Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Advances in Recommender Systems
Subtitle:
Guest editors: George A. Tsihrintzis and Maria Virvou
Article type: Research Article
Authors: Nair, Binoy B.* | Mohandas, V.P.
Affiliations: Department of Electronics and Communication Engineering, Coimbatore Campus Amrita Vishwa Vidyapeetham (University), Tamilnadu, India
Correspondence: [*] Corresponding author: Binoy B. Nair, Department of Electronics and Communication Engineering, Coimbatore Campus Amrita Vishwa Vidyapeetham (University), Tamilnadu, PIN-641112, India. Tel.: +91 9994375559; E-mail:[email protected]
Abstract: Generating consistent profits from stock markets is considered to be a challenging task, especially due to the nonlinear nature of the stock price movements. Traders need to have a deep understanding of the market behavior patterns in order to trade successfully. In this study, a GA optimized technical indicator decision tree-SVM based intelligent recommender system is proposed, which can learn patterns from the stock price movements and then recommend appropriate one-day-ahead trading strategy. The recommender system takes the task of identifying stock price patterns on itself, allowing even a lay-user, who is not well versed in stock market behavior, to trade profitably on a consistent basis. The efficacy of the proposed system is validated on four different stocks belonging to two different stock markets (India and UK) over three different time frames for each stock. Performance of the proposed system is validated using fifteen different measures. Performance is compared with traditional technical indicator based trading and the traditional buy and hold strategy. Results indicate that the proposed system is capable of generating profits for all the stocks in both the stock markets considered.
Keywords: Recommender, stock, technical indicator, decision tree, SVM
DOI: 10.3233/IDT-140220
Journal: Intelligent Decision Technologies, vol. 9, no. 3, pp. 243-269, 2015
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]