incorporates the local Gaussian correlation model for optimization. This
novel method of portfolio selection incorporates two assumptions: the non-linearity of returns and the empirical observation
that the relation between assets is dynamic. By selecting ten assets from those available in Yahoo Finance from S&P500,
between 1985 and 2015, the performance of the new proposed model was measured and compared to the model of portfolio
selection of Markowitz (1952). The results showed that the portfolios selected using the local Gaussian correlation model
performed better than the traditional Markowitz (1952) method in 63% of the cases using block bootstrap and in 71% of the
cases using the standard bootstrap. Comparing the calculated Sharpe ratios, the proposed model yielded a better adjusted
risk-return in the majority of the cases studied.
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1. Introduction

An investor seeks to optimize investment while
minimizing risk. One way to achieve this goal is using
diversification, by creating a portfolio. Markowitz
(1952) first study on the subject focused on the
impact of diversification on investments optimiza-
tion. He proposed to carry out the appropriate
trade-off between risk and return in order to optimally
allocate resources.

Markowitz (1952) used the Pearson’s correlation
coefficient to compute the correlation between port-
folio assets, since this was the measure most used at
that time. However, being a linear measure, it is not
able to capture non-linear dependency structures in
bivariate data (Støve et al., 2014).
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Patton (2004), Silvapulle and Granger (2001), Oki-
moto (2008), Ang and Chen (2002), Hong et al.
(2007), Chollete et al. (2009) and Garcia and Tsafack
(2011) argued that financial factors did not neces-
sarily have constant correlations and that there exist
asymmetries in financial returns distributions.

When investigating the dependence on stock mar-
kets, Patton (2004) found evidence of a better market
description in models based on non-constant correla-
tions between indexes, rather than in models where
the correlation is assumed constant.

Therefore, the methods used to analyze asymme-
tries in financial returns distribution must be carefully
studied. Berentsen and Tjøstheim (2014) pointed out
that the conditional correlation was the measure most
commonly used to solve that kind of phenomenon,
since it performs the calculation of Pearson cor-
relation conditioned to the given information, thus
improving the measurement of dependence. This
approach provides a local estimate to the degree of
dependence between two random variables, allowing
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to fit possible non-linear correlations. However, for
some variables, when computing conditional correla-
tion as high or low, biased estimation of unconditional
correlation is obtained. This generates obstacles to the
development of quantitative statements (Tjøstheim
and Hufthammer, 2013).

For those reasons, Tjøstheim and Hufthammer
(2013) proposed the local Gaussian correlation
model, which is able to avoid biased estimations in the
case of non-linear pattern and is capable of describing
changes in dependence (Støve and Tjøstheim, 2013).

Based on what was described, this work proposes
a novel approach to construct financial portfolios
which is rooted on the classical portfolio theory devel-
oped by Markowitz (1952) incorporating the local
Gaussian correlation model in the Quadratic Pro-
gramming (QP) optimization problem.

This article is divided as follows: Section 2 presents
the theoretical background regarding portfolio selec-
tion and the local Gaussian correlation, Section 3
describes the proposed method to construct finan-
cial portfolios, Section 4 presents the results obtained
using the financial data available in Yahoo Finance of
S&P500 from 1985 to 2015. Finally, Section 5 shows
the conclusions, presents recommendations and lim-
itations to this approach.

2. Material and methods

In the classical portfolio theory proposed by
Markowitz (1952), the assets weights are very sensi-
tive to the inputs, especially variance and covariance
estimates of the returns. According to this author, the
variance-covariance matrix and the mean vector were
the necessary and sufficient metrics in the weight
calculation.

Based on the Competitive Markets Theory, the
mean vector will have a value close to zero, which
means that it will have less impact in the construc-
tion of portfolio weights (Fama, 1998). Thus, the
sensitivity is mostly due to the variance-covariance
matrix. Small changes to this matrix have significant
impact in the portfolio (Goldfarb and Iyengar, 2003).
In other words, the weights are very sensitive to the
estimated variance-covariance matrix. Moreover, this
matrix may not be stationary, changing over time due
to macroeconomic characteristics.

Despite many attempts to develop theories for the
construction of the variance-covariance matrix, there
is no consensus on which gives the best results. This
is mainly due to the complexity of financial data,

which is not identically distributed and may even be
independent from other financial data.

Several models in financial economics literature
were based on the assumption of normally distributed
returns, meaning that asset returns are generally
recognized as homoscedastic, independent and iden-
tically distributed (Bachelier (1900); Working (1934)
and Kendall and Hill (1953)). Mandelbrot (1997)
argues that a series of stock returns tend not to be
independent over a period of time and that return
distributions were in fact leptokurtic.

It is worth mentioning that in portfolio construc-
tion, Markowitz (1952) assumed that asset returns
were linearly correlated. However, in reality they are
not linearly correlated. Even when the correlation is
equal to zero, some dependence can exist. In other
words, the variables are affected in a way that the
relation between returns is non-linear over time but
could present a zero global correlation. For instance,
this relationship gives an U-shape graph between
those variables, which has zero global correlation
but presents a local dependence. In this case this
zero global correlation does not mean that they are
independent.

It is well known that the non-linear dependence is
not captured by the Pearson’s correlation coefficient.
In order to address this flaw, other scalar measures
were developed. However, they are not able to dis-
tinguish between positive and negative dependence
and, typically, the alternative hypothesis of the inde-
pendence test is simply “dependence" (Berentsen and
Tjøstheim, 2014).

According to Huang et al. (2014), global depen-
dence measures are not able to capture dependence
in local regions, but they are important as they pro-
vide a conceptual and practical understanding of a
situation under study.

By diversifying a portfolio, investors seek to under-
stand the co-movement between growth markets and
fall markets of different industries during short and
crucial periods.

The traditional model of portfolio selection, pro-
posed by Markowitz (1952), explains that, when
selecting a portfolio, it is necessary to take into
account the relationship among assets in the portfo-
lio under studied. The most widely used measure of
correlation, which was believed to work with Gaus-
sian data, in particular at the time Markowitz (1952)
method was proposed, was the Pearson’s correlation
coefficient.

Furthermore, Markowitz (1952) suggests that, in
the case where correlation between assets is equal to
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zero, an investor would choose to diversify between
assets solely based on personal preferences. On the
other hand, Casella and Berger (2002) point out that
zero correlation does not imply independence. Thus,
it would not be fair to assume that there is no rela-
tionship between assets that have zero correlation.

In order to provide a way to overcome these limita-
tions, a new local dependence structure was proposed
by Tjøstheim and Hufthammer (2013). According
to them, local dependence surfaces would be con-
structed to measure the dependence that could affect
diversification, in regions that differ from global
dependence structures. To Tjøstheim and Huftham-
mer (2013), this tool could be useful in the classic
portfolio allocation problem.

The method proposed by Tjøstheim and Huftham-
mer (2013) explains that a measure of local depen-
dence would be best described by a portfolio of
local measures of dependence computed in different
regions, rather thanbyasinglevaluedependencemea-
sure. This new approach makes the model capable of
capturing the local dependence in a particular region.

2.1. Conditional correlation

In order to work with variation in local depen-
dence, some models were proposed in finance
and econometrics. The models that stand out
focus on measuring contagion (Rodriguez, 2007);
(Inci et al., 2011), description of tail dependence
(Campbell et al., 2008) and portfolio modeling
(Silvapulle and Granger, 2001). Tjøstheim and
Hufthammer (2013) state that conditional correlation
is the most used concept in these problems.

Tjøstheim and Hufthammer (2013) explain that the
ordinary product-moment correlation can be com-
puted using conditional correlation, in a case where
a certain region of values of log return differences
is analyzed. Two random variables X1 and X2 with
observed values (X1i, X2i), i = 1, . . . , n have con-
ditional correlation between X1 and X2 in a region
A computed as follow:

ρ̂(A) = �(X1i , X2i )∈A(X1i − μ̂X1 )(X2i − μ̂X2 )

(�((X1i , X2i )∈A(X1i − μ̂X1 )2)1/2(�((X1i , X2i )∈A(X2i − μ̂X2 )2)1/2

(1)

where

μ̂X1 = 1

nA

∑
(X1i, X2i)∈A

X1i (2)

and

μ̂X2 = 1

nA

∑
(X1i, X2i)∈A

X2i (3)

and the number of pairs with (X1i, X2i) ∈ A is nA.
If nA tends to infinity then ρ̂(A) almost surely con-
verges to ρ(A) = corr(X1, X2 | (X1, X2) ∈ A) in an
ergodic series (X1i, X2i).

Despite the enhancements that conditional cor-
relation offers to better understand the relationship
between assets, it has some noticeable drawbacks.
First, the analysis is biased since ρ(A) is not equal to
the global correlation ρ for a pair of jointly Gaussian
variables (X1, X2). Second, the local correlation was
defined for regionA and not for a point x1, x2, raising
the question about how region A should be chosen.
Third, it is uncertain whether adopting a linear depen-
dence measure by the conditional correlation in local
regions is sensible in non-linear and non-Gaussian
cases (Tjøstheim and Hufthammer, 2013).

Tjøstheim and Hufthammer (2013) believe that
these disadvantages do not exist in the local Gaussian
correlation and this new measure is able to capture
non-linear dependence.

2.2. Local Gaussian correlation

Proposed by Tjøstheim and Hufthammer (2013),
the local Gaussian correlation was developed in order
to describe more accurately the effects of singu-
lar events, such as the strong dependency between
financial variables during a period of economic slow-
down. The local dependence, instead of using a
single number measure, would be able to charac-
terize the dependence structure within different data
regions.

Tjøstheim and Hufthammer (2013) present a com-
mon view among financial and econometric analysts,
that during bear markets, there is a strong dependence
between financial returns. They also pointed out that
there is a correlation close to one, resulting in the
loss of diversification benefits. Studies show the exis-
tence of asymmetric dependence between financial
returns. In order to study this asymmetry, Tjøstheim
and Hufthammer (2013) present a new measure of
local dependence. According to them, a Gaussian
distribution provides a good approximation at each
point of the return distribution. The local correlation
in a neighborhood is considered the correlation of the
approximating Gaussian distribution.

This new modeling method enables to do locally,
for a general density, what can be done globally for
a Gaussian density. This makes possible to extend
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the Gaussian analysis from a linear to a non-linear
environment.

The local Gaussian correlation uses a family of
bivariate Gaussian distributions to make an approx-
imation of an arbitrary bivariate return distribution.
Through the use of a Gaussian distribution it is pos-
sible to obtain a good approximation at each point
of a return distribution. The local correlation in a
neighborhood is considered as the correlation of the
approximating Gaussian distribution. The outcome is
a nonlinear dependence measure, which is inherently
local (Støve et al., 2014).

The use of the local Gaussian correlation method
presents the following advantages: this measure does
not show the bias problem of the conditional corre-
lation, which was previously presented. In addition
to that, it is able to detect, in dependence structures,
complex or nonlinear changes, which could have
been hidden by the global correlation. Given these
improvements, it provides a better understanding of
the dependence markets (Støve et al., 2014).

It is also possible to transfer locally in a neighbor-
hood of (x, y) the proprieties that are true in global
Gaussian dependence. Furthermore, asymptotic con-
fidence intervals for ρ(x, y) can be constructed with
the use of local Gaussian likelihood. This enables
the analysis of statistical significance ρ̂(x, y) of an
observed asymmetry for financial returns (Tjøstheim
and Hufthammer, 2013).

Tjøstheim and Hufthammer (2013) also point out
that when f is Gaussian ρ, which is the ordinary cor-
relation of f , it has the following property: ρ(x, y) ≡
ρ everywhere. Also, asymmetries in financial returns,
for example, the bull and bear market, can be detected
and quantified with the use of local Gaussian corre-
lation. Besides that, the strength of the correlation
of the approximating local Gaussian distribution can
give a quantitative interpretation.

2.2.1. Applications
Due to its contemporaneity, the local Gaussian cor-

relation model has a modest number of applications
in the literature. The published studies can be divided
into two macro areas: financial market and copula the-
ory. Since this paper focuses on portfolio selection,
a review of the financial market will be presented in
this section.

Tjøstheim and Hufthammer (2013) were looking
for a way to study the dependence between financial
returns in international market. They decided to apply
the local Gaussian correlation method to American
and European markets (using monthly data, with the

presence of bear market effect), and showed the exis-
tence of asymmetric dependence structures between
these markets (Tjøstheim and Hufthammer, 2013).

The authors also showed that there is a rise in cor-
relation and local correlation between American and
UK market. In addition to that, they also noted that the
correlation is not uniform. Tjøstheim and Huftham-
mer (2013) explored which economic factors create
such asymmetries, and noticed the existence of sig-
nificant differences in local Gaussian correlations in
daily data, between European markets.

For Tjøstheim and Hufthammer (2013) it is possi-
ble to study the classical portfolio allocation problem
and the contagion effects from the results presented in
their work. They even propose a further study in port-
folio selection for stocks with certain characteristics.
The authors explain that analysis in finance or econo-
metric that relies on covariance matrix can be subject
to an analysis using local Gaussian covariance.

Støve et al. (2014) studied the contagion effect,
given the occurrence of major interconnection
between international financial markets in recent
decades. This effect, in particular, occurs when crises
spread in these markets, meaning that large falls in
asset values of a country can influence the rapid fall
in other countries.

Støve et al. (2014) analyzed the results presented
by the local Gaussian correlation before a shock (in a
period of stability) and after a shock (in a crisis). By
using the bootstrap test process, the authors were able
to test whether or not the contagion occurred. Fur-
thermore, other methods that study contagion were
compared to the local Gaussian correlation.

This study was applied during the Mexican crisis
of 1994, the Asian crisis of 1997-1998 and the finan-
cial crisis of 2007 a 2009. Given the new approach
proposed by Støve et al. (2014), it was possible to
describe the nonlinear dependence structure of these
crises because of the method proposed by the authors.

For the purpose of construction of local and global
tests of independence, Berentsen and Tjøstheim
(2014) evaluated the local Gaussian correlation. This
work focused on, the choice of bandwidths (which
was based in likelihood cross-validation) and the
properties of these measure and the corresponding
asymptotic estimates.

Lura (2013) investigated the effects of changes in
the relationship between stocks and market based on
local Gaussian correlation and how it could extend
the traditional financial theory. For that, the author
analyzed for 5 years: 18 stocks, oil prices, exchange
rates and the main index of the Oslo Stock Exchange.
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Bampinas and Panagiotidis (2017) studied the
cross-market linkages between stocks and spot and
future oil markets. They analyzed the dependence
structure and, after a financial shock, tested for con-
tagion. The local Gaussian method was used to
incorporate the nonlinearity of the relationship and
represent the dependence structure of the entire dis-
tribution. The results obtained in all financial crisis
periods studied, indicated the existence of nonlinear
and asymmetric dependence between oil and stock
markets.

In the work of Otneim and Tjøstheim (2017), the
locally Gaussian density estimator was applied in
forecasting the value-at-risk of a portfolio and the
results presented a better performance of the local
Gaussian method. The authors believed this was due
to its tendency to allow fat tails in the density esti-
mates, even though it has a local Gaussian tail.

3. Theory

The method proposed here was applied to a port-
folio with 10 assets arbitrarily chosen from the set
of S&P500 stocks. The number of stocks that will
be part of the portfolio has a significant impact on
its performance. In order to maintain the diversifica-
tion benefit, this number should not be too large nor
too small. In this sense, Statman (1987) propose the
use of 30 stocks to make a diversified portfolio and
maintain the benefit of diversification. Other authors
propose the use of 50 and even 60 stocks to create a
portfolio. So, there is no consensus in the literature
about the optimal number of stocks to be analyzed. In
addition, most of these authors came to this optimal
number using the entire market. However, since this
paper is based in S&P500 data, only 10 stocks from
the S&P500 index were used to form the portfolio.

The cross-validation technique (Dietterich, 2000),
the standard Bootstrap (Efron, 1992) and the Block
Bootstrap (Politis and White, 2004) were applied to
validate the model’s results.

In the first method, the data set was divided to
analyze the generalization ability of the model. In
other words, we seek to estimate the performance of
the model on a new set of data, thus evaluating the
model accuracy. The data set was divided into mutu-
ally exclusive subsets. Some of these subsets were
used to estimate the model parameters (estimation
data) and the others to validate it (data validation). In
this study, we used 80% of the data for estimation,
and 20% for validation.

The second and third methods were used since it
is a resampling technique capable of reproducing the
same probability behavior of the statistical variable
studied and it is usually used when the data, or the
errors in a model, are correlated.

Financial data are not independent; in fact they
present certain dependence that arises from some
sort of non-linear relation due to the microstructure
interactions between agents (Horst and Rothe, 2008).
Also, it is expected that the price of an asset in a day
is correlated to its price the day before. If they were
not, the prediction would not be useful. In this sense,
the Block Bootstrap is used to work with time series.
This method divides the data into blocks, and assumes
that they are independent. The resampling is carried
out between the blocks and merge them in a new
time series, thereby creating a bootstrap sample. The
resampling is used when dealing with non-correlated
data. It is expected the existence of correlation on
the block, for this reason the block is kept intact and
sampled as units.

It is necessary to create blocks of consecutive
observations and samples with replacement. After,
these sampled blocks should be associated in order
to obtain the bootstrap data set.

In summary, the proposed method aims to esti-
mate the optimal portfolio combining the Markowitz
(1952) theory and the local Gaussian correlation
model. This is based on the hypotheses that investors
choose optimal portfolios that minimize the variance
of the portfolio and maximize the expected return. In
other words, those that return the higher Sharpe ratio,
and simultaneously adjust the model to the possible
non-linear dependence.

3.1. Portfolio selection through local correlation

The first step of the proposed method was to ana-
lyze the time series of assets prices from S&P500
in the period 1985–2015, focusing on the use of
returns.

Campbell et al. (1997) preferred the use of return
instead of price because prices are not influenced by
the investment size due to the almost perfect compe-
tition between financial markets. Furthermore, prices
need more manageable statistical properties such as
stationary assets behavior.

Thus, in order to analyze the assets behavior from
1985 to 2015, the transformation of asset prices avail-
able on Yahoo Finance for simple returns was carried
out as shown below:
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Rt = Pt − Pt−1

Pt−1
= Pt

Pt−1
− 1 (4)

where Pt is the asset price over the t time period,
P(t − 1) is the asset price in the previous (t − 1) time
period andRt(τ) the simple return in the t time period.

Hudson and Gregoriou (2015) explain that there is
not a one-to-one relationship between simple mean
returns and mean logarithmic returns, since they
achieved different values of the mean from a given
set.

Meucci (2010) states that practitioners use returns
to measure risk and reward because they can be com-
pared with securities and asset classes since they
provide a normalized measure. Also, they can be
invariant in notable markets returns, behaving inde-
pendently and identically across time.

In addition, Meucci (2010) states that linear return
aggregates across securities and, because of that, it
is the most proper measure to be used in portfolio
optimization problems, which is what we aim to study
in this paper. On the contrary, the important property
of the compounded return is that it aggregates across
time.

Hence, the second step was to solve the Markowitz
(1959) problem by locally using the local Gaussian
correlation model. In other words:

min
ω

V = ωt�̂ω

Subject to:

ωt1 = 1

ω ∈ R
p (5)

where ω = (ω1, . . . , ωp) is the vector of portfolio
weights and �̂ is the local variance and covariance
matrix, estimated by the local Gaussian correlation
model.

Especially, to estimate the local variance and
covariance matrix we assume that X = (X1, X2) is
a random vector of the returns with a general bivari-
ate density f . A bivariate Gaussian density is fitted
in a neighborhood of each point x = (x1, x2) so that:

ψ(ν, θ(x)) = 1

2πσ1(x)σ2(x)
√

1 − ρ2(x)

exp

[
− 1

2

1

1 − ρ2(x)

(
ν1 − μ1(x)

σ2
1 (x)

)2

−2ρ(x)
(ν1 − μ1(x))(ν2 − μ2(x))

σ1(x)σ2
+
(
ν2 − μ2(x)

σ2
2 (x)

)2
]

(6)

For which the local vector of parameters is given
by:

θ(x) = [μ1(x), μ2(x), σ1(x), σ2(x), ρ(x)] (7)

with local meansμi(x), i = 1, 2, local standard devi-
ations, σi(x), i = 1, 2 and local correlation of a point
(x), ρ(x). A bivariate normal distribution is fitted
for each point. This is done through the local log-
likelihood function, which should be maximized to
estimate the local parameters θ(x) (Hjort and Jones,
1996):

L(X1, ...,Xn, θ(x))

= n−1
∑
i

Kb(Xi − x) logψ(Xi, θ(x))

−
∫

Kb(ν − x)|ψ(ν, θ(x))dν (8)

where Kb(·) is a kernel function defined by:

(Kb(ν − x) = (b1b2)−1K(b−1
1 (ν1 − x1))K(b−1

2 (ν2 − x2)))

where b = (b1, b2) are the bandwidths with respect
to the Gaussian univariate kernels. The maximum
likelihood function is also used to search for the band-
widths that generate the maximum likelihood.

Note that the model considers the importance of
adjacent observations. In other words, it is possible
that data obtained today and a decade ago are alike
and therefore should receive a small weight given
from the bivariate density function and the kernel,
instead of near observations which receive a high
weight from those functions.

In other words, the kernel function is used to weight
the studied variables. The nearest points of a given
x have greater weight than the more distant ones.
Accordingly, the bandwidths are used to determine
the appropriate weighting structure of observations,
thus controlling the shape of the normal distribution
that is being analyzed.

By maximizing the local log-likelihood function,
it is possible to obtain the estimates θ̂(x) from the
observations Xi = (Xi1, Xi2), i = 1, . . . , n that are
inherent of f .

In addition, when performing an analyses of
another point, for example x′, a new Gaussian
approximation density is obtained by ψ(ν, θ(x′)),
or ψ(ν,μ(x′), σij(x′)). This approximates f in the
neighborhood of x′. As x varies and in each specific
neighborhood of x, a family of Gaussian bivari-
ate densities can be used to represent f . ρ(x) is
used to describe the local dependence properties. In
this sense, the (local) dependence can be positive if
ρ(x) > 0 and negative if ρ(x) < 0.

It is possible to find a complete characterization of
the dependence relation in that neighborhood, since
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ψ is Gaussian. These definitions come from the use
of Gaussian local representation and the extent of its
uniqueness.

Based on those estimates the local variance and
covariance matrix can be constructed and Problem 5
can be solved locally, adjusting the possible non-
linear dependence between the returns. The algorithm
is summarized as follow:

(1) Consider the return Rtp of p-th stock and time
t, with t = 1, . . . , T and p = 1, . . . , P .

(2) For each t find the bandwidths that maximize
the log-likelihood using Evolutionary Opti-
mization (Ardia et al., 2011).

(3) Estimate the local variance and covariance
using all Rt0p such that t0 < t.

(4) Solve Problem 5 to estimate ωt0 .
(5) Use the weights ωt0 to construct the portfolio

Pt at time t.

Based on this method we performed a real appli-
cation using 10 assets from S&P500 from 1992 to
2015.

4. Results

The modeling of the financial data began with the
calculation of simple return of ten randomly chosen
assets, from S&P500. After combining the available
data between the studied assets, the data selected
was from 1992 to 2015, despite the fact that the ini-
tial available sample of S&P500 was from 1985 to
2015. This happened because the data for some of
these assets was not available before 1992. The ten
arbitrarily selected assets are listed in Table 1.

This sample was divided into 80% for estimation
and 20% for validation. In the case of Local Gaus-
sian Correlation the estimation data was used to find
the optimal bandwidths for each pair of returns. In
order to do so, the maximum likelihood method was

used with the Evolutionary Optimization Algorithm
(Ardia et al., 2011), since the scaling technique and
the visual technique did not show positive results.

The Evolutionary Optimization Algorithm was
chosen because it is a technique capable of evaluating
the components that belong to a search space, which
consists with all possible solutions to a problem.
Since it operates in parallel, this algorithm is able to
perform an adequate search in various regions, look-
ing for the optimal solution in global levels. In this
study this technique was used to find the maximum
bandwidth argument that maximizes the likelihood.

The result of optimal bandwidths, which pre-
sented maximum likelihood for each pair of asset for
each year, found by the Evolutionary Optimization
Algorithm with the maximum likelihood, was incor-
porated into the local Gaussian correlation model and
applied to the validation dataset. This model was sub-
sequently compared to the classical portfolio selec-
tion model, using the validation data. In other words
the performed analysis was given by the follow steps:

(1) Divide the data in 80% for estimation (training)
and 20% for validation.
(a) Using the training dataset apply the Evo-

lutionary Optimization (Ardia et al., 2011)
to find the bandwidths that maximize the
log-likelihood Equation 8.

(b) Using the training dataset find the classical
portfolio weights solving Problem 5.

(2) Using the best bandwidths solve Problem 5
locally and calculate the Mean, Standard Devi-
ation and Sharpe Ratio for the validation
dataset with respect to the assembled portfolio.

(3) Aimed to compare with the classical portfolio
selection model, apply the weights estimated
using the training dataset in the validation
dataset and calculate the Mean, Standard Devi-
ation and Sharpe Ratio of the assembled port-
folio.

Table 1
Ten assets used in the portfolio

Symbol Name Sector

AAPL Apple Information Technology
XOM Exxon Mobil Energy
IBM International Bus. Machines Information Technology
MSFT Microsoft Corp Information Technology
GE General Electric Industrial
JNJ Johnson & Johnson Health Care
WMT Wal-Mart Stores Consumer Staples
CVX Chevron Corp Energy
PG Procter & Gamble Consumer Staples
WFC Wells Fargo & Company Financial
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Fig. 1. Methodology using financial data.

Table 2
Portfolio results using S&P500 data from 1992 to 2003

Year Measure Markowitz Local Gaussian Markowitz Local Gaussian
Bootstrap Correlation Block Bootstrap Correlation Block

Bootstrap Bootstrap

1992 Mean Ret 0.00091 0.00087 0.00110 0.00096
SD Ret 0.00077 0.00039 0.00077 0.00037

Sharpe Ratio 1.18054 2.24235 1.42148 2.56443
1993 Mean Ret 0.00048 0.00048 0.00066 0.00054

SD Ret 0.00087 0.00033 0.00086 0.00086
Sharpe Ratio 0.55625 1.45163 0.76089 1.62560

1994 Mean Ret 0.00059 0.00054 0.00068 0.00054
SD Ret 0.00079 0.00035 0.00077 0.00043

Sharpe Ratio 0.73880 1.53047 0.87427 1.26499
1995 Mean Ret 0.00080 0.00077 0.00080 0.00072

SD Ret 0.00102 0.00027 0.00108 0.00028
Sharpe Ratio 0.79145 2.91316 0.73757 2.57980

1996 Mean Ret 0.00137 0.00159 0.00159 0.00168
SD Ret 0.00103 0.00083 0.00111 0.00083

Sharpe Ratio 1.33410 1.91418 1.43394 2.02518
1997 Mean Ret –0.00075 –0.00091 –0.00111 –0.00095

SD Ret 0.00252 0.00433 0.00266 0.00120
Sharpe Ratio –0.29668 –0.21132 –0.41835 –0.79446

1998 Mean Ret 0.00179 0.00195 0.00201 0.00198
SD Ret 0.00164 0.00096 0.00159 0.00054

Sharpe Ratio 1.09054 2.02347 1.26150 3.65037
1999 Mean Ret 0.00148 0.00167 0.00162 0.00168

SD Ret 0.00126 0.00110 0.00122 0.00054
Sharpe Ratio 1.17950 1.51530 1.32768 3.11629

2000 Mean Ret 0.00127 0.00111 0.00147 0.00106
SD Ret 0.00109 0.00045 0.00099 0.00046

Sharpe Ratio 1.16572 2.45846 1.48417 2.31081
2001 Mean Ret 0.00150 0.00158 0.00147 0.00155

SD Ret 0.00093 0.00031 0.00084 0.00042
Sharpe Ratio 1.61050 5.05790 1.74546 3.69097

2002 Mean Ret –0.00017 0.00002 –0.00024 –0.00047
SD Ret 0.00136 0.01213 0.00124 0.01342

Sharpe Ratio –0.12781 0.00170 –0.19312 –0.03525
2003 Mean Ret 0.00139 0.00141 0.00161 0.00141

SD Ret 0.00068 0.00245 0.00062 0.00129
Sharpe Ratio 2.04495 0.57507 2.61074 1.09152
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Those steps were performed using the standard
bootstrap approach and the block bootstrap approach.

4.1. Discussion

It is known that, in finance, the return is not lin-
early correlated (Cont, 2001), i.e., some dependency
exists but it is not linear. The block bootstrap (Poli-
tis and White, 2004) is used to try to keep the data
as with a non-linear dependence of the data over the
time period. Since this approach keeps the nonlin-
earity in the blocks, the model is considered more
conservative.

Figure 1 briefly points out the methodology pro-
cess developed with the financial data.

Tables 2 and 3 show the results obtained with
the application of simple return on ten stocks from

S&P500 from 1992 to 2015. The first column reports
each year under review, the second name three mea-
sures: mean, standard deviation and Sharpe ratio. The
third and fourth show the results found using tradi-
tional bootstrap in Markowitz (1952) model and in
the local Gaussian correlation model, respectively.
The fifth and sixth, the results obtained using the
block bootstrap in Markowitz (1952) model and in
local Gaussian correlation model, respectively. The
best result for each year is highlighted in bold.

Another way to visualize the results is presented
in Figures 2, 3, 4 and 5. It is also possible to obtain
an analysis of averages and standard deviations of
different methods per year in these following Figures.

The result analysis shows that the local Gaussian
correlation method obtained positive results in the
optimal portfolio selection: in 63% of the cases using

Table 3
Portfolio results using S&P500 data from 2004 to 2015.

Year Measure Markowitz Local Gaussian Markowitz Local Gaussian
Bootstrap Correlation Block Bootstrap Correlation Block

Bootstrap Bootstrap

2004 Mean Ret 0.00091 0.00087 0.00110 0.00096
SD Ret 0.00100 0.00539 0.00094 0.00138

Sharpe Ratio 1.71612 0.32522 2.05144 1.21543
2005 Mean Ret 0.00038 0.00063 0.00035 0.00071

SD Ret 0.00088 0.00052 0.00097 0.00258
Sharpe Ratio 0.43537 1.22743 0.35859 0.27743

2006 Mean Ret 0.00080 0.00086 0.00075 0.00085
SD Ret 0.00065 0.00074 0.00066 0.00145

Sharpe Ratio 1.23416 1.16181 1.12284 0.58959
2007 Mean Ret 0.00059 0.00110 0.00085 0.00098

SD Ret 0.00125 0.02317 0.00141 0.01127
Sharpe Ratio 0.47186 0.04761 0.60472 0.08719

2008 Mean Ret –0.00170 –0.00125 –0.00253 –0.00158
SD Ret 0.00295 0.00139 0.00267 0.00121

Sharpe Ratio –0.57571 –0.90032 –0.94733 –1.30759
2009 Mean Ret 0.00182 0.00178 0.00175 0.00180

SD Ret 0.00087 0.00065 0.00085 0.00182
Sharpe Ratio 2.09290 2.75062 2.05147 0.98735

2010 Mean Ret –0.00042 –0.00043 –0.00064 –0.00058
SD Ret 0.00089 0.00068 0.00092 0.00073

Sharpe Ratio –0.47361 –0.63353 –0.69687 –0.78958
2011 Mean Ret 0.00045 0.00057 0.00057 0.00053

SD Ret 0.00104 0.00077 0.00108 0.00032
Sharpe Ratio 0.43450 0.74859 0.53223 1.63726

2012 Mean Ret 0.00066 0.00078 0.00037 0.00065
SD Ret 0.00087 0.00269 0.00078 0.00033

Sharpe Ratio 0.75544 0.29090 0.46580 1.95866
2013 Mean Ret 0.00075 0.00080 0.00088 0.00089

SD Ret 0.00091 0.00046 0.00083 0.00055
Sharpe Ratio 0.82336 1.73189 1.07122 1.63093

2014 Mean Ret 0.00183 0.00137 0.00202 0.00138
SD Ret 0.00103 0.00010 0.00109 0.00010

Sharpe Ratio 1.77263 13.11725 1.84394 13.86504
2015 Mean Ret –0.00194 –0.00280 –0.00154 –0.00234

SD Ret 0.00280 0.03351 0.00286 0.03836
Sharpe Ratio –0.69321 –0.08358 –0.53723 –0.06112
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Fig. 2. Comparing different methods based on return and risk from 1992 to 1997. MB = Markowitz Bootstrap; LGB = Local Gaussian
Correlation Bootstrap; MBB = Markowitz Block Bootstrap; LGBB = Local Gaussian Correlation Block Bootstrap.

block bootstrap and in 71% of the cases using the tra-
ditional bootstrap. Having presented higher Sharpe
ratio, the model generated a more attractive risk-
adjusted return.

In other words, we get a higher return of the port-
folio compared to its variance as the Sharpe ratio
increases. However, combining a high return with low
Sharpe ratio implies that the returns were achieved
with high risk, which could indicate volatility of
returns in the future. It should be noted that past per-
formance does not guarantee what will happen in the

future as well as the correlations between securities
may undergo rapid change.

In addition, the model that uses local Gaussian
correlation did not overcome the Markowitz (1952)
model in 1997 due to the Asian financial crisis, in the
period of 2003 to 2010 probably because of the finan-
cial crisis and in 2010 because of the Flash Crash.
Another possible reason of this performance is that
the data was divided into 80% for estimation and
20% for validation. As these crises led to a fall in the
market, especially at the end of the year, the Sharpe
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Fig. 3. Comparing different methods based on return and risk from 1998 to 2003. MB = Markowitz Bootstrap; LGB = Local Gaussian
Correlation Bootstrap; MBB = Markowitz Block Bootstrap; LGBB = Local Gaussian Correlation Block Bootstrap.

ratio of the local Gaussian correlation was lower. It
is important to note that in financial market it is com-
mon to observe volatility, however, extreme volatility
is undesirable.

5. Conclusion

Markowitz (1952) suggested that, for a given fixed
number of assets, when the correlation between assets

is equal to zero, an investor should diversify among
assets according to his interest. However, Casella and
Berger (2002) showed that zero correlation does not
necessarily imply independence. Thus, it would not
be accurate to assume that there is no relationship
between those assets, given that the correlation is
equal to zero.

Tjøstheim and Hufthammer (2013) pointed out
the common view among financial and econo-
metric analysts, that correlation between financial



62 M.R. Montenegro and P.H.M. Albuquerque / Wealth management: Modeling the nonlinear dependence

Fig. 4. Comparing different methods based on return and risk from 2004 to 2009. MB = Markowitz Bootstrap; LGB = Local Gaussian
Correlation Bootstrap; MBB = Markowitz Block Bootstrap; LGBB = Local Gaussian Correlation Block Bootstrap.

objects becomes stronger as the market declines.
Moreover, the correlation value gets close to one with
a market crash, resulting in the destruction of the ben-
efit of diversification. Studies indicate the existence
of asymmetric dependence between financial returns.

In order to study such asymmetry and over-
come these limitations, the local Gaussian correlation
model, proposed by Tjøstheim and Hufthammer
(2013) presents a new measure of local dependency.
According to the authors, the Gaussian distribution

provides good approximation in each point of the
return distribution. In other words, given an arbitrary
distribution, the local Gaussian correlation will seek
to find the correlation by adjusting a normal distribu-
tion locally. The local correlation in a neighborhood
is considered as the correlation of an approximately
Gaussian distribution.

Furthermore, the local Gaussian correlation
method presents the following advantages: it does not
have the conditional correlation bias problem and it
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Fig. 5. Comparing different methods based on return and risk from 2010 to 2015. MB = Markowitz Bootstrap; LGB = Local Gaussian
Correlation Bootstrap; MBB = Markowitz Block Bootstrap; LGBB = Local Gaussian Correlation Block Bootstrap.

is able to detect, in dependence structures, complex
or nonlinear changes, which could have been previ-
ously masked with global correlation. In this sense,
the method provides a better understanding of market
dependence (Støve et al., 2014).

In order to improve the model proposed by
Markowitz (1952), this paper proposed a modified
Markowitz (1952) portfolio allocation that includes
two new features: the non-linearity of returns and
the non-stationarity of asset returns over time. The

technique used to do so was the local Gaussian cor-
relation.

The optimal portfolio estimation using the model
proposed here, showed that the group of assets from
the S&P500 from 1992 to 2015 obtained a supe-
rior performance in 63% of cases using the block
bootstrap and in 71% of cases using the traditional
bootstrap.

This performance enables managers, financiers
and companies to perform a more precise investment
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analysis. More information regarding the details of
the matrix of variance and covariance and the prin-
ciple of diversification were incorporated into the
decision-making process, thus allowing a new way of
constructing an optimal portfolio for each investor.

The model also enables the investor to balance the
risk and return of the portfolio, as well as indicates
how to manage them. That is, the risk can be shared
and balanced as a way to mitigate it, allowing man-
agers to adopt more appropriate strategic decisions.
An efficient portfolio management aligns the strategic
objectives with the organization’s investments.

In the present study, we used 80% of the data from
one year for estimation and the remaining 20% for
validation. However, the market undergoes several
changes in the last few months of the year, as the clos-
ing of the balance sheet of many companies and the
increase in assets volatility. Thus, it is recommended
to use the application of all the data from one year for
estimation and the first three months of next year for
validation.

Instead of estimating the variances and covariance
matrix only with past data, it is suggested to incorpo-
rate other mechanisms and variables in the matrix, in
a way that may affect it over time. The matrix is influ-
enced by the macro-economic context, by the period
of time, and by other hidden relations.

References

Ang, A., Chen, J., 2002. Asymmetric correlations of equity port-
folios, Journal of financial Economics 63(3), 443–494.

Ardia, D., Boudt, K., Carl, P., Mullen, K.M., Peterson, B.G., 2011.
Differential evolution with deoptim, The R Journal 3(1), 27–34.
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