You are viewing a javascript disabled version of the site. Please enable Javascript for this site to function properly.
Go to headerGo to navigationGo to searchGo to contentsGo to footer
In content section. Select this link to jump to navigation

Multi-scale capability: A better approach to performance measurement for algorithmic trading

Abstract

This paper develops a new performance measurement methodology for algorithmic trading. By adapting capability from the quality control literature, we present new criteria for assessing control, expected tail loss and risk-adjusted performance in a single framework. The multi-scale capability measure we present is more descriptive and more appropriate for algorithmic trading than the traditional measure used in finance. It is robust to non-normality and the multiple time horizon decision processes inherent in algorithmic trading. We also argue that an algorithmic trading strategy, indeed any investment strategy, which satisfies the criteria to be multi-scale capable also satisfies any definition of prudence. It will be unlikely to harm the investor or external market participants in the event of its failure, while providing a high likelihood of satisfactory risk-adjusted performance.