Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Lileikytė, Rasa; | Telksnys, Laimutis
Affiliations: Vilnius University, Institute of Mathematics and Informatics, Goštauto 12, LT-01108, Vilnius, Lithuania, e-mail: [email protected], [email protected]
Note: [] Corresponding author.
Abstract: The performance of an automatic speech recognition system heavily depends on the used feature set. Quality of speech recognition features is estimated by classification error, but then the recognition experiments must be performed, including both front-end and back-end implementations. We propose a method for features quality estimation that does not require recognition experiments and accelerate automatic speech recognition system development. The key component of our method is usage of metrics right after front-end features computation. The experimental results show that our method is suitable for recognition systems with back-end Euclidean space classifiers.
Keywords: speech recognition, quality of speech recognition features, classes separability
Journal: Informatica, vol. 24, no. 3, pp. 435-446, 2013
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]