Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kukluk, Jacek P. | Holder, Lawrence B.; * | Cook, Diane J.
Affiliations: Department of Computer Science and Engineering, University of Texas at Arlington, Box 19015, Arlington, TX 76019, USA
Correspondence: [*] Corresponding author. Tel.: +1 509 335 6138; Fax: +1 509 335 3818; E-mail: [email protected].
Abstract: Graph grammars combine the relational aspect of graphs with the iterative and recursive aspects of string grammars, and thus represent an important next step in our ability to discover knowledge from data. In this paper we describe an approach to learning node replacement graph grammars. This approach is based on previous research in frequent isomorphic subgraphs discovery. We extend the search for frequent subgraphs by checking for overlap among the instances of the subgraphs in the input graph. If subgraphs overlap by one node we propose a node replacement grammar production. We also can infer a hierarchy of productions by compressing portions of a graph described by a production and then infer new productions on the compressed graph. We validate this approach in experiments where we generate graphs from known grammars and measure how well our system infers the original grammar from the generated graph. We also describe results on several real-world tasks from chemical mining to XML schema induction. We briefly discuss other grammar inference systems indicating that our study extends classes of learnable graph grammars.
Keywords: Grammar induction, graph grammars, graph mining
DOI: 10.3233/IDA-2007-11405
Journal: Intelligent Data Analysis, vol. 11, no. 4, pp. 377-400, 2007
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]