Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Lehireche, Ahmed | Rahmoune, Abdellatif
Affiliations: Computer Science Department, University of Sidi Bel‐Abbes, 22000, Algeria, e‐mail: elhir@univ‐sba.dz | Faculty of Planning and Management, King Faisal University, KSA, e‐mail: [email protected]
Abstract: Evolutionary Engineering (EE) is defined to be “the art of using evolutionary algorithms approach such as genetic algorithms to build complex systems”. This paper deals with a neural net based system. It analyses ability of genetically trained neural nets to control Simulated robot arm, witch tries to track a moving object. In difference from classical Approaches neural network learning is performed on line, i.e., in real time. Usually systems are built/evolved, i.e., genetically trained separately of their utilization. That is how it is commonly done. It's a fact that evolution process is heavy on time; that's why Real‐Time approach is rarely taken into consideration. The results presented in this paper show that such approach (Real‐Time EE) is possible. These successful results are essentially due to the “continuity” of the target's trajectory. In EE terms, we express this by the Neighbourhood Hypothesis (NH) concept.
Keywords: evolutionary engineering, genetic programming, genetic algorithm, tracking, real time, neighborhood hypothesis, artificial intelligence
Journal: Informatica, vol. 15, no. 1, pp. 63-76, 2004
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]