Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Shen, Lixiang | Tay, Francis E.H.; *
Affiliations: Department of Mechanical Engineering, National University of Singapore, Singapore 119260. E-mail: [email protected], [email protected]
Correspondence: [*] Corresponding author: Dr. Francis E.H. Tay, Assistant Professor, Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260. Tel.: +65 874 6818; Fax: +65 779 1459; E-mail: [email protected].
Abstract: The Rough Sets Theory, as a powerful knowledge-mining tool, has been widely applied to acquire knowledge in the medical, engineering and financial domains. However, this powerful tool cannot be applied to real-world classification tasks involving continuous features. This requires the utilization of discretization methods. ChiMerge, since it was first proposed in 1992, has become a widely used discretization method. The Chi2 algorithm is one modification to the ChiMerge algorithm. It automates the discretization process by introducing an inconsistency rate as the stopping criterion and it automatically selects the significance level. In addition, it incorporates a finer phase aimed at feature selection to broaden the applications of the ChiMerge algorithm. However, both the ChiMerge and the Chi2 algorithms do not consider the inaccuracy inherent in the merging criterion. In addition, the user-defined inconsistency rate of the Chi2 algorithm also brings about inaccuracy to the discretization process which leads to over-merging. To overcome these two drawbacks, a new discretization method, termed as the modified Chi2 algorithm, is proposed. Comparison studies carried out on the predictive accuracy shows that this modified Chi2 algorithm outperforms the original Chi2 algorithm. Thus, a completely automatic discretization method for Rough Sets Theory has been realized.
Keywords: Rough Sets Theory, discretization, degree of freedom
DOI: 10.3233/IDA-2001-5506
Journal: Intelligent Data Analysis, vol. 5, no. 5, pp. 431-438, 2001
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]