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Abstract. This work’s main purpose is to understand the price dynamics in a generic limit order market, and illustrate a dynamical
trading mechanism that can be applied to explore its market microstructure. First and foremost, we capture the iterative nature
of the limit order market, and quantitatively identify its capacities as a means to develop switching schemes for the appearances
of different sorts of traders. After formally introducing a dynamical trading system to replace the complex limit order market,
we then study trading processes in that trading system from both deterministic and stochastic perspectives, in the purpose of
recognizing conditions of general instability and stochastic stability in the trading system. In the final part of this work, the
dynamics of the spread and mid-price in a controlled trading system will be investigated, which fairly serves to verify the
robustness of stochastic stability appearing in an uncontrolled trading system.
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1. Introduction

This work aims to investigate and understand the
price dynamics in a generic limit order market, in
which the best quotes, as well as the induced spread
and mid-price, are evidently important information
carriers for both traders and analysts. Early studies
of prices formation in these financial markets mainly
concentrated on their economic natures, for instance,
Demsetz (1968) considered the bid-ask spread as a
markup “paid for predictable immediacy of exchange
in organized markets” (Demsetz, 1968, p. 36), and
regarded it as an important source in transaction costs.
However, more recent studies started to explore the
dynamics and evolutions appearing in these financial
markets, partly because people realized that under-
standing the processes and dynamics seems very likely
more important and more useful than merely explaining
the equilibrium states. And such a tendency seems to
be necessary as well, since the real financial markets
created a few catastrophes in the past century, say in
particular, the crash of October 1929, and the crash of
October 1987 (cf. Sornette, 2003, pp. 5–7, 12–15). This

work will also follow such a transformation, and, as we
have put at the very beginning, study trading processes
in the limit order market.

Most modern stock exchanges adopt electronic
order-driven platforms, in which limit order books
operate to match demand with supply, and shape value
for time and liquidity. They surely provide opportu-
nities to obtain stylized empirical observations of the
limit order market. There are plenty of investigations
published in past few years. For instance, Lehmann
and Modest (1994) studied the trading mechanism
and the liquidity in the Tokyo Stock Exchange, Biais,
Hillion and Spatt (1995) studied the limit order book
and the order flow in the Paris Bourse, Harris and
Hasbrouck (1996) measured the performance of the
SuperDOT traders in the NYSE, and finally Al-
Suhaibani and Kryzanowski (2000) analyzed the order
book and the order flow in the Saudi Stock Exchange.

As for theoretical understandings of the limit order
market, the approaches of the existing studies might
be roughly separated into two distinct categories,
fortunately, which would also supply concrete cases in
that methodological transformation as we mentioned
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before. Namely, one is to explain the performance
of a limit order market and its stable states by
modeling the behavior of traders in equilibrium. While
the other is to consider the limit order market as a
“super-trader” in order to either explain or predict its
behavior statistically. The first category understands
the strategic behavior of traders and generates testable
implications by capturing some attributes of traders,
for instance, being informed versus being uninformed
as used by Kyle (1985), and also Glosten and Milgrom
(1985), time preference used by Parlour (1998), and
patience versus impatience used by Foucault, Kadana
and Kandel (2005). The second category analyzes the
limit order market by assuming there exist a few
statistical laws for the dynamics or processes in the
market. It is somehow able to catch certain profiles
of the market, say notably, fat tails of the price
distribution, concavity of the price impact function,
and the scaling law of spread to orders (see Smith
et al., 2003, and Farmer, Patelli and Zovko, 2005).

This work will take an intermediary position
between these two quite different methodologies.
That’s to say, we not only agree that the performance
of a limit order market and its evolution can be
determined by the behavior of rational traders involved
in the market, but also keep in mind that statistical
mechanics could be fairly important in its dynamics
and process. Therefore, we suppose there is a large
population of traders in a limit order market, and
assume each trader in the population is rational, in
the sense that her behavior is always strategically
optimal in any game-theoretic framework. In practice,
we assume that a rational trading decision in a very
short time interval, as a quasi-static equilibrium, can
be represented in terms of conformity with the optimal
price distribution of the order book, which has a fine
meaning of collective rationality. Evidently, the no-
tions of individual rationality and collective rationality
are thus supposed to be determined interchangeably.

In general, this work plans to study how individual
traders affect the price dynamics in the limit order
market, how different trading blocks influence the
stability of the market, how a piece of randomness
in a trading system can stochastically enhance its
systemic stability, and why the market would evolve
more predictably, in case we can control certain factors
of the market. In brief, it aims to clarify a dynamical
trading mechanism in the limit order market.

The writing of this work is organized into five
sections. The first section is a general introduction to
the literature, the methodology, the structure, and the

awaiting questions. And the last section is mixed of a
summary and some additional remarks on instability
and stochastic stability.

In Section 2, we first construct the basic modeling
framework, and introduce the atomic trading schemes
as the necessary knowledge for traders in the limit
order market. We then develop the switching laws
for the appearances of different types of traders, and
show that the market capacities of accepting limit-
type and market-type traders can be measured by
floor functions of the log-scaled spread, and similarly
capacities of accepting buy-type and sell-type traders
can be measured by floor functions of the log-scaled
mid-price. These results are critical to the upcoming
probabilistic setting of a random trading process.

In Section 3.1, we study deterministic trading
processes in a dynamical trading system from a
combinatorial perspective. We recognize sufficient
conditions for its general instability, and identify the
necessary condition for its stability — any trading
process should contain at least one reducible trading
block. In Section 3.2, we study stochastic trading
processes with some certain probabilistic structures.
We practically introduce two fundamental concepts —
kernel region and buffering region — and show that
the dynamical trading system will be stochastically
stable in the kernel region, if its kernel region is
moderately large and its buffering region is nonempty.

In Section 4, we check the robustness of stochastic
stability for a regular uncontrolled trading system,
by making its kernel region controlled to have some
restricted properties. We show that the controlled
dynamical trading system could be still stochastically
stable, even if either its range of the spread or its
range of the mid-price is extremely small. And thus,
in a general sense, the stochastic stability of a regular
trading system is robust.

2. Atomic Trading Scheme

2.1. Preliminary Framework

Consider a generic order-driven market with a
large population of traders, whose attributes can be
characterized by their trading directions and demands
for the liquidity. As usual, the trading direction is either
buying or selling initiation, while the liquidity demand
determines the type of a submitted order, namely either
a limit order or a market order.

The group of traders can thus be partitioned into
four pairwise disjoint subgroups, each of which
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includes homogeneous traders, according to these two
kinds of binary classification. It then appears that we
have only four different types of traders:

(i) a buyer submitting a limit order,
(ii) a buyer submitting a market order,

(iii) a seller submitting a limit order,
(iv) a seller submitting a market order.

Let σ(1), σ(2), σ(3), and σ(4) denote these four
types, respectively, where σ : i 7→ σ(i) is a normal
permutation function defined on {1, 2, 3, 4}. Let the
type space be Σ4, then

Σ4 = {σ(1), σ(2), σ(3), σ(4)}.

Evidently, any trader in the population must be of a
unique type in Σ4.

Assume that the depth of the limit order book is
equal to the trading volume of any new order, thus
a new transaction will either clear a limit order or
add a more attractive limit order on the market, once
there do not exist queued and hidden orders. So traders
of any type in Σ4 must affect the limit order book.
We therefore call such traders marginal traders, in the
sense that the (best) quotes will be definitely updated
by their submitted orders.

Let the best bid, best ask, bid-ask spread, and mid-
price in an order book be b, a, s, and m. The (best)
bid-ask pair is denoted by (b, a) or w. Note that s =
a− b and m = (b+ a)/2. More generally, we define a
spread function,

s : w 7→ s(w),

such that s(w) = a− b, and define a mid-price
function,

m : w 7→ m(w),

such that m(w) = (b+ a)/2, where w = (b, a).
Let the time domain be Z. At each time t ∈ Z, the

time-dependent bid-ask pair will be denoted by (bt, at)
or wt. Once the time t is in the future, we introduce a
two-dimensional random variable Dt to represent that
unrealized bid-ask pair (Bt, At), where Bt and At are
stochastic versions of bt and at, respectively. Here, the
normal notions of volatility and unpredictability could
apply to Bt, At, and even Dt.

Observe that there typically exists a tick size as
the minimal change of prices in the market. Let τ > 0
denote it, then we have s> 0, and moreover, s≥ τ . In
this work, we shall set a stricter condition for the lower

bound of the bid-ask spread, that’s to say, there is a
lower bound s> τ , such that s≥ s at any time.

Naturally, there also exists an upper bound of the
best ask a, in virtue of the limited value of any security
for all trader. Let a denote it. Besides that, note that
b ≥ 0, otherwise, there would be no demand in the
market, as the inverse of even the best bid would exist
as a part of the ask side of the market. As a result, the
bid-ask pair (b, a) should be located within a compact
domain W ⊂ R2, which is defined by b ≥ 0, a ≤ a,
and a−b ≥ s. In the b-a plane,W can be geometrically
represented by a triangle, whose vertices are (0, s),
(0, a), and (a− s, a), which has been shown in Fig. 1.

Suppose that the ordered quotes on both sides
of the order book are naively distributed over [0, b]
and [a, a]. In addition, we assume that the difference
between adjacent quotes on the same side of the order
book should be proportional to the bid-ask spread.
This assumption as an empirical fact was found and
statistically tested by Biais, Hillion and Spatt (1995)
using data from the Paris Bourse, and also supported by
Al-Suhaibani and Kryzanowski (2000) with evidence
from the Saudi Stock Exchange. Furthermore, we set
the difference of adjacent quotes equal to α(a − b) on
the ask side of the book, and β(a − b) on the bid side
of the book, where α, β ∈ (0, 1).

The upper quote next to the best ask a is thus equal
to a+ = a+α(a− b), and the lower quote next to the
best bid is equal to b−= b−β(a− b). Let’s assume
the ratio 〈β, 1, α〉 of the differences between these
four consecutive prices b−, b, a, a+ in the order book
(see Fig. 2) is an indicator of optimal information
aggregation or market efficiency in a very short time
interval. That’s to say, prices, which conform to such a
ratio, suggest that the market should be in a quasi-static
equilibrium, so that there is no profitable perturbation
that could emerge in that short time interval. In practice,

b

a

0
s

a

a −s

Fig. 1. The domain of the bid-ask pair.
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0 b− b a a+ a
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Fig. 2. Optimal structure of the limit order book.

the values of α and β can be roughly set as 1/2, which
was proposed by Biais, Hillion and Spatt (1995).

2.2. Evolution of Bid-Ask Pair

Suppose that a marginal trader gets to the market at
the time t, just after the bid-ask pair (bt, at) forms, thus
she has all the information on the market, at and before
the time t. Her trading decision at t can be denoted
by a price, say pt. If she submits a limit order, then
bt<pt<at, while if she submits a market order, we
have either pt≥ at or pt≤ bt. If she is a buyer, then
pt≤ at, while if she is a seller, then pt≥ bt. Recall that
we have assumed the order book’s depth at the quotes
is equal to the trading volume of any new order. So a
market order will definitely clear one of the two limit
orders at the best quotes, and the cleared previous limit
order will be replaced by a less attractive one. And a
limit order will surely lower the bid-ask spread, and
improve one of the best quotes.

Type σ(1) If the marginal trader is a buyer and
submits a limit order, then the best bid bt+1 at the
time t+ 1 will be pt = bt + ρ, where ρ > 0, and the
best ask at+1 at the time t+ 1 will remain unchanged.
Suppose the marginal trader’s decision process can
be described by her maximizing the utility function
of pt or equivalently ρ, say u(pt) =u(ρ+ bt), where
u is concave in ρ. By the requirement of rationality,
we have ρ∗ ∈ argmaxρ u(pt), subject to ρ∗> 0 and
at− bt− ρ∗≥ s. According to our assumption on the
optimal structure of the limit order book in a very short
time interval around t, ρ∗ should comply with the ratio
〈β, 1〉 on the bid side, which hence implies

ρ∗ = β(at − bt − ρ∗), (1)

so ρ∗ = β
1+β (at − bt). Thus bt+1 = 1

1+β bt + β
1+βat,

and at+1 = at. Or wt+1 = wtS1, where

S1 =

(
1

1+β 0
β

1+β 1

)
,

and wt+1 is the realization of the random variable
Dt+1.

After this trade of limit order on the bid side, the
spread st = at − bt and mid-price mt = (bt + at)/2
will be updated respectively to

st+1 =
1

1 + β
st,

mt+1 = mt +
β

2(1 + β)
st.

Note that st+1 ≥ s, so st ≥ (1 + β)s. The marginal
trader is of type σ(1), only if st ≥ (1 + β)s. And
if she is of type σ(1), she will choose an optimal
improvement ρ∗ ≥ βs.

Type σ(2) If the marginal trader is again a buyer, but
now she submits a market order hitting at, then the
best ask at+1 at the next period will be at+α(at−bt),
and the best bid bt+1 will remain same as bt. Here,
her decision process is overlaid with the principle of
price-time priority employed in the limit order market.
So her decision set is the singleton {at}, which then
implies that pt = at. Consequently, we have bt+1 =
bt and at+1 = − αbt + (1 +α)at. Or wt+ 1 = wtS2,
where

S2 =
(

1 −α
0 1 + α

)
.

After this trade of market order on the bid side, the
new spread and mid-price will be

st+1 = (1 + α)st,

mt+1 = mt +
α

2
st.

Note that st+1 ≤ a, so st ≤ a/(1 + α). The marginal
trader is of type σ(2), only if st ≤ a/(1 + α).

Type σ(3) If the marginal trader is a seller, and she
submits a limit order, then the best ask at+1 at the
time t + 1 will be at − θ, where θ > 0, and the best
bid bt+1 at the time t + 1 will remain same as bt.
Similar to the type σ(1), this type of marginal trader’s
decision process can be described as maximizing her
utility v(pt) = v(− θ+ at), where v is convex in θ.
Her decision will admit the optimal choice θ∗ ∈
argmaxθ v(pt), subject to θ∗ > 0 and at−θ∗−bt ≥ s.
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By the assumption that the optimal ratio 〈1, α〉 on the
ask side represents the quasi-static equilibrium around
the time t in the market, we have

θ∗ = α(at − θ∗ − bt), (2)

so θ∗ = α
1+α (at − bt). Thus bt+1 = bt, and at+1 =

α
1+αbt + 1

1+αat. Or more concisely, wt+1 = wtS3,
where

S3 =
(

1 α
1+α

0 1
1+α

)
.

After this trade of limit order on the ask side, the
spread and mid-price will be updated to

st+1 =
1

1 + α
st,

mt+1 = mt −
α

2(1 + α)
st.

Similar to the type σ(1), we have st ≥ (1 +α)s, since
st+1 can not be less than s. The marginal trader is
of type σ(3), only if st ≥ (1 + α)s. And if she is
of type σ(3), she will choose an optimal improvement
θ∗ ≥ αs.

Type σ(4) If the marginal trader is a seller and
submits a market order hitting bt, then the best bid bt+1

at the time t + 1 will be bt − β(at − bt), and the best
ask at+1 will remain unchanged as at. Her decision
is restricted to choosing pt to maximize her utility
subject to pt ∈ {bt}, so the optimal choice is pt = bt.
We have bt+1 = (1 + β)bt − βat and at+1 = at. Or
wt+1 = wtS4, where

S4 =
(

1 + β 0
−β 1

)
.

After this trade of market order on the ask side, we
will have

st+1 = (1 + β)st,

mt+1 = mt −
β

2
st.

Similar to the type σ(2), we should have st ≤ a/(1 +
β). And only if st ≤ a/(1 + β), the marginal trader
could be of type σ(4).

Type Space Observe that any spread s can increase
to (1 + α)s or (1 + β)s, and decrease to s/(1 + α) or
s/(1 +β) after a new order, so the maximal difference
generated by α and β could be |α − β|s. Since a� s
in most normal limit order markets, and both α and β
are roughly close to 1/2, |α − β|s will be extremely
small in regard to a − s. Therefore, we can, without
loss of generality, assume α = β to set |α−β|s exactly
equal to 0. The ratio of 〈β, 1, α〉 will then be replaced
by the simpler one, 〈α, 1, α〉.

Consider an arbitrary initial bid-ask pair (b, a). If a
marginal trader of type σ(1) comes to the market, the
bid-ask pair in the next period will be (b+, a), where
b+ > b. If the marginal trader is of type σ(2), it will
be (b, a+), where a+ > a. If the marginal trader is of
type σ(3), it will be (b, a−), where a− < a. Finally, if
the marginal trader is of type σ(4), it will be (b−, a),
where b− < b. Note that

b+ − b = a− a− =
α

1 + α
s,

a− b+ = a− − b =
s

1 + α
,

and also

a+ − a = b− b− = αs,

a+ − b = a− b− = (1 + α)s.

The types σ(2) and σ(4) will cause a greater bid-ask
spread than s, namely (1 + α)s, while the types σ(1)
and σ(3) will cause a smaller bid-ask spread than s,
namely s/(1 + α). In fact, σ(2) and σ(4) are both
market-type, while σ(1) and σ(3) are both limit-type
(see Fig. 3).

By similar computations as above, we can obtain

a+ b+ = 2m+
α

1 + α
s,

a+ + b = 2m+ αs,

and also

a− + b = 2m− α

1 + α
s,

a+ b− = 2m− αs.

The types σ(1) and σ(2) will generate a new mid-price
greater than m, while the types σ(3) and σ(4) will
generate a new mid-price smaller than m. We clearly
see that σ(1) and σ(2) are both buy-type, while σ(3)
and σ(4) are both sell-type (see again Fig. 3).
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(b, a) b+

a+

a−

b−

Limit

Market Buy

Sell

σ (1)

σ (2)

σ (3)

σ (4)

Fig. 3. Partition of the type space.

2.3. Capacity and Switching Law

From the discussions on trading decisions of differ-
ent marginal traders, we can see how the bid-ask spread
and mid-price develop in an iterative way. Notice that
a limit order will change the bid-ask spread from s to
s/(1 + α), while a market order will change it from
s to (1 + α)s. It appears that any s will converge
to infinity after sufficiently many market orders, and
any s will converge to zero after infinitely many limit
orders. Recall that s should be bounded within the
interval [s, a] (a line a = b + s should pass W , see
Fig. 1), so when s is too close to its bounds, the market
should have stability incentives to make s bounce away
against them. The mid-price m has a similar internal
stability scheme, as m should be bounded within the
interval [s/2, a − s/2] (a line a + b = 2m should
pass W , see also Fig. 1). Quite intuitively, we shall
say such internal stability schemes originate in some
hidden “gravitational forces” in the market, in the sense
that they can control the appearances of different types
of orders, and determine their switching possibilities.

We should admit that the force related to the bid-ask
spread and that related to the mid-price should have
different actions on the market, but similar analytical
natures. In consideration of such facts, we will mainly
study the force related to the bid-ask spread, and
yet we will directly state similar results on the force
related to the mid-price at the end of this part.

To investigate the gravitational force for the bid-ask
spread, we first concentrate on such spreads that are
very close to either s or a, so that we could easily

see its working principles. If the spread is sufficiently
great, the hidden force will attract limit-type traders,
σ(1) and σ(3), and repel market-type traders, σ(2)
and σ(4), but of course doesn’t necessarily reject them
until the spread is close enough to the upper bound a.
On the other hand, if the bid-ask spread is extremely
small, then such a hidden force will attract market-type
traders and repel limit-type traders, and it will reject
limit-type traders once the spread is close enough to s.

Formally stating, the market with a spread s only
accepts traders of type σ(2) and type σ(4), if

s ≤ s < (1 + α)s.

Suppose there exists a nonempty interval ((1 −
γ)a, a], where 0<γ < 1 and (1− γ)(1 +α)≤ 11,
or equivalently,

α/(1 + α) ≤ γ < 1,

under which the market will never accept any more
market-type trader. Thus the market with a spread s
only accepts traders of type σ(1) and type σ(3), if

(1− γ)a < s ≤ a.

In the remaining interval,

(1 + α)s ≤ s ≤ (1− γ)a,

the market can accept traders of any type in Σ4. In fact,
[s, a] is now partitioned into three pairwise disjoint
intervals, as shown in Fig. 4.

We then establish a result stating that the capacity of
accepting limit-type traders in the limit order market
can be measured by a function of the bid-ask spread.

Proposition 2.1. The maximal number of limit-type
traders, who can be continuously accepted by a limit
order market with a spread s, is determined by the
function,

z(s) =
⌊

log s− log s
log(1 + α)

⌋
. (3)

Proof. Define a sequence of consecutive intervals,

[(1 + α)is, (1 + α)i+1s),

1This inequality gives a necessary condition for a zero-capacity
of accepting market-type traders. If we assume (1−γ)(1+α) = 1,
although we could have less parameters, there would be also less
room for interesting analysis.
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sτ s (1 + α ) s (1 − γ )a a

σ (2) /σ (4) σ (1) /σ (3)

Fig. 4. Acceptable traders in the market.

for i ∈ {0, 1, . . . , n}, and

n = max{i ∈ Z : (1 + α)i ≤ a} − 1.

For all s ∈ [s, (1 + α)n+1s), there is a unique j(s) ∈
{0, 1, . . . , n}, such that

s ∈ [(1 + α)j(s)s, (1 + α)j(s)+1s).

We want to show that z(s) = j(s) by induction. If
j(s) = 0, then s∈ [s, (1 +α)s), and the limit order mar-
ket will reject limit-type orders, so z(s) = 0. Assume
z(s) = j(s) is true for all j(s)≤ k, and consider j(s) =
k+ 1 such that s∈ [(1 +α)k+ 1s, (1 +α)k+ 2s). After
a marginal trader of type σ(1) or type σ(3) comes
to the market, s will be updated to s′= s/(1 +α) ∈
[(1 +α)ks, (1 +α)k+ 1s). By the assumption, we
know z(s′) = k, so z(s) = z(s′) + 1 = k+ 1 = j(s).

If s ∈ [(1+α)n+1s, a], then s ∈ [(1+α)n+1s, (1+
α)n+2s), as (1 + α)n+2s > a. Here j(s) = n+ 1, so
we have z(s) = n+ 1 = j(s) by induction, simply as
z(s′) = j(s′) for all j(s′) = n.

Therefore, z(s) satisfies

(1 + α)z(s)s ≤ s < (1 + α)z(s)+1s,

and thus we have

z(s) ≤ log s− log s
log(1 + α)

< z(s) + 1,

which exactly defines the floor function.

We can thus state that there is an exponential law
of the bid-ask spread s to the market’s capacity of
accepting limit-type traders n,

s = (1 + α)ns, (4)

where n ∈ [z(s), z(s) + 1].
To a certain extent, the appearance probability of a

new limit-type trader should be simply determined by
its capacity of accepting limit-type traders. Since the
capacity is a function of the spread, that probability
should be also a function of the spread. Let f : [s, a]→

[0, 1] be such a function2. Since the log-scaled spread
has been used to measure the capacity, f(s) is actually
a function of log s, and moreover, we suppose f(s) is
positively linear in log s. Thus we could define f(s)
more precisely in the following way. If s ∈ [(1 +
α)s, (1− γ)a], then

f(s) = k1 log s+ k2, (5)

where k1 ≥ 0 and k2 are constants depending on
s, a, α, γ. If s ∈ [s, (1 + α)s), then f(s) = 0. And if
s ∈ ((1− γ)a, a], then f(s) = 1.

Similar to Proposition 2.1, a result on the capacity
of accepting market-type traders in the market can be
proposed, and yet its proof will not be provided, as its
logic is nearly the same as that of Proposition 2.1.

Proposition 2.2. The maximal number of market-type
traders, who can be continuously accepted by a limit
order market with a spread s, is determined by the
function,

y(s) =
⌊

log((1− γ)a)− log s
log(1 + α)

+ 1
⌋+

, (6)

where bxc+ = max{bxc, 0}.

Evidently, there is also an exponential law of the
bid-ask spread s to the market’s capacity of accepting
market-type traders n,

s ∝ (1 + α)−na, (7)

where n ∈ [y(s), y(s) + 1].
The appearance probability function g : [s, a] →

[0, 1], which specifies the probability of a new market-
type trader appearing in the market with a spread s,
can be defined as a negatively linear function of log s.
Concretely, if s ∈ [(1 + α)s, (1− γ)a], then

g(s) = k3 log s+ k4, (8)

2Note that f(s) is not a probability measure over the spread
domain [s, a], as we are not considering the uncertainty in the
spread, but the uncertainty in the appearance of different types of
traders at any deterministic spread s.
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where k3 ≤ 0 and k4 are again constants determined
by s, a, α, γ. If s ∈ ((1 − γ)a, a], then g(s) = 0. And
if s ∈ [s, (1 + α)s), then g(s) = 1.

Note that, in any case, a new trader appearing in
the market is either limit-type or market-type, that’s to
say, we have f(s) + g(s) = 1 for all s. Intuitively,
the probabilities f(s) as well as g(s) at any s can be
thought of to be a measure of switching possibility
between the limit-type and market-type traders in the
market. We can thus rigorously state such a switching
law between limit type and market type as follows:

(i) If s ∈ [s, (1 + α)s), the probability of switching
from limit type to market type is 1, and that of
switching from market type to limit type is 0.

(ii) If s ∈ ((1− γ)a, a], the probability of switching
from market type to limit type is 1, and that of
switching from limit type to market type is 0.

(iii) If s ∈ [(1 + α)s, (1 − γ)a], the probability
of switching from limit type to market type
is decreasing according to g(s), while the
probability of switching from market type to
limit type is increasing according to f(s).

With regard to the mid-price as the counterpart of
the spread, we can also develop, through a highly
similar reasoning process, the switching law between
buy type (i.e., type σ(1) and σ(2)) and sell type (i.e.,
type σ(3) and σ(4)). Once again, we partition the mid-
price domain [s/2, a−s/2] into three pairwise disjoint
intervals,

[s/2, (1 + δ)s/2),

[(1 + δ)s/2, (1− ε)(a− s/2)],

((1− ε)(a− s/2), a− s/2],

where δ > 0, and δ/(1 + δ)≤ ε< 1, as we need
initially assume 0<ε< 1 and (1 + δ)(1− ε)≤ 1. In
short, we shall directly state that switching law
between buy type and sell type as follows:

(i) If m ∈ [s/2, (1 + δ)s/2), sell type will switch to
buy type for sure.

(ii) If m ∈ ((1− ε)(a−s/2), a−s/2], buy type will
switch to sell type for sure.

(iii) In the remaining domain of m, the probability of
switching from buy type to sell type is increasing
with logm, and that of switching from sell type
to buy type is decreasing with logm.

3. Iterated Trading Process

3.1. Sequential Trading

Define four linear functions mapping W to itself,

fi(w) = wSi, i ∈ {1, 2, 3, 4},

where S1, S2, S3, S4 are 2 × 2 matrices as defined
in Section 2.2. Recall that β in S1 and S4 are now
replaced by α. Let F be the collection of these four
functions, then F = {f1, f2, f3, f4}.

For each i ∈ {1, 2, 3, 4}, and any given w ∈ W ,
define a convex set,

Li(w) = {λw + (1− λ)wSi : 0 ≤ λ ≤ 1}.

Notice that Li(w) is actually the line segment between
w and wSi in the b-a plane. More precisely, we
redefine fi(w) to be

fi(w) ∈
{ {wSi} , if wSi ∈W

Li(w) ∩ ∂W, if wSi /∈W

where ∂W denotes the boundary of the closed domain
W . Since both {wSi} and Li(w)∩∂W are singletons,
fi(w) will take either the value of wSi or the unique
element in Li(w)∩ ∂W , hence it is essentially a well-
defined function.

We should notice that the domain W will then have
an absorbing barrier, in such a sense that the dynamics
induced by any fi ∈F will be always bounded within
W . To state the sharp distinction between a state
absorbed on ∂W and a state in W \ ∂W , we shall
propose two useful notions to describe the states in
∂W . If the state of a limit order market is first absorbed
on ∂W at a time t, we say the market is unstable before
the time t, and it is in a crash or catastrophe at and
after the time t.

Definition 3.1. The pair (W, fi) is called a trading
system generated by the trader of type σ(i) for all
i ∈ {1, 2, 3, 4}.

Each trading system (W, fi) for i∈{1, 2, 3, 4} can
create a certain dynamics of bid-ask pairs in the
domain W . For any initial state w∈W , the bid-
ask pair in the trading system (W, fi) will eventually
hit the point wi ∈ ∂W , where w1 = (a − s, a),
w2 = (b, a), w3 = (b, b+ s), and w4 = (0, a). These
generic states are also shown geometrically in the b-a
plane (see Fig. 5).



S. Wang / Dynamical trading mechanisms in limit order markets 221

b

a

0
s

a

a–s

w w1

w3

w2

w4

Fig. 5. The hitting states absorbed on ∂W .

Proposition 3.2. If a fixed-type marginal trader
repeatedly comes to a limit order market, then the
market starting from any initial state in W is unstable.

Proof. Consider any initial state w = (b, a) in W .
After n forward periods with the marginal trader of
type σ(1), the bid-ask pair will be wSn1 , which will
converge to (a, a), if n goes to infinity. But in the
trading system (W, f1), the bid-ask pair should always
stay in W , thus the last bid-ask pair remaining in the
trading system is (a − s, a) ∈ ∂W . It means that the
trading system will monotonically move to a crash,
and hence it is unstable. Similar arguments can be
made for the other three types, and they will complete
the proof.

In Proposition 3.2, we actually consider a countably
infinite sequence of marginal traders with a constant
type, {q, q, . . . }, for all q ∈Σ4. It appears to us that
the trading system involved with {q, q, . . . } must be
unstable. In general, we can consider a countably
infinite sequence of marginal traders with variable
types, {qt, t ∈ Z}, where qt ∈ Σ4 for all t ∈ Z, and
investigate the stability of the trading system involved
with {qt, t ∈ Z}. Evidently, the set of all such {qt, t ∈
Z} can be denoted by Σω4 .

If the type of marginal trader at a time t is qt = σ(i),
the atomic trading scheme functioning at that time will
be fi for all i ∈ {1, 2, 3, 4}. Thus the permutation
function σ can relate the functioning scheme fi ∈ F
to the marginal trader of type σ(i) ∈ Σ4.

Definition 3.3. The triplet (W,F, σ) is called a
dynamical trading system or an iterated trading
system.

Note that (W, fi) is a discrete dynamical system,
and (W,F ) is essentially an iterated function system.
In our definition of dynamical trading system, σ is
introduced additionally to determine the functioning

schemes in (W,F ) for all sequence of marginal traders
in Σω4 . Recall that F has a parameter α ∈ (0, 1), so
the dynamical trading system (W,F, σ) depends on α
as well.

First of all, we are interested in identifying certain
trading blocks in a sequence of traders that will never
change the state of the dynamical trading system
(W,F, σ). Notice that S1S4 = I and S2S3 = I for all
α∈ (0, 1), where I denotes the identity matrix of order
2, thus {σ(1), σ(4)}, {σ(4), σ(1)}, {σ(2), σ(3)}, and
{σ(3), σ(2)} are all such trading blocks for all α ∈
(0, 1).

Definition 3.4. A periodic block is a consecutive
trading block that will not change any bid-ask pair in a
specific dynamical trading system.

Notice that a combination of periodic blocks is again
a periodic block. For instance,

{σ(1), σ(4), σ(2), σ(3)}

is a periodic block for all α ∈ (0, 1), as {σ(1), σ(4)}
and {σ(2), σ(3)} are both general periodic blocks. So
we need to catch the invariant part of periodic block.

Definition 3.5. A periodic block is called minimal, if
it has no proper subtuple that is again a periodic block.

Any periodic block can be reduced into a series of
minimal ones. Note that a periodic block C is either
minimal or not. If C is minimal, it is equivalent to
itself. If C is not minimal, we can always find a proper
subtuple C ′ ⊂ C such that both C ′ and C \ C ′ are
still periodic blocks. We can eventually have a series
of minimal periodic blocks by applying this process
recursively.

Example 3.6. If α ∈ (0, 1), the periodic block

{σ(1), σ(2), σ(3), σ(4)}

has two minimal ones, {σ(2), σ(3)} and {σ(1), σ(4)},
while the minimal periodic blocks of

{σ(4), σ(1), σ(1), σ(4), σ(4), σ(1)}

are {σ(1), σ(4)}, and double {σ(4), σ(1)}.
If α = 1/2, the consecutive trading block

{σ(2), σ(1), σ(2), σ(1),

σ(3), σ(4), σ(3), σ(4), σ(3), σ(4)}

is periodic, and it is also minimal.
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If α = 1/3,

{σ(1), σ(2), σ(1), σ(2), σ(1), σ(2), σ(1), σ(2),

σ(4), σ(3), σ(4), σ(3), σ(4), σ(3)}

is a minimal periodic block.

Lemma 3.7. The number of marginal traders in any
minimal periodic block is finite and even.

Proof. Consider a minimal periodic block C, and
assume the number of traders in C is infinite. Then C
must pass infinite bid-ask pairs. If not, we suppose C
passes finite bid-ask pairs. Since the number of traders
in C is infinite, there must exist a closed route, such
that a related subset of C is a periodic block, which
contradicts that C is minimal.

Assume the initial condition of C is w ∈ W with
a bid-ask spread s. Note that s can be updated into
either (1 +α)s or s/(1 +α), so any bid-ask pair on
the trajectory will have a spread in the set

Sw =
{

(1 + α)is : −N1 ≤ i ≤ N2 and i ∈ Z
}
,

where N1, N2 ∈Z+ are finite, as W is bounded. Let
the bid-ask pair wr be the first state with a spread
r on the trajectory starting from w, for all r∈Sw,
where wr = w, if r= s. wr will be updated to wr ±
(αr/(1 +α), αr/(1 +α)) by the block {σ(1), σ(2)}
or {σ(3), σ(4)}, and to wr ± (αr, αr) by the block
{σ(2), σ(1)} or {σ(4), σ(3)}. So at the constant-
spread line a− b= r, all the possible states on the
trajectory have the form,

wr + k1(αr, αr) + k2

( α

1 + α
r,

α

1 + α
r
)

=

wr +
(
k1α+

k2α

1 + α
, k1α+

k2α

1 + α

)
r,

where k1, k2 ∈ Z and they are finite, asW is bounded.
Since α, k1, k2 are finite, all the possible states with a
given spread r on the trajectory are finite, and hence all
the states inW starting from w are finite. SoC can not
pass infinite bid-ask pairs, which implies the number
of marginal traders in C must be finite.

Suppose C has 2n+ 1 traders, where n∈Z+, and
assume it will pass x different bid-ask pairs, the
collection of which is denoted by the set P . By
Proposition 3.2, any trader of type σ(i) will definitely
update the bid-ask pair in a trading system (W, fi),
so 1<x<∞. Let P be the set of nodes in a graph,

so any trader in C will link two different nodes in
P . Since there are 2n+ 1 traders, we have 2n+ 1
links in this graph. But if there exists a directed circle,
such that the bid-ask pair after this block will not be
changed, then the number of links of any node in P
should be even. So the total links in this graph should
be even, which contradicts that the number of links is
2n+ 1. Therefore, a block with 2n+ 1 traders can not
be periodic, which completes the proof.

Note that we can have an equivalent reduced
sequence of traders by identifying and then removing
(minimal) periodic blocks iteratively in any sequence
of traders, as we just delete some closed routes of bid-
ask pairs, which will not change the dynamics in the
dynamical trading system as a whole.

Definition 3.8. A sequence of marginal traders is
called irreducible, if it contains no minimal periodic
block.

Proposition 3.9. A limit order market that accepts any
irreducible sequence of traders is unstable.

Proof. Note that any market functioning for infinite
periods must contain several minimal periodic blocks,
otherwise it is a minimal periodic block with infinite
traders, which contradicts Lemma 3.7. Since any
irreducible sequence of marginal traders contains
no minimal periodic block, the number of marginal
traders in any irreducible sequence must be finite,
otherwise we have a market functioning for infinite
periods has no minimal periodic block. If the number
of marginal traders in a sequence is finite, then the
market must function only for finite periods. So the
bid-ask pair in the market must be absorbed on ∂W ,
and hence the market will be in a crash, which implies
that the market must be unstable.

It is clear that any market functioning for infinite
periods will never accept an irreducible sequence of
marginal traders. Or we can say the sequence of
marginal traders in a stable market should be infinite
and reducible, so that we can always find some minimal
periodic blocks that stay in the market for finite periods.

A similar concept to periodic block is the well-
known notion of hedge, as the role of risk sharing
through assets diversification has a counterpart here,
namely, instability sharing through orders grouping
in the limit order market. Our result suggests that
periodic blocks as the “hedging” units in a limit order
market should be necessary for its dynamic stability.
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3.2. Stochastic Trading

In the last subsection, we studied a dynamical trading
system from a combinatorial perspective. In fact, we
considered all the possible permutations of countably
infinite marginal traders, which form the space Σω4 . We
find two general categories of sequences of marginal
traders in Σω4 , which can sufficiently cause an unstable
limit order market. That’s to say, the sequence of
marginal traders with a constant type, as stated in
Proposition 3.2, and any irreducible sequence that con-
tains no minimal periodic block, as stated in Proposition
3.9. Moreover, if we realize that a sequence of marginal
traders with a constant type is certainly irreducible,
Proposition 3.2 would then become a natural corollary
of Proposition 3.9 at this stage.

In this part, we will take a different perspective
to study sequential trading processes in the limit
order market. We assume there is a certain probability
structure over the space Σω4 , and hence the dynamics
of bid-ask pairs in the dynamical trading system
(W,F, σ) will become random. Not surprisingly, the
related limit order market can be stochastically stable,
in the sense that the random trajectory in (W,F, σ)
will not be absorbed on ∂W almost surely, in other
words, the market will not be in a crash almost surely.

Assume the appearance probability of any type in
Σ4 at any state w ∈ W is stationary, i.e., independent
of the time. Define a function

π : W → [0, 1]4,

such that, at any state w ∈ W , π(w) is the 4-tuple of
the appearance probabilities of type σ(1), type σ(2),
type σ(3), and type σ(4), or

π(w) =
(
π1(w), π2(w), π3(w), π4(w)

)
,

with
∑4
i=1 πi(w) = 1, where πi(w) denotes the

appearance probability of type σ(i) at the state w.
We can therefore have four aggregated appearance

probability functions, which can be directly induced
from the original π(w), and they are

(i) the market-type appearance probability function
πM (w) = π2(w) + π4(w),

(ii) the limit-type appearance probability function
πL(w) = π1(w) + π3(w),

(iii) the buy-type appearance probability πB(w) =
π1(w) + π2(w),

(iv) the sell-type appearance probability πS(w) =
π3(w) + π4(w).

Here, we haveπM (w) +πL(w) = 1 and alsoπB(w) +
πS(w) = 1 for all w ∈W .

Note that the value of πL(w) only depends on
the spread of w, and moreover, πL(w) = f(s(w)),
where f : [s, a] → [0, 1] was defined in Section 2.3.
Similarly, the value of πB(w) only depends on the
mid-price of w, and specifically, we let πB(w) =
h(m(w)), where h : [s/2, a− s/2]→ [0, 1].

Recall that f(s) is an increasing function of log s,
so πL(w) is increasing with log s(w), and πM (w) is
decreasing with log s(w). Moreover, if w belongs to
the region

WM = {w : s ≤ s(w) < (1 + α)s},

we have πM (w) = 1 and πL(w) = 0. If w belongs to
the region

WL = {w : (1− γ)a < s(w) ≤ a},

we have πL(w) = 1 and πM (w) = 0. Here, 0 < α <
1, and α/(1 + α) ≤ γ < 1.

Notice that h(m) is a decreasing function of logm,
so πB(w) is decreasing with logm(w), and πS(w) is
increasing with logm(w). Moreover, if w belongs to
the region

WB = {w : s/2 ≤ m(w) < (1 + δ)s/2},

we have πB(w) = 1 and πS(w) = 0. If w belongs to
the region

WS = {w : (1− ε)(a−s/2) < m(w) ≤ a−s/2},

we have πS(w) = 1 and πB(w) = 0. Here, 0 < δ <
1, and δ/(1 + δ) ≤ ε < 1.

Definition 3.10. The buffering region of W is the
largest nonclosed subset H ⊂ W with the property
that

∏
x∈{L,M,B,S} πx(w) = 0 for all w ∈ H .

At any state w ∈ H , there exists at least an x ∈ {L,
M,B, S} such thatπx(w) = 0. SinceπL +πM =πB+
piS = 1, there also exists at least a y ∈{L,M,B, S}
such that πy(w) = 1 at the state w. So we can have at
most two elements, say, x1 ∈{L,M} and x2 ∈{B,S},
such that πx1(w) =πx2(w) = 0, and πy(w) = 1 for
y /∈{x1, x2}.

Definition 3.11. The kernel region of W is the largest
closed subset K ⊆W with the property that πx(w) 6=
0 for all x ∈ {L,M,B, S} and for all w ∈ K.
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Note that for all w ∈ K we also have πx(w) 6= 1
for all x ∈ {L,M,B, S}, as there exists a unique y
such that πx(w) = 1− πy(w), where πy(w) 6= 0.

In general, we have K = W \H , and K ∩H = ∅.
Thus we have a bipartition of the domain W , as K ∪
H = W and K ∩ H = ∅. Since K is defined to be
closed, and H is defined to be nonclosed, H may be
empty, but H 6= W , and hence K is always nonempty.
If K = W , then H = ∅. If K = {w}, for some
w ∈W certain, then H = W \ {w}.

In our framework, we have πL(w) = 0 for all w ∈
WM , πM (w) = 0 for all w ∈WL, πB(w) = 0 for all
w ∈WS , and πS(w) = 0 for all w ∈WB . Thus

H = WL ∪WM ∪WB ∪WS , (9)

and K = W \H , where WL ∩WM = ∅, and WB ∩
WS = ∅ (see Fig. 6).

Note that K is closed, while H is not closed,
but H ∪ ∂K is also closed, where ∂K denotes the
boundary of the kernel region K.

Definition 3.12. The s-range of R ⊆W is

rs(R) = sup
w∈R

s(w)− inf
w∈R

s(w). (10)

Definition 3.13. The m-range of R ⊆W is

rm(R) = sup
w∈R

m(w)− inf
w∈R

m(w). (11)

Proposition 3.14. If the buffering region H 6= ∅, and
the kernel region K satisfies

min{rs(K), rm(K)} > α(1 + α)(2 + α)s, (12)

the dynamical trading system (W,F, σ) is stochasti-
cally stable within K.

Proof. For any trajectory starting from a bid-ask pair
w∈W , all the possible states inW are finite, as shown
in the proof of Lemma 3.7. The set of all the possible
states for any initial state w can be denoted by a
corresponding lattice Λ(w). Let the neighborhood of
any v ∈ Λ(w) be

N(v) = {vS1,vS2,vS3,vS4} ∩W.

Observe that Λ(w) is globally defined onW = K∪H ,
so there exist states v ∈ Λ(w) near ∂K, such that
N(v) ∩H 6= ∅ and N(v) ∩K 6= ∅.

Note that the spread s(v) of the state v can be
updated to s(v)/(1 + α) or (1 + α)s(v), and the mid-
price m(v) of the same state v can be updated to
maximally m(v) + αs(v)/2 and minimally m(v) −
αs(v)/2, so

rs(N(v)) =
α(2 + α)

1 + α
s(v),

rm(N(v)) = αs(v).

b

a

0

WS

WM

WB

WL

K

Fig. 6. The kernel region and buffering region.
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Suppose s(v)/(1 + α) ≥ (1 + α)s, where (1 + α)s is
the lower bound of the spread in K, so we have

rs(N(v)) ≥ α(1 + α)(2 + α)s,

rm(N(v)) ≥ α(1 + α)2s,

and hence

rs(K) > inf
v∈K

rs(N(v)),

rm(K) > inf
v∈K

rm(N(v)).

So for any initial state w ∈ W , there exists at least a
v ∈ Λ(w) ∩K such that N(v) ⊂ K.

Note that W = K ∪ H , and both K and H are
nonempty, so both H and K are proper subsets of W .
Suppose w ∈ H . We know H = WL ∪ WM ∪ WB

∪WS , so there exists at least an x ∈ {L,M,B, S} such
that w ∈ Wx. Note that πx(v) = 1 for all v ∈ Wx,
thus w will move towards K along a continuous flow
in Λ(w)∩H . Since the number of states in Λ(w)∩H
is finite, w will move into the closed kernel region K
after finite periods. If the market is stochastically stable
within K once w ∈ K, the market will function for
infinite periods, and hence it is also stochastically stable
with the initial state w ∈ H . Thus we only need to show
the trading system is stochastically stable for any initial
state w ∈ K. Let p(w) denote the probability that bid-
ask pairs stay in H with an initial state w. We need to
show that p(w) = 0 for all w ∈ K.

Suppose w ∈ K, then we have two possibilities,
N(w) ⊂ K, and N(w) ∩ H 6= ∅. If N(w) ∩ H 6=
∅, then N(w) ∩ K 6= ∅, otherwise w ∈ H . There
exist some x ∈ {L,M,B, S}, such that πx(v) = 0
for all v ∈ N(w) ∩ H , and πx(v) = εx ∈ [0, 1] for
all v ∈ N(w) ∩K. πx(v) 6= 1 for all v ∈ K and all
x ∈ {L,M,B, S}, otherwise there must exist a y ∈
{L,M,B, S} such that πy(v) = 1−πx(v) = 0, which
then implies v ∈ H , a contradiction. Hence εx 6= 1 for
all x ∈ {L,M,B, S}.

If w moves to v∈N(w)∩H with a probability εx,
it will return back to v′ ∈N(v) ∩K with probability
1 in the next period, where N(v′) ∩ H 6= ∅ as
v ∈ N(v′). If w moves to v∈N(w)∩K with a
probability 1 − εx, it can stay within Λ(w)∩K with
k(w) consecutive periods, and then move into a state
v′ such thatN(v′)∩H 6= ∅. Recall that, for all w∈K,
we have

{v ∈ Λ(w) ∩K : N(v) ⊂ K} 6= ∅,

so k(w) ≥ 0. Then we have

p(w) = lim
T→∞

εxp(w)
(

1− 2
T

)
+

(1− εx)p(w)
(

1− k(w) + 1
T

)
,

where 0 ≤ k(w) ≤ T − 1. When k(w) = T − 1,

p(w) = lim
T→∞

εxp(w)
(

1− 2
T

)
= εxp(w),

which generates (1− εx)p(w) = 0. Since 1− εx 6= 0,
p(w) = 0 for all w ∈ K with N(w) ∩H 6= ∅.

If w ∈ K and N(w) ⊂ K, its trajectory can either
achieve a state w′ ∈ Λ(w) ∩K such that N(w′) ∩H
6= ∅ after h(w) periods, where h(w) ≥ 1, or never
move to such a state w′ and thus stay within K for
ever. Note that p(w′) = 0, if w′ ∈ K and N(w′) ∩
H 6= ∅. So p(w) ≤ p(w′) = 0, but p(w) ≥ 0, hence
p(w) = 0 for all w ∈ K with N(w) ⊂ K.

As a result, p(w) = 0 if w ∈ K, and thus p(w) = 0
for all w ∈ W . So the dynamical trading system is
stable within K almost surely.

Since (bt, at) will stay within K almost surely, the
random trajectories of bt and at will also stay within
bounded intervals. Note that

(1 + α)s ≤ st ≤ rs(K) + (1 + α)s, (13)

and

(1 + δ)s/2 ≤ mt ≤ rm(K) + (1 + δ)s/2, (14)

almost surely for all t ∈ Z, so we almost surely have

at ≤ rm(K) + rs(K)/2 + (2 + α+ δ)s/2 <

rm(K) + rs(K)/2 + 2s, (15)

and

bt ≤ rm(K)+(2+α+δ)s/2 < rm(K)+2s, (16)

where α, δ ∈ (0, 1), so (2 + α+ δ)/2 < 2.
The upper bounds of bt and at have interesting

implications on the roles of s-range andm-range in the
limit order market. The upper bound of the best bid
bt in the market is solely determined by the m-range
of the kernel region K, rather than any property of
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the whole domain W . The upper bound of the best
ask at is also only related to the kernel region K,
and yet it is determined by both the m-range and the
s-range of K. Notice that the lower bounds of bt and
at are both close to 2s, so the bid-range in the market
is approximately equal to rm(K), and the ask-range
is roughly rm(K) + rs(K)/2. Evidently, the ask side
of the limit order book should be more volatile than
its bid side, in case that the range of a price is a
meaningful indicator of its volatility.

4. Controlled Trading System

In this section, we assume again H 6= ∅, but either
the s-range or the m-range of K will be less than
α(1+α)(2+α)s. So the condition on the kernel region
in Proposition 3.14 is no longer satisfied. We want to
check whether a random trajectory of bid-ask pairs
can maintain the property of stochastic stability within
certain bounded domains.

Let U1 = WL ∪WM . Since K 6= ∅, we have WL ∩
WM = ∅ and W \ U1 6= ∅. Define U2 = W \ U1, so
W = U1 ∪ U2, and U1 ∩ U2 = ∅.

Similarly, let V1 = WB ∪WS , again W \ V1 6= ∅.
Define V2 = W \V1, soW = V1∪V2, and V1∩V2 = ∅.

Note that K = U2 ∩ V2 and H = U1 ∪ V1. Also
observe that rs(K) = rs(U2) and rm(K) = rm(V2).

4.1. Controlled Spread Dynamics

By the condition WL ∩WM = ∅, we have rs(U2)≥
0, so (1 +α)s≤ (1− γ)a, or

s/a ≤ 1− γ
1 + α

.

At the same time, we assume that the s-range of U2 is
sufficiently small, namely, rs(U2) < α(1 + α)s, so

(1− γ)a− (1 + α)s < α(1 + α)s,

which implies that s/a has a lower bound,

s/a >
1− γ

(1 + α)2
.

Intuitively, the upper bound of the s-range of U2

gives such a sufficient condition that any type of
marginal trader will definitely update any w ∈ U2 to
some w′ ∈ U1.

In brief, if 0 ≤ rs(U2) < α(1 +α)s, the domain W
will have the following property,

1− γ
(1 + α)2

< s/a ≤ 1− γ
1 + α

. (17)

Once the above inequality is satisfied by the domain
W , we have U2 6= ∅, and

U2 = {w : (1 + α)s ≤ s(w) ≤ (1− γ)a},

where s(w) is the spread function. Let the boundary of
U2 be ∂U2, then

∂U2 = {w : s(w) = (1 + α)s}∪

{w : s(w) = (1− γ)a}.

Proposition 4.1. If the buffering region H =U1 ∪V1

is nonempty, and the kernel region K = U2 ∩V2

satisfies

0 ≤ rs(U2) < α(1 + α)s, (18)

rm(V2) > α(1 + α)(2 + α)s, (19)

the dynamical trading system (W,F, σ) is stochasti-
cally stable within the region

{w : s ≤ s(w) < (1 + α)3s} ∩ V2.

Proof. Since U2 6= ∅ and its s-range is less than α(1 +
α)s, we obtain

(1 + α)s ≤ (1− γ)a < (1 + α)2s.

Note that

min
w∈U2

s(w) = (1 + α)s,

max
w∈U2

s(w) = (1− γ)a,

so we have

s ≤ (1− γ)a
(1 + α)

< (1 + α)s = min
w∈U2

s(w),

and also

(1 + α)2s > (1− γ)a = max
w∈U2

s(w).

Since any initial state w∈H will definitely move
into K after finite periods, we only need to show
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the statement is true when the initial state w ∈ K.
Consider any initial state w ∈ U2 ∩ V2, we have
(1 + α)s ≤ s(w) ≤ (1 − γ)a. Note that πL(w) > 0
and πM (w) > 0 for all w ∈ K, so πi(w) 6= 0 for
all w ∈ K and all i ∈ {1, 2, 3, 4}. Suppose w is
updated to v = wS1 by a marginal trader of type σ(1),
s(v) = s(w)/(1 +α), which is greater than s and less
than (1 − γ)a/(1 + α). Since (1 − γ)a/(1 + α) <
minw∈U2 s(w), we should have v ∈ WM , and hence
πM (v) = 1. The trader in the next period will be
market-type, namely, either type σ(4) or type σ(2). If
she is of type σ(4), v will then become wS1S4 = w,
since {σ(1), σ(4)} is a minimal periodic block. If she
is of type σ(2), v will become v′ = wS1S2, where

S1S2 =
( 1

1+α 0
α

1+α 1

)(
1 −α
0 1 + α

)
=

1
1 + α

(
1 −α
α 1 + 2α

)
,

so s(v′) = s(w). Thus after two periods, w will return
back to itself or move to a state with the same spread
as itself.

If w is updated to v = wS2 by a marginal trader
of type σ(2), then v ∈WL. So in the next period, there
will come either type-σ(3) trader or type-σ(1) trader.
The type-σ(3) trader will update v to wS2S3 = w, as
{σ(2), σ(3)} is a minimal periodic block. The type-
σ(1) trader will update v to wS2S1 that has the same
spread as w. If w is updated to wS3 by a marginal
trader of type σ(3), wS3 will then be updated either to
wS3S2 = w, or to wS3S4 that have the same spread as
w. Finally, if w is updated to wS4 by a marginal trader
of typeσ(4),wS4 will then move either towS4S1 = w,
or to wS4S3 such that s(wS4S3) = s(w).

Therefore, any initial state w ∈ U2 ∩ V2 will be
updated to a state with the same spread as itself after
two consecutive periods. Note that the dynamics in
(W,F, σ) is repeatedly composed of those two-period
dynamical blocks, thus the spread that can be achieved
in such a dynamical trading system will be greater than
or equal to

min
w∈U2

s(w)/(1 + α) = s,

and less than or equal to

(1 + α) max
w∈U2

s(w) < (1 + α)3s,

as maxw∈U2 s(w) < (1 + α)2s.

So the trajectory of bid-ask pairs starting from any
initial state w ∈W will be bounded in the region {w :
s ≤ s(w) < (1 + α)3s} ∩ V2 almost surely.

If 0 ≤ rs(U2) < α(1 + α)s, there exists a unique
exponent l ∈ [1, 2), such that

s/a =
1− γ

(1 + α)l
. (20)

Note that the upper bound of the bid-ask spread in
W is a, so (1 + α)3s should be no greater than a, or
equivalently,

s/a ≤ 1
(1 + α)3

.

Thus we need (1− γ)(1 +α)h≤ 1, where h= 3− l,
so h∈ (1, 2]. It appears to be a slightly stricter
requirement than (1− γ)(1 +α)≤ 1 that we have used
before, since (1 +α)h> 1 +α for h> 1.

Recall thatU2 = {w : (1 +α)s≤ s(w)≤ (1− γ)a},
we thus have two nonempty regions in U1, which will
contain buffering overflows,

{w : s ≤ s(w) < (1 + α)s},

{w : (1− γ)a < s(w) < (1 + α)3s}.

Evidently, the trajectory of bid-ask pairs will not
stay exactly within the kernel region K =U2 ∩ V2,
but within K and parts of the buffering region U1 ∩V2

in H .
As we can see from the proof of Proposition 4.1,

there are eight possible two-period dynamical blocks
for all w ∈ U2∩V2. Half of them are minimal periodic
blocks, so the bid-ask pair driven by each of them will
return back to w. While the remaining ones will update
w to w′ 6= w, with s(w′) = s(w) (see Fig. 7, where
s(w) is replaced simply by s).

If w′ 6= w, the distance (in the b-a plane) between
w and w′ is

√
2α

1 + α
s(w), or

√
2αs(w),

and the absolute difference between m(w) and
m(w′) is

α

1 + α
s(w), or αs(w).
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w

s

(1 + α) s

s/(1 + α )

Fig. 7. Two-period nonperiodic blocks.

The possible trajectories in the dynamical trading
system (W,F, σ) are consecutive combinations of
those eight two-period dynamical blocks. Recall that
s(w) ∈ [(1 + α)s, (1− γ)a] for all w ∈ U2 ∩ V2. The
trajectory starting from w will be bounded within the
region

{v : s(w)/(1 + α) ≤ s(v) ≤ (1 + α)s(w)},

where

(1 + α)s ∈ (s(w)/(1 + α), s(w)],

(1− γ)a ∈ [s(w), (1 + α)s(w)).

So the region containing buffering overflows are

{v : s(w)/(1 + α) ≤ s(v) < (1 + α)s},

{v : (1− γ)a < s(v) ≤ (1 + α)s(w)},

where s(w)/(1 + α) ≥ s, and (1 + α)s(w) <
(1 + α)3s. We show two trajectories starting from w
with seven periods in the b-a plane (see Fig. 8, where
s= s(w)).

4.2. Controlled Mid-Price Dynamics

If them-range of V2, rather than the s-range ofU2, is
sufficiently small, we may establish a similar result to
Proposition 4.1. Assume 0≤ rm(V2)<α(1 +α)s/2.
By the condition rm(V2)≥ 0, we have V2 6= ∅ and
WB ∩WS = ∅, so (1 + δ)s/2 ≤ (1− ε)(a− s/2), or

s/2
a− s/2

≤ 1− ε
1 + δ

,

w

s

∂ U2

∂ U2

s/(1 + α )

(1 + α) s

Fig. 8. Two trajectories starting from w in U2 ∩ V2.

where δ ∈ (0, 1) and ε ∈ [δ/(1 + δ), 1). On the other
hand, if rm(V2) < α(1 + α)s/2, then

(1− ε)(a− s/2)− (1 + δ)s/2 < α(1 + α)s/2,

which implies

s/2
a− s/2

>
1− ε

1 + δ + α(1 + α)
.

As a result, if 0 ≤ rm(V2) < α(1 + α)s/2, the
domain W will have the following property,

1− ε
1 + δ + α(1 + α)

<
s/2

a− s/2
≤ 1− ε

1 + δ
. (21)

Under that condition, we have a nonempty V2,

V2 = {w : (1+δ)s/2 ≤ m(w) ≤ (1−ε)(a−s/2)}.

Let the boundary of V2 be ∂V2, then

∂V2 = {w : m(w) = (1 + δ)s/2}∪

{w : m(w) = (1− ε)(a− s/2)}.

The lower bound in the condition (21) is a sufficient
condition for the existence of dynamical two-period
switching blocks, by which any state in V2 ∩ U2 can
return back into V2 ∩U2 after two periods. To confirm
this claim, we only need to show that any state w in
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∂V2 ∩ U2 at a time t will be updated to some w′ ∈ V1

at the time t+ 1. Note that

max
v∈V2

m(v) = (1− ε)(a− s/2),

min
v∈V2

m(v) = (1 + δ)s/2,

and they can be achieved by the states in ∂V2.
Let’s consider a generic state w∈ ∂V2 ∩U2 with

m(w) = maxv∈V2 m(v). A buy-type trader will in-
duce a greater mid-price, which means that the next
state will be in V1. A sell-type trader can generate a
new mid-price,

m(w)− α

2
s(w), or m(w)− α

2(1 + α)
s(w).

A sufficient condition for the new state will be in
V1 is that the greatest mid-price should be less than
minv∈V2 m(v), that’s to say,

max
v∈V2

m(v)− α

2(1 + α)
min

w∈∂V2
s(w) < min

v∈V2
m(v).

Note that s(w)/(1+α) ≥ (1+α)s for all w ∈ V2∩U2,
so minw∈∂V2 s(w) = (1 + α)2s. Then we obtain

(1− ε)(a− s/2)− α(1 + α)s/2 < (1 + δ)s/2,

which is exactly equivalent to the condition rm(V2) <
α(1 + α)s/2.

Now if w∈ ∂V2∩U2 withm(w) = minv∈V2 m(v),
a sell-type trader will induce a smaller mid-price, and
hence the next state must be in V1. While the new
mid-price generated by a buy-type trader can be

m(w) +
α

2
s(w), or m(w) +

α

2(1 + α)
s(w).

A sufficient condition ensuring the new state will be in
V1 is that the smallest mid-price should be greater than
maxv∈V2 m(v), that’s to say,

min
v∈V2

m(v) +
α

2(1 + α)
min

w∈∂V2
s(w) > max

v∈V2
m(v),

which is again equivalent to rm(V2) < α(1 + α)s/2.

Proposition 4.2. If the buffering regionH =V1∪U1 is
nonempty, and the kernel region K =V2 ∩U2 satisfies

0 ≤ rm(V2) < α(1 + α)s/2, (22)

rs(U2) > α(1 + α)(2 + α)s, (23)

the dynamical trading system (W,F, σ) is stochasti-
cally stable within the region

{w : m ≤ m(w) < m} ∩ U2,

where m and m are constants in the trading system.

The proof of Proposition 4.2 is roughly similar to
that of Proposition 4.1, and thus not provided here.
Once again, its trajectory of bid-ask pairs will not be
bounded within the kernel region K = V2 ∩ U2, but
within K and parts of the buffering region V1 ∩ U2,
so that the trading system can contain certain buffering
overflows to support its stability. In the limit, each state
on the trajectory will be either in K = V2 ∩ U2 or in
the buffering region V1 ∩ U2 with equal probability.

Since the updating process of the mid-price also
depends on the spread of the states on the trajectory,
the buffering region used to hold the buffering
overflows is quite wide. We can see that the m-range
of the region {w : m < m(w) < m} ∩ U2 is very
large, by virtue of

m = (1 + δ)s/2− α(1− γ)a/2, (24)

m = (1− ε)(a− s/2) + α(1− γ)a/2, (25)

where (1 − γ)a= maxw∈U2 s(w). In fact, its m-
range is

m−m = rm(V2) + α(1− γ)a, (26)

which is greater than or equal to α(1 − γ)a, and less
than α(1 − γ)a + α(1 + α)s/2. So m −m = O(a).
On the other hand, in Proposition 4.1, the s-range of
the region

{w : s ≤ s(w) < (1 + α)3s} ∩ V2

is only ((1 +α)3− 1)s = O(s), where O(s)� O(a).
Proposition 4.1 and 4.2 collectively produce inter-

esting observations about the volatilities of the mid-
price and the bid-ask spread on a limit order market.
If the spread s in the kernel region K = U2 ∩ V2

is required to be ex ante stable, then the random
trajectory in the dynamical trading system will be
bounded within a certain region with a sufficiently
small s-range. However, if the mid-price m in K is
required to be ex ante stable, the random trajectory can
not remain in a certain region with a small m-range.
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Suppose again the range of a time-dependent price
can be thought of to be an indicator of its volatility.
Let us adopt an artificial concept of “disorder” to
describe the origins of price volatility, and yet we
leave such an introduced concept in its obscurity.
Moreover, imagine the disorder in a trading system
could be classified into one intrinsic part and another
external part (which are evidently similar to the terms
of “self-generated disorder” and “quenched disorder”
in physics), such that the intrinsic disorder has an ex
ante controllable nature, while the external disorder
has an ex ante uncontrollable nature, and hence carries
a high volume of potential information in the trading
system. In practice, more intrinsic disorder should
make a price in the trading system less unpredictable,
while more external disorder could make the price
more unpredictable. And thus a price volatility that can
be partially characterized by its unpredictability should
be lower if the disorder is rather intrinsic, and higher
if that is rather external.

Quite directly, we say that the disorder in the bid-
ask spread is mainly intrinsic or self-generated, as we
find that the bid-ask spread has an ex ante controllable
nature. On the other hand, most of the disorder in the
mid-price should be external or quenched, since we
show that the mid-price has an ex ante uncontrollable
nature. For this reason, we conclude that the volatility
of the bid-ask spread should be lower than that of the
mid-price in the dynamical trading system.

5. Final Remarks

In this work, we take a dynamical perspective to
investigate the microstructure of the limit order market.
A limit order market is theoretically considered as a
dynamical trading system, in which sequential trad-
ing processes are determined by either deterministic
or probabilistic switches between different types of
traders (represented by their optimal trading decisions
in a very short time interval). In our analysis, the
perfect information usually required to model traders’
strategic behavior is loosened to the knowledge of the
so-called atomic trading schemes. We thus set less
assumptions for traders and the market, and yet still
obtain a powerful ability to understand and even predict
the order flow and the order book evolution in a generic
limit order market. Some interesting and hopefully

insightful conclusions have developed, for instance, the
best ask is more volatile than the best bid, the mid-price
is more volatile than the spread, and the best ask seems
to have more determinants than the best bid.

To close this work, we would like to make some
concluding remarks on these two critical notions
appearing in our main results — general instability in
a deterministic trading system, and stochastic stability
in a stochastic trading system.

The stability of a deterministic trading system
means that there should exist some bid-ask pairs such
that certain trading blocks can generate convergent
limit cycles attracted to them. We show that a
necessary condition for general stability of the trading
system is the trading block must be reducible, so that
they can generate periodic bid-ask pair dynamics. Thus
the notion of general instability implies that there is no
stable bid-ask pair in the trading system, and it happens
if the trading block is irreducible.

Once the trading block in the dynamical trading
system stochastically emerges from Σω4 with a certain
stationary probability measure, the trading system
will not be unstable for sure. One intuitive reason is
that a countably infinite random trading block will
be reducible almost surely. Therefore, we state that
the bid-ask pair dynamics will be bounded within
the domain W for sure, which gives meanings to
stochastic stability of the dynamical trading system.
More strictly, we show that the domain that serves
for stochastic stability is only a proper subset of W ,
which is defined as its kernel region. However, in
the meantime, the buffering region of W still has a
positive role for stochastic stability, as it occasionally
holds states on the bid-ask pair trajectory.

Finally, it might be worth figuring out one practical
application of the notions of kernel region and buffering
region. They could be used to measure the risk of
systemic instability in a real market. Say, the market
would have a high risk of systemic instability, if its
state moves into the buffering region, while the risk of
systemic instability should be acceptable with a certain
confidence level, if the state stays in the kernel region.
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