Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ferner, Clayton S.; | Babb II, Robert G.
Affiliations: Lucent Technologies Inc., 11900 N. Pecos St., Westminster, CO 80234, USA E‐mail: cferner@ lucent.com | Department of Mathematics and Computer Science, University of Denver, Denver, CO 80208, USA E‐mail: babb@ cs.du.edu
Note: [] Corresponding author.
Abstract: Task mapping and scheduling are two very difficult problems that must be addressed when a sequential program is transformed into a parallel program. Since these problems are NP‐hard, compiler writers have opted to concentrate their efforts on optimizations that produce immediate gains in performance. As a result, current parallelizing compilers either use very simple methods to deal with task scheduling or they simply ignore it altogether. Unfortunately, the programmer does not have this luxury. The burden of repartitioning or rescheduling, should the compiler produce inefficient parallel code, lies entirely with the programmer. We were able to create an algorithm (called a metaheuristic), which automatically chooses a scheduling heuristic for each input program. The metaheuristic produces better schedules in general than the heuristics upon which it is based. This technique was tested on a suite of real scientific programs written in SISAL and simulated on four different network configurations. Averaged over all of the test cases, the metaheuristic out‐performed all eight underlying scheduling algorithms; beating the best one by 2%, 12%, 13%, and 3% on the four separate network configurations. It is able to do this, not always by picking the best heuristic, but rather by avoiding the heuristics when they would produce very poor schedules. For example, while the metaheuristic only picked the best algorithm about 50% of the time for the 100 Gbps Ethernet, its worst decision was only 49% away from optimal. In contrast, the best of the eight scheduling algorithms was optimal 30% of the time, but its worst decision was 844% away from optimal.
Journal: Scientific Programming, vol. 7, no. 1, pp. 47-65, 1999
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]